
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111071
Fixes: 2a74296f24
"nir: add opt_if_loop_terminator()"
Reviewed-by: Timothy Arceri <tarceri@itsqueeze.com>
1463 lines
48 KiB
C
1463 lines
48 KiB
C
/*
|
|
* Copyright © 2016 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "nir.h"
|
|
#include "nir/nir_builder.h"
|
|
#include "nir_constant_expressions.h"
|
|
#include "nir_control_flow.h"
|
|
#include "nir_loop_analyze.h"
|
|
|
|
static nir_ssa_def *clone_alu_and_replace_src_defs(nir_builder *b,
|
|
const nir_alu_instr *alu,
|
|
nir_ssa_def **src_defs);
|
|
|
|
/**
|
|
* Gets the single block that jumps back to the loop header. Already assumes
|
|
* there is exactly one such block.
|
|
*/
|
|
static nir_block*
|
|
find_continue_block(nir_loop *loop)
|
|
{
|
|
nir_block *header_block = nir_loop_first_block(loop);
|
|
nir_block *prev_block =
|
|
nir_cf_node_as_block(nir_cf_node_prev(&loop->cf_node));
|
|
|
|
assert(header_block->predecessors->entries == 2);
|
|
|
|
set_foreach(header_block->predecessors, pred_entry) {
|
|
if (pred_entry->key != prev_block)
|
|
return (nir_block*)pred_entry->key;
|
|
}
|
|
|
|
unreachable("Continue block not found!");
|
|
}
|
|
|
|
/**
|
|
* Does a phi have one constant value from outside a loop and one from inside?
|
|
*/
|
|
static bool
|
|
phi_has_constant_from_outside_and_one_from_inside_loop(nir_phi_instr *phi,
|
|
const nir_block *entry_block,
|
|
uint32_t *entry_val,
|
|
uint32_t *continue_val)
|
|
{
|
|
/* We already know we have exactly one continue */
|
|
assert(exec_list_length(&phi->srcs) == 2);
|
|
|
|
*entry_val = 0;
|
|
*continue_val = 0;
|
|
|
|
nir_foreach_phi_src(src, phi) {
|
|
assert(src->src.is_ssa);
|
|
nir_const_value *const_src = nir_src_as_const_value(src->src);
|
|
if (!const_src)
|
|
return false;
|
|
|
|
if (src->pred != entry_block) {
|
|
*continue_val = const_src[0].u32;
|
|
} else {
|
|
*entry_val = const_src[0].u32;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* This optimization detects if statements at the tops of loops where the
|
|
* condition is a phi node of two constants and moves half of the if to above
|
|
* the loop and the other half of the if to the end of the loop. A simple for
|
|
* loop "for (int i = 0; i < 4; i++)", when run through the SPIR-V front-end,
|
|
* ends up looking something like this:
|
|
*
|
|
* vec1 32 ssa_0 = load_const (0x00000000)
|
|
* vec1 32 ssa_1 = load_const (0xffffffff)
|
|
* loop {
|
|
* block block_1:
|
|
* vec1 32 ssa_2 = phi block_0: ssa_0, block_7: ssa_5
|
|
* vec1 32 ssa_3 = phi block_0: ssa_0, block_7: ssa_1
|
|
* if ssa_3 {
|
|
* block block_2:
|
|
* vec1 32 ssa_4 = load_const (0x00000001)
|
|
* vec1 32 ssa_5 = iadd ssa_2, ssa_4
|
|
* } else {
|
|
* block block_3:
|
|
* }
|
|
* block block_4:
|
|
* vec1 32 ssa_6 = load_const (0x00000004)
|
|
* vec1 32 ssa_7 = ilt ssa_5, ssa_6
|
|
* if ssa_7 {
|
|
* block block_5:
|
|
* } else {
|
|
* block block_6:
|
|
* break
|
|
* }
|
|
* block block_7:
|
|
* }
|
|
*
|
|
* This turns it into something like this:
|
|
*
|
|
* // Stuff from block 1
|
|
* // Stuff from block 3
|
|
* loop {
|
|
* block block_1:
|
|
* vec1 32 ssa_2 = phi block_0: ssa_0, block_7: ssa_5
|
|
* vec1 32 ssa_6 = load_const (0x00000004)
|
|
* vec1 32 ssa_7 = ilt ssa_2, ssa_6
|
|
* if ssa_7 {
|
|
* block block_5:
|
|
* } else {
|
|
* block block_6:
|
|
* break
|
|
* }
|
|
* block block_7:
|
|
* // Stuff from block 1
|
|
* // Stuff from block 2
|
|
* vec1 32 ssa_4 = load_const (0x00000001)
|
|
* vec1 32 ssa_5 = iadd ssa_2, ssa_4
|
|
* }
|
|
*/
|
|
static bool
|
|
opt_peel_loop_initial_if(nir_loop *loop)
|
|
{
|
|
nir_block *header_block = nir_loop_first_block(loop);
|
|
nir_block *const prev_block =
|
|
nir_cf_node_as_block(nir_cf_node_prev(&loop->cf_node));
|
|
|
|
/* It would be insane if this were not true */
|
|
assert(_mesa_set_search(header_block->predecessors, prev_block));
|
|
|
|
/* The loop must have exactly one continue block which could be a block
|
|
* ending in a continue instruction or the "natural" continue from the
|
|
* last block in the loop back to the top.
|
|
*/
|
|
if (header_block->predecessors->entries != 2)
|
|
return false;
|
|
|
|
nir_cf_node *if_node = nir_cf_node_next(&header_block->cf_node);
|
|
if (!if_node || if_node->type != nir_cf_node_if)
|
|
return false;
|
|
|
|
nir_if *nif = nir_cf_node_as_if(if_node);
|
|
assert(nif->condition.is_ssa);
|
|
|
|
nir_ssa_def *cond = nif->condition.ssa;
|
|
if (cond->parent_instr->type != nir_instr_type_phi)
|
|
return false;
|
|
|
|
nir_phi_instr *cond_phi = nir_instr_as_phi(cond->parent_instr);
|
|
if (cond->parent_instr->block != header_block)
|
|
return false;
|
|
|
|
uint32_t entry_val = 0, continue_val = 0;
|
|
if (!phi_has_constant_from_outside_and_one_from_inside_loop(cond_phi,
|
|
prev_block,
|
|
&entry_val,
|
|
&continue_val))
|
|
return false;
|
|
|
|
/* If they both execute or both don't execute, this is a job for
|
|
* nir_dead_cf, not this pass.
|
|
*/
|
|
if ((entry_val && continue_val) || (!entry_val && !continue_val))
|
|
return false;
|
|
|
|
struct exec_list *continue_list, *entry_list;
|
|
if (continue_val) {
|
|
continue_list = &nif->then_list;
|
|
entry_list = &nif->else_list;
|
|
} else {
|
|
continue_list = &nif->else_list;
|
|
entry_list = &nif->then_list;
|
|
}
|
|
|
|
/* We want to be moving the contents of entry_list to above the loop so it
|
|
* can't contain any break or continue instructions.
|
|
*/
|
|
foreach_list_typed(nir_cf_node, cf_node, node, entry_list) {
|
|
nir_foreach_block_in_cf_node(block, cf_node) {
|
|
nir_instr *last_instr = nir_block_last_instr(block);
|
|
if (last_instr && last_instr->type == nir_instr_type_jump)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* We're about to re-arrange a bunch of blocks so make sure that we don't
|
|
* have deref uses which cross block boundaries. We don't want a deref
|
|
* accidentally ending up in a phi.
|
|
*/
|
|
nir_rematerialize_derefs_in_use_blocks_impl(
|
|
nir_cf_node_get_function(&loop->cf_node));
|
|
|
|
/* Before we do anything, convert the loop to LCSSA. We're about to
|
|
* replace a bunch of SSA defs with registers and this will prevent any of
|
|
* it from leaking outside the loop.
|
|
*/
|
|
nir_convert_loop_to_lcssa(loop);
|
|
|
|
nir_block *after_if_block =
|
|
nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node));
|
|
|
|
/* Get rid of phis in the header block since we will be duplicating it */
|
|
nir_lower_phis_to_regs_block(header_block);
|
|
/* Get rid of phis after the if since dominance will change */
|
|
nir_lower_phis_to_regs_block(after_if_block);
|
|
|
|
/* Get rid of SSA defs in the pieces we're about to move around */
|
|
nir_lower_ssa_defs_to_regs_block(header_block);
|
|
nir_foreach_block_in_cf_node(block, &nif->cf_node)
|
|
nir_lower_ssa_defs_to_regs_block(block);
|
|
|
|
nir_cf_list header, tmp;
|
|
nir_cf_extract(&header, nir_before_block(header_block),
|
|
nir_after_block(header_block));
|
|
|
|
nir_cf_list_clone(&tmp, &header, &loop->cf_node, NULL);
|
|
nir_cf_reinsert(&tmp, nir_before_cf_node(&loop->cf_node));
|
|
nir_cf_extract(&tmp, nir_before_cf_list(entry_list),
|
|
nir_after_cf_list(entry_list));
|
|
nir_cf_reinsert(&tmp, nir_before_cf_node(&loop->cf_node));
|
|
|
|
nir_cf_reinsert(&header,
|
|
nir_after_block_before_jump(find_continue_block(loop)));
|
|
|
|
bool continue_list_jumps =
|
|
nir_block_ends_in_jump(exec_node_data(nir_block,
|
|
exec_list_get_tail(continue_list),
|
|
cf_node.node));
|
|
|
|
nir_cf_extract(&tmp, nir_before_cf_list(continue_list),
|
|
nir_after_cf_list(continue_list));
|
|
|
|
/* Get continue block again as the previous reinsert might have removed the
|
|
* block. Also, if both the continue list and the continue block ends in
|
|
* jump instructions, removes the jump from the latter, as it will not be
|
|
* executed if we insert the continue list before it. */
|
|
|
|
nir_block *continue_block = find_continue_block(loop);
|
|
|
|
if (continue_list_jumps) {
|
|
nir_instr *last_instr = nir_block_last_instr(continue_block);
|
|
if (last_instr && last_instr->type == nir_instr_type_jump)
|
|
nir_instr_remove(last_instr);
|
|
}
|
|
|
|
nir_cf_reinsert(&tmp,
|
|
nir_after_block_before_jump(continue_block));
|
|
|
|
nir_cf_node_remove(&nif->cf_node);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
alu_instr_is_comparison(const nir_alu_instr *alu)
|
|
{
|
|
switch (alu->op) {
|
|
case nir_op_flt32:
|
|
case nir_op_fge32:
|
|
case nir_op_feq32:
|
|
case nir_op_fne32:
|
|
case nir_op_ilt32:
|
|
case nir_op_ult32:
|
|
case nir_op_ige32:
|
|
case nir_op_uge32:
|
|
case nir_op_ieq32:
|
|
case nir_op_ine32:
|
|
return true;
|
|
default:
|
|
return nir_alu_instr_is_comparison(alu);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
alu_instr_is_type_conversion(const nir_alu_instr *alu)
|
|
{
|
|
return nir_op_infos[alu->op].num_inputs == 1 &&
|
|
nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type) !=
|
|
nir_alu_type_get_base_type(nir_op_infos[alu->op].input_types[0]);
|
|
}
|
|
|
|
/**
|
|
* Splits ALU instructions that have a source that is a phi node
|
|
*
|
|
* ALU instructions in the header block of a loop that meet the following
|
|
* criteria can be split.
|
|
*
|
|
* - The loop has no continue instructions other than the "natural" continue
|
|
* at the bottom of the loop.
|
|
*
|
|
* - At least one source of the instruction is a phi node from the header block.
|
|
*
|
|
* and either this rule
|
|
*
|
|
* - The phi node selects undef from the block before the loop and a value
|
|
* from the continue block of the loop.
|
|
*
|
|
* or these two rules
|
|
*
|
|
* - The phi node selects a constant from the block before the loop.
|
|
*
|
|
* - The non-phi source of the ALU instruction comes from a block that
|
|
* dominates the block before the loop. The most common failure mode for
|
|
* this check is sources that are generated in the loop header block.
|
|
*
|
|
* The split process moves the original ALU instruction to the bottom of the
|
|
* loop. The phi node source is replaced with the value from the phi node
|
|
* selected from the continue block (i.e., the non-undef value). A new phi
|
|
* node is added to the header block that selects either undef from the block
|
|
* before the loop or the result of the (moved) ALU instruction.
|
|
*
|
|
* The splitting transforms a loop like:
|
|
*
|
|
* vec1 32 ssa_7 = undefined
|
|
* vec1 32 ssa_8 = load_const (0x00000001)
|
|
* vec1 32 ssa_10 = load_const (0x00000000)
|
|
* // succs: block_1
|
|
* loop {
|
|
* block block_1:
|
|
* // preds: block_0 block_4
|
|
* vec1 32 ssa_11 = phi block_0: ssa_7, block_4: ssa_15
|
|
* vec1 32 ssa_12 = phi block_0: ssa_1, block_4: ssa_15
|
|
* vec1 32 ssa_13 = phi block_0: ssa_10, block_4: ssa_16
|
|
* vec1 32 ssa_14 = iadd ssa_11, ssa_8
|
|
* vec1 32 ssa_15 = b32csel ssa_13, ssa_14, ssa_12
|
|
* ...
|
|
* // succs: block_1
|
|
* }
|
|
*
|
|
* into:
|
|
*
|
|
* vec1 32 ssa_7 = undefined
|
|
* vec1 32 ssa_8 = load_const (0x00000001)
|
|
* vec1 32 ssa_10 = load_const (0x00000000)
|
|
* // succs: block_1
|
|
* loop {
|
|
* block block_1:
|
|
* // preds: block_0 block_4
|
|
* vec1 32 ssa_11 = phi block_0: ssa_7, block_4: ssa_15
|
|
* vec1 32 ssa_12 = phi block_0: ssa_1, block_4: ssa_15
|
|
* vec1 32 ssa_13 = phi block_0: ssa_10, block_4: ssa_16
|
|
* vec1 32 ssa_21 = phi block_0: sss_7, block_4: ssa_20
|
|
* vec1 32 ssa_15 = b32csel ssa_13, ssa_21, ssa_12
|
|
* ...
|
|
* vec1 32 ssa_20 = iadd ssa_15, ssa_8
|
|
* // succs: block_1
|
|
* }
|
|
*
|
|
* If the phi does not select an undef, the instruction is duplicated in the
|
|
* loop continue block (as in the undef case) and in the previous block. When
|
|
* the ALU instruction is duplicated in the previous block, the correct source
|
|
* must be selected from the phi node.
|
|
*/
|
|
static bool
|
|
opt_split_alu_of_phi(nir_builder *b, nir_loop *loop)
|
|
{
|
|
bool progress = false;
|
|
nir_block *header_block = nir_loop_first_block(loop);
|
|
nir_block *const prev_block =
|
|
nir_cf_node_as_block(nir_cf_node_prev(&loop->cf_node));
|
|
|
|
/* It would be insane if this were not true */
|
|
assert(_mesa_set_search(header_block->predecessors, prev_block));
|
|
|
|
/* The loop must have exactly one continue block which could be a block
|
|
* ending in a continue instruction or the "natural" continue from the
|
|
* last block in the loop back to the top.
|
|
*/
|
|
if (header_block->predecessors->entries != 2)
|
|
return false;
|
|
|
|
nir_foreach_instr_safe(instr, header_block) {
|
|
if (instr->type != nir_instr_type_alu)
|
|
continue;
|
|
|
|
nir_alu_instr *const alu = nir_instr_as_alu(instr);
|
|
|
|
/* Most ALU ops produce an undefined result if any source is undef.
|
|
* However, operations like bcsel only produce undefined results of the
|
|
* first operand is undef. Even in the undefined case, the result
|
|
* should be one of the other two operands, so the result of the bcsel
|
|
* should never be replaced with undef.
|
|
*
|
|
* nir_op_vec{2,3,4} and nir_op_mov are excluded because they can easily
|
|
* lead to infinite optimization loops.
|
|
*/
|
|
if (alu->op == nir_op_bcsel ||
|
|
alu->op == nir_op_b32csel ||
|
|
alu->op == nir_op_fcsel ||
|
|
alu->op == nir_op_vec2 ||
|
|
alu->op == nir_op_vec3 ||
|
|
alu->op == nir_op_vec4 ||
|
|
alu->op == nir_op_mov ||
|
|
alu_instr_is_comparison(alu) ||
|
|
alu_instr_is_type_conversion(alu))
|
|
continue;
|
|
|
|
bool has_phi_src_from_prev_block = false;
|
|
bool all_non_phi_exist_in_prev_block = true;
|
|
bool is_prev_result_undef = true;
|
|
bool is_prev_result_const = true;
|
|
nir_ssa_def *prev_srcs[8]; // FINISHME: Array size?
|
|
nir_ssa_def *continue_srcs[8]; // FINISHME: Array size?
|
|
|
|
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
|
|
nir_instr *const src_instr = alu->src[i].src.ssa->parent_instr;
|
|
|
|
/* If the source is a phi in the loop header block, then the
|
|
* prev_srcs and continue_srcs will come from the different sources
|
|
* of the phi.
|
|
*/
|
|
if (src_instr->type == nir_instr_type_phi &&
|
|
src_instr->block == header_block) {
|
|
nir_phi_instr *const phi = nir_instr_as_phi(src_instr);
|
|
|
|
/* Only strictly need to NULL out the pointers when the assertions
|
|
* (below) are compiled in. Debugging a NULL pointer deref in the
|
|
* wild is easier than debugging a random pointer deref, so set
|
|
* NULL unconditionally just to be safe.
|
|
*/
|
|
prev_srcs[i] = NULL;
|
|
continue_srcs[i] = NULL;
|
|
|
|
nir_foreach_phi_src(src_of_phi, phi) {
|
|
if (src_of_phi->pred == prev_block) {
|
|
if (src_of_phi->src.ssa->parent_instr->type !=
|
|
nir_instr_type_ssa_undef) {
|
|
is_prev_result_undef = false;
|
|
}
|
|
|
|
if (src_of_phi->src.ssa->parent_instr->type !=
|
|
nir_instr_type_load_const) {
|
|
is_prev_result_const = false;
|
|
}
|
|
|
|
prev_srcs[i] = src_of_phi->src.ssa;
|
|
has_phi_src_from_prev_block = true;
|
|
} else
|
|
continue_srcs[i] = src_of_phi->src.ssa;
|
|
}
|
|
|
|
assert(prev_srcs[i] != NULL);
|
|
assert(continue_srcs[i] != NULL);
|
|
} else {
|
|
/* If the source is not a phi (or a phi in a block other than the
|
|
* loop header), then the value must exist in prev_block.
|
|
*/
|
|
if (!nir_block_dominates(src_instr->block, prev_block)) {
|
|
all_non_phi_exist_in_prev_block = false;
|
|
break;
|
|
}
|
|
|
|
prev_srcs[i] = alu->src[i].src.ssa;
|
|
continue_srcs[i] = alu->src[i].src.ssa;
|
|
}
|
|
}
|
|
|
|
if (has_phi_src_from_prev_block && all_non_phi_exist_in_prev_block &&
|
|
(is_prev_result_undef || is_prev_result_const)) {
|
|
nir_block *const continue_block = find_continue_block(loop);
|
|
nir_ssa_def *prev_value;
|
|
|
|
if (!is_prev_result_undef) {
|
|
b->cursor = nir_after_block(prev_block);
|
|
prev_value = clone_alu_and_replace_src_defs(b, alu, prev_srcs);
|
|
} else {
|
|
/* Since the undef used as the source of the original ALU
|
|
* instruction may have different number of components or
|
|
* bit size than the result of that instruction, a new
|
|
* undef must be created.
|
|
*/
|
|
nir_ssa_undef_instr *undef =
|
|
nir_ssa_undef_instr_create(b->shader,
|
|
alu->dest.dest.ssa.num_components,
|
|
alu->dest.dest.ssa.bit_size);
|
|
|
|
nir_instr_insert_after_block(prev_block, &undef->instr);
|
|
|
|
prev_value = &undef->def;
|
|
}
|
|
|
|
/* Make a copy of the original ALU instruction. Replace the sources
|
|
* of the new instruction that read a phi with an undef source from
|
|
* prev_block with the non-undef source of that phi.
|
|
*
|
|
* Insert the new instruction at the end of the continue block.
|
|
*/
|
|
b->cursor = nir_after_block_before_jump(continue_block);
|
|
|
|
nir_ssa_def *const alu_copy =
|
|
clone_alu_and_replace_src_defs(b, alu, continue_srcs);
|
|
|
|
/* Make a new phi node that selects a value from prev_block and the
|
|
* result of the new instruction from continue_block.
|
|
*/
|
|
nir_phi_instr *const phi = nir_phi_instr_create(b->shader);
|
|
nir_phi_src *phi_src;
|
|
|
|
phi_src = ralloc(phi, nir_phi_src);
|
|
phi_src->pred = prev_block;
|
|
phi_src->src = nir_src_for_ssa(prev_value);
|
|
exec_list_push_tail(&phi->srcs, &phi_src->node);
|
|
|
|
phi_src = ralloc(phi, nir_phi_src);
|
|
phi_src->pred = continue_block;
|
|
phi_src->src = nir_src_for_ssa(alu_copy);
|
|
exec_list_push_tail(&phi->srcs, &phi_src->node);
|
|
|
|
nir_ssa_dest_init(&phi->instr, &phi->dest,
|
|
alu_copy->num_components, alu_copy->bit_size, NULL);
|
|
|
|
b->cursor = nir_after_phis(header_block);
|
|
nir_builder_instr_insert(b, &phi->instr);
|
|
|
|
/* Modify all readers of the original ALU instruction to read the
|
|
* result of the phi.
|
|
*/
|
|
nir_foreach_use_safe(use_src, &alu->dest.dest.ssa) {
|
|
nir_instr_rewrite_src(use_src->parent_instr,
|
|
use_src,
|
|
nir_src_for_ssa(&phi->dest.ssa));
|
|
}
|
|
|
|
nir_foreach_if_use_safe(use_src, &alu->dest.dest.ssa) {
|
|
nir_if_rewrite_condition(use_src->parent_if,
|
|
nir_src_for_ssa(&phi->dest.ssa));
|
|
}
|
|
|
|
/* Since the original ALU instruction no longer has any readers, just
|
|
* remove it.
|
|
*/
|
|
nir_instr_remove_v(&alu->instr);
|
|
ralloc_free(alu);
|
|
|
|
progress = true;
|
|
}
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
/**
|
|
* Get the SSA value from a phi node that corresponds to a specific block
|
|
*/
|
|
static nir_ssa_def *
|
|
ssa_for_phi_from_block(nir_phi_instr *phi, nir_block *block)
|
|
{
|
|
nir_foreach_phi_src(src, phi) {
|
|
if (src->pred == block)
|
|
return src->src.ssa;
|
|
}
|
|
|
|
assert(!"Block is not a predecessor of phi.");
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Simplify a bcsel whose sources are all phi nodes from the loop header block
|
|
*
|
|
* bcsel instructions in a loop that meet the following criteria can be
|
|
* converted to phi nodes:
|
|
*
|
|
* - The loop has no continue instructions other than the "natural" continue
|
|
* at the bottom of the loop.
|
|
*
|
|
* - All of the sources of the bcsel are phi nodes in the header block of the
|
|
* loop.
|
|
*
|
|
* - The phi node representing the condition of the bcsel instruction chooses
|
|
* only constant values.
|
|
*
|
|
* The contant value from the condition will select one of the other sources
|
|
* when entered from outside the loop and the remaining source when entered
|
|
* from the continue block. Since each of these sources is also a phi node in
|
|
* the header block, the value of the phi node can be "evaluated." These
|
|
* evaluated phi nodes provide the sources for a new phi node. All users of
|
|
* the bcsel result are updated to use the phi node result.
|
|
*
|
|
* The replacement transforms loops like:
|
|
*
|
|
* vec1 32 ssa_7 = undefined
|
|
* vec1 32 ssa_8 = load_const (0x00000001)
|
|
* vec1 32 ssa_9 = load_const (0x000000c8)
|
|
* vec1 32 ssa_10 = load_const (0x00000000)
|
|
* // succs: block_1
|
|
* loop {
|
|
* block block_1:
|
|
* // preds: block_0 block_4
|
|
* vec1 32 ssa_11 = phi block_0: ssa_1, block_4: ssa_14
|
|
* vec1 32 ssa_12 = phi block_0: ssa_10, block_4: ssa_15
|
|
* vec1 32 ssa_13 = phi block_0: ssa_7, block_4: ssa_25
|
|
* vec1 32 ssa_14 = b32csel ssa_12, ssa_13, ssa_11
|
|
* vec1 32 ssa_16 = ige32 ssa_14, ssa_9
|
|
* ...
|
|
* vec1 32 ssa_15 = load_const (0xffffffff)
|
|
* ...
|
|
* vec1 32 ssa_25 = iadd ssa_14, ssa_8
|
|
* // succs: block_1
|
|
* }
|
|
*
|
|
* into:
|
|
*
|
|
* vec1 32 ssa_7 = undefined
|
|
* vec1 32 ssa_8 = load_const (0x00000001)
|
|
* vec1 32 ssa_9 = load_const (0x000000c8)
|
|
* vec1 32 ssa_10 = load_const (0x00000000)
|
|
* // succs: block_1
|
|
* loop {
|
|
* block block_1:
|
|
* // preds: block_0 block_4
|
|
* vec1 32 ssa_11 = phi block_0: ssa_1, block_4: ssa_14
|
|
* vec1 32 ssa_12 = phi block_0: ssa_10, block_4: ssa_15
|
|
* vec1 32 ssa_13 = phi block_0: ssa_7, block_4: ssa_25
|
|
* vec1 32 sss_26 = phi block_0: ssa_1, block_4: ssa_25
|
|
* vec1 32 ssa_16 = ige32 ssa_26, ssa_9
|
|
* ...
|
|
* vec1 32 ssa_15 = load_const (0xffffffff)
|
|
* ...
|
|
* vec1 32 ssa_25 = iadd ssa_26, ssa_8
|
|
* // succs: block_1
|
|
* }
|
|
*
|
|
* \note
|
|
* It may be possible modify this function to not require a phi node as the
|
|
* source of the bcsel that is selected when entering from outside the loop.
|
|
* The only restriction is that the source must be geneated outside the loop
|
|
* (since it will become the source of a phi node in the header block of the
|
|
* loop).
|
|
*/
|
|
static bool
|
|
opt_simplify_bcsel_of_phi(nir_builder *b, nir_loop *loop)
|
|
{
|
|
bool progress = false;
|
|
nir_block *header_block = nir_loop_first_block(loop);
|
|
nir_block *const prev_block =
|
|
nir_cf_node_as_block(nir_cf_node_prev(&loop->cf_node));
|
|
|
|
/* It would be insane if this were not true */
|
|
assert(_mesa_set_search(header_block->predecessors, prev_block));
|
|
|
|
/* The loop must have exactly one continue block which could be a block
|
|
* ending in a continue instruction or the "natural" continue from the
|
|
* last block in the loop back to the top.
|
|
*/
|
|
if (header_block->predecessors->entries != 2)
|
|
return false;
|
|
|
|
/* We can move any bcsel that can guaranteed to execut on every iteration
|
|
* of a loop. For now this is accomplished by only taking bcsels from the
|
|
* header_block. In the future, this could be expanced to include any
|
|
* bcsel that must come before any break.
|
|
*
|
|
* For more details, see
|
|
* https://gitlab.freedesktop.org/mesa/mesa/merge_requests/170#note_110305
|
|
*/
|
|
nir_foreach_instr_safe(instr, header_block) {
|
|
if (instr->type != nir_instr_type_alu)
|
|
continue;
|
|
|
|
nir_alu_instr *const bcsel = nir_instr_as_alu(instr);
|
|
if (bcsel->op != nir_op_bcsel &&
|
|
bcsel->op != nir_op_b32csel &&
|
|
bcsel->op != nir_op_fcsel)
|
|
continue;
|
|
|
|
bool match = true;
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
/* FINISHME: The abs and negate cases could be handled by adding
|
|
* move instructions at the bottom of the continue block and more
|
|
* phi nodes in the header_block.
|
|
*/
|
|
if (!bcsel->src[i].src.is_ssa ||
|
|
bcsel->src[i].src.ssa->parent_instr->type != nir_instr_type_phi ||
|
|
bcsel->src[i].src.ssa->parent_instr->block != header_block ||
|
|
bcsel->src[i].negate || bcsel->src[i].abs) {
|
|
match = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!match)
|
|
continue;
|
|
|
|
nir_phi_instr *const cond_phi =
|
|
nir_instr_as_phi(bcsel->src[0].src.ssa->parent_instr);
|
|
|
|
uint32_t entry_val = 0, continue_val = 0;
|
|
if (!phi_has_constant_from_outside_and_one_from_inside_loop(cond_phi,
|
|
prev_block,
|
|
&entry_val,
|
|
&continue_val))
|
|
continue;
|
|
|
|
/* If they both execute or both don't execute, this is a job for
|
|
* nir_dead_cf, not this pass.
|
|
*/
|
|
if ((entry_val && continue_val) || (!entry_val && !continue_val))
|
|
continue;
|
|
|
|
const unsigned entry_src = entry_val ? 1 : 2;
|
|
const unsigned continue_src = entry_val ? 2 : 1;
|
|
|
|
/* Create a new phi node that selects the value for prev_block from
|
|
* the bcsel source that is selected by entry_val and the value for
|
|
* continue_block from the other bcsel source. Both sources have
|
|
* already been verified to be phi nodes.
|
|
*/
|
|
nir_block *const continue_block = find_continue_block(loop);
|
|
nir_phi_instr *const phi = nir_phi_instr_create(b->shader);
|
|
nir_phi_src *phi_src;
|
|
|
|
phi_src = ralloc(phi, nir_phi_src);
|
|
phi_src->pred = prev_block;
|
|
phi_src->src =
|
|
nir_src_for_ssa(ssa_for_phi_from_block(nir_instr_as_phi(bcsel->src[entry_src].src.ssa->parent_instr),
|
|
prev_block));
|
|
exec_list_push_tail(&phi->srcs, &phi_src->node);
|
|
|
|
phi_src = ralloc(phi, nir_phi_src);
|
|
phi_src->pred = continue_block;
|
|
phi_src->src =
|
|
nir_src_for_ssa(ssa_for_phi_from_block(nir_instr_as_phi(bcsel->src[continue_src].src.ssa->parent_instr),
|
|
continue_block));
|
|
exec_list_push_tail(&phi->srcs, &phi_src->node);
|
|
|
|
nir_ssa_dest_init(&phi->instr,
|
|
&phi->dest,
|
|
nir_dest_num_components(bcsel->dest.dest),
|
|
nir_dest_bit_size(bcsel->dest.dest),
|
|
NULL);
|
|
|
|
b->cursor = nir_after_phis(header_block);
|
|
nir_builder_instr_insert(b, &phi->instr);
|
|
|
|
/* Modify all readers of the bcsel instruction to read the result of
|
|
* the phi.
|
|
*/
|
|
nir_foreach_use_safe(use_src, &bcsel->dest.dest.ssa) {
|
|
nir_instr_rewrite_src(use_src->parent_instr,
|
|
use_src,
|
|
nir_src_for_ssa(&phi->dest.ssa));
|
|
}
|
|
|
|
nir_foreach_if_use_safe(use_src, &bcsel->dest.dest.ssa) {
|
|
nir_if_rewrite_condition(use_src->parent_if,
|
|
nir_src_for_ssa(&phi->dest.ssa));
|
|
}
|
|
|
|
/* Since the original bcsel instruction no longer has any readers,
|
|
* just remove it.
|
|
*/
|
|
nir_instr_remove_v(&bcsel->instr);
|
|
ralloc_free(bcsel);
|
|
|
|
progress = true;
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
static bool
|
|
is_block_empty(nir_block *block)
|
|
{
|
|
return nir_cf_node_is_last(&block->cf_node) &&
|
|
exec_list_is_empty(&block->instr_list);
|
|
}
|
|
|
|
static bool
|
|
nir_block_ends_in_continue(nir_block *block)
|
|
{
|
|
if (exec_list_is_empty(&block->instr_list))
|
|
return false;
|
|
|
|
nir_instr *instr = nir_block_last_instr(block);
|
|
return instr->type == nir_instr_type_jump &&
|
|
nir_instr_as_jump(instr)->type == nir_jump_continue;
|
|
}
|
|
|
|
/**
|
|
* This optimization turns:
|
|
*
|
|
* loop {
|
|
* ...
|
|
* if (cond) {
|
|
* do_work_1();
|
|
* continue;
|
|
* } else {
|
|
* }
|
|
* do_work_2();
|
|
* }
|
|
*
|
|
* into:
|
|
*
|
|
* loop {
|
|
* ...
|
|
* if (cond) {
|
|
* do_work_1();
|
|
* continue;
|
|
* } else {
|
|
* do_work_2();
|
|
* }
|
|
* }
|
|
*
|
|
* The continue should then be removed by nir_opt_trivial_continues() and the
|
|
* loop can potentially be unrolled.
|
|
*
|
|
* Note: Unless the function param aggressive_last_continue==true do_work_2()
|
|
* is only ever blocks and nested loops. We avoid nesting other if-statments
|
|
* in the branch as this can result in increased register pressure, and in
|
|
* the i965 driver it causes a large amount of spilling in shader-db.
|
|
* For RADV however nesting these if-statements allows further continues to be
|
|
* remove and provides a significant FPS boost in Doom, which is why we have
|
|
* opted for this special bool to enable more aggresive optimisations.
|
|
* TODO: The GCM pass solves most of the spilling regressions in i965, if it
|
|
* is ever enabled we should consider removing the aggressive_last_continue
|
|
* param.
|
|
*/
|
|
static bool
|
|
opt_if_loop_last_continue(nir_loop *loop, bool aggressive_last_continue)
|
|
{
|
|
nir_if *nif;
|
|
bool then_ends_in_continue = false;
|
|
bool else_ends_in_continue = false;
|
|
|
|
/* Scan the control flow of the loop from the last to the first node
|
|
* looking for an if-statement we can optimise.
|
|
*/
|
|
nir_block *last_block = nir_loop_last_block(loop);
|
|
nir_cf_node *if_node = nir_cf_node_prev(&last_block->cf_node);
|
|
while (if_node) {
|
|
if (if_node->type == nir_cf_node_if) {
|
|
nif = nir_cf_node_as_if(if_node);
|
|
nir_block *then_block = nir_if_last_then_block(nif);
|
|
nir_block *else_block = nir_if_last_else_block(nif);
|
|
|
|
then_ends_in_continue = nir_block_ends_in_continue(then_block);
|
|
else_ends_in_continue = nir_block_ends_in_continue(else_block);
|
|
|
|
/* If both branches end in a jump do nothing, this should be handled
|
|
* by nir_opt_dead_cf().
|
|
*/
|
|
if ((then_ends_in_continue || nir_block_ends_in_break(then_block)) &&
|
|
(else_ends_in_continue || nir_block_ends_in_break(else_block)))
|
|
return false;
|
|
|
|
/* If continue found stop scanning and attempt optimisation, or
|
|
*/
|
|
if (then_ends_in_continue || else_ends_in_continue ||
|
|
!aggressive_last_continue)
|
|
break;
|
|
}
|
|
|
|
if_node = nir_cf_node_prev(if_node);
|
|
}
|
|
|
|
/* If we didn't find an if to optimise return */
|
|
if (!then_ends_in_continue && !else_ends_in_continue)
|
|
return false;
|
|
|
|
/* If there is nothing after the if-statement we bail */
|
|
if (&nif->cf_node == nir_cf_node_prev(&last_block->cf_node) &&
|
|
exec_list_is_empty(&last_block->instr_list))
|
|
return false;
|
|
|
|
/* Move the last block of the loop inside the last if-statement */
|
|
nir_cf_list tmp;
|
|
nir_cf_extract(&tmp, nir_after_cf_node(if_node),
|
|
nir_after_block(last_block));
|
|
if (then_ends_in_continue)
|
|
nir_cf_reinsert(&tmp, nir_after_cf_list(&nif->else_list));
|
|
else
|
|
nir_cf_reinsert(&tmp, nir_after_cf_list(&nif->then_list));
|
|
|
|
/* In order to avoid running nir_lower_regs_to_ssa_impl() every time an if
|
|
* opt makes progress we leave nir_opt_trivial_continues() to remove the
|
|
* continue now that the end of the loop has been simplified.
|
|
*/
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Walk all the phis in the block immediately following the if statement and
|
|
* swap the blocks.
|
|
*/
|
|
static void
|
|
rewrite_phi_predecessor_blocks(nir_if *nif,
|
|
nir_block *old_then_block,
|
|
nir_block *old_else_block,
|
|
nir_block *new_then_block,
|
|
nir_block *new_else_block)
|
|
{
|
|
nir_block *after_if_block =
|
|
nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node));
|
|
|
|
nir_foreach_instr(instr, after_if_block) {
|
|
if (instr->type != nir_instr_type_phi)
|
|
continue;
|
|
|
|
nir_phi_instr *phi = nir_instr_as_phi(instr);
|
|
|
|
foreach_list_typed(nir_phi_src, src, node, &phi->srcs) {
|
|
if (src->pred == old_then_block) {
|
|
src->pred = new_then_block;
|
|
} else if (src->pred == old_else_block) {
|
|
src->pred = new_else_block;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This optimization turns:
|
|
*
|
|
* if (cond) {
|
|
* } else {
|
|
* do_work();
|
|
* }
|
|
*
|
|
* into:
|
|
*
|
|
* if (!cond) {
|
|
* do_work();
|
|
* } else {
|
|
* }
|
|
*/
|
|
static bool
|
|
opt_if_simplification(nir_builder *b, nir_if *nif)
|
|
{
|
|
/* Only simplify if the then block is empty and the else block is not. */
|
|
if (!is_block_empty(nir_if_first_then_block(nif)) ||
|
|
is_block_empty(nir_if_first_else_block(nif)))
|
|
return false;
|
|
|
|
/* Make sure the condition is a comparison operation. */
|
|
nir_instr *src_instr = nif->condition.ssa->parent_instr;
|
|
if (src_instr->type != nir_instr_type_alu)
|
|
return false;
|
|
|
|
nir_alu_instr *alu_instr = nir_instr_as_alu(src_instr);
|
|
if (!nir_alu_instr_is_comparison(alu_instr))
|
|
return false;
|
|
|
|
/* Insert the inverted instruction and rewrite the condition. */
|
|
b->cursor = nir_after_instr(&alu_instr->instr);
|
|
|
|
nir_ssa_def *new_condition =
|
|
nir_inot(b, &alu_instr->dest.dest.ssa);
|
|
|
|
nir_if_rewrite_condition(nif, nir_src_for_ssa(new_condition));
|
|
|
|
/* Grab pointers to the last then/else blocks for fixing up the phis. */
|
|
nir_block *then_block = nir_if_last_then_block(nif);
|
|
nir_block *else_block = nir_if_last_else_block(nif);
|
|
|
|
rewrite_phi_predecessor_blocks(nif, then_block, else_block, else_block,
|
|
then_block);
|
|
|
|
/* Finally, move the else block to the then block. */
|
|
nir_cf_list tmp;
|
|
nir_cf_extract(&tmp, nir_before_cf_list(&nif->else_list),
|
|
nir_after_cf_list(&nif->else_list));
|
|
nir_cf_reinsert(&tmp, nir_before_cf_list(&nif->then_list));
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* This optimization simplifies potential loop terminators which then allows
|
|
* other passes such as opt_if_simplification() and loop unrolling to progress
|
|
* further:
|
|
*
|
|
* if (cond) {
|
|
* ... then block instructions ...
|
|
* } else {
|
|
* ...
|
|
* break;
|
|
* }
|
|
*
|
|
* into:
|
|
*
|
|
* if (cond) {
|
|
* } else {
|
|
* ...
|
|
* break;
|
|
* }
|
|
* ... then block instructions ...
|
|
*/
|
|
static bool
|
|
opt_if_loop_terminator(nir_if *nif)
|
|
{
|
|
nir_block *break_blk = NULL;
|
|
nir_block *continue_from_blk = NULL;
|
|
bool continue_from_then = true;
|
|
|
|
nir_block *last_then = nir_if_last_then_block(nif);
|
|
nir_block *last_else = nir_if_last_else_block(nif);
|
|
|
|
if (nir_block_ends_in_break(last_then)) {
|
|
break_blk = last_then;
|
|
continue_from_blk = last_else;
|
|
continue_from_then = false;
|
|
} else if (nir_block_ends_in_break(last_else)) {
|
|
break_blk = last_else;
|
|
continue_from_blk = last_then;
|
|
}
|
|
|
|
/* Continue if the if-statement contained no jumps at all */
|
|
if (!break_blk)
|
|
return false;
|
|
|
|
/* If the continue from block is empty then return as there is nothing to
|
|
* move.
|
|
*/
|
|
nir_block *first_continue_from_blk = continue_from_then ?
|
|
nir_if_first_then_block(nif) :
|
|
nir_if_first_else_block(nif);
|
|
if (is_block_empty(first_continue_from_blk))
|
|
return false;
|
|
|
|
if (!nir_is_trivial_loop_if(nif, break_blk))
|
|
return false;
|
|
|
|
/* Even though this if statement has a jump on one side, we may still have
|
|
* phis afterwards. Single-source phis can be produced by loop unrolling
|
|
* or dead control-flow passes and are perfectly legal. Run a quick phi
|
|
* removal on the block after the if to clean up any such phis.
|
|
*/
|
|
nir_opt_remove_phis_block(nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node)));
|
|
|
|
/* Finally, move the continue from branch after the if-statement. */
|
|
nir_cf_list tmp;
|
|
nir_cf_extract(&tmp, nir_before_block(first_continue_from_blk),
|
|
nir_after_block(continue_from_blk));
|
|
nir_cf_reinsert(&tmp, nir_after_cf_node(&nif->cf_node));
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
evaluate_if_condition(nir_if *nif, nir_cursor cursor, bool *value)
|
|
{
|
|
nir_block *use_block = nir_cursor_current_block(cursor);
|
|
if (nir_block_dominates(nir_if_first_then_block(nif), use_block)) {
|
|
*value = true;
|
|
return true;
|
|
} else if (nir_block_dominates(nir_if_first_else_block(nif), use_block)) {
|
|
*value = false;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
clone_alu_and_replace_src_defs(nir_builder *b, const nir_alu_instr *alu,
|
|
nir_ssa_def **src_defs)
|
|
{
|
|
nir_alu_instr *nalu = nir_alu_instr_create(b->shader, alu->op);
|
|
nalu->exact = alu->exact;
|
|
|
|
nir_ssa_dest_init(&nalu->instr, &nalu->dest.dest,
|
|
alu->dest.dest.ssa.num_components,
|
|
alu->dest.dest.ssa.bit_size, alu->dest.dest.ssa.name);
|
|
|
|
nalu->dest.saturate = alu->dest.saturate;
|
|
nalu->dest.write_mask = alu->dest.write_mask;
|
|
|
|
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
|
|
assert(alu->src[i].src.is_ssa);
|
|
nalu->src[i].src = nir_src_for_ssa(src_defs[i]);
|
|
nalu->src[i].negate = alu->src[i].negate;
|
|
nalu->src[i].abs = alu->src[i].abs;
|
|
memcpy(nalu->src[i].swizzle, alu->src[i].swizzle,
|
|
sizeof(nalu->src[i].swizzle));
|
|
}
|
|
|
|
nir_builder_instr_insert(b, &nalu->instr);
|
|
|
|
return &nalu->dest.dest.ssa;;
|
|
}
|
|
|
|
/*
|
|
* This propagates if condition evaluation down the chain of some alu
|
|
* instructions. For example by checking the use of some of the following alu
|
|
* instruction we can eventually replace ssa_107 with NIR_TRUE.
|
|
*
|
|
* loop {
|
|
* block block_1:
|
|
* vec1 32 ssa_85 = load_const (0x00000002)
|
|
* vec1 32 ssa_86 = ieq ssa_48, ssa_85
|
|
* vec1 32 ssa_87 = load_const (0x00000001)
|
|
* vec1 32 ssa_88 = ieq ssa_48, ssa_87
|
|
* vec1 32 ssa_89 = ior ssa_86, ssa_88
|
|
* vec1 32 ssa_90 = ieq ssa_48, ssa_0
|
|
* vec1 32 ssa_91 = ior ssa_89, ssa_90
|
|
* if ssa_86 {
|
|
* block block_2:
|
|
* ...
|
|
* break
|
|
* } else {
|
|
* block block_3:
|
|
* }
|
|
* block block_4:
|
|
* if ssa_88 {
|
|
* block block_5:
|
|
* ...
|
|
* break
|
|
* } else {
|
|
* block block_6:
|
|
* }
|
|
* block block_7:
|
|
* if ssa_90 {
|
|
* block block_8:
|
|
* ...
|
|
* break
|
|
* } else {
|
|
* block block_9:
|
|
* }
|
|
* block block_10:
|
|
* vec1 32 ssa_107 = inot ssa_91
|
|
* if ssa_107 {
|
|
* block block_11:
|
|
* break
|
|
* } else {
|
|
* block block_12:
|
|
* }
|
|
* }
|
|
*/
|
|
static bool
|
|
propagate_condition_eval(nir_builder *b, nir_if *nif, nir_src *use_src,
|
|
nir_src *alu_use, nir_alu_instr *alu,
|
|
bool is_if_condition)
|
|
{
|
|
bool bool_value;
|
|
b->cursor = nir_before_src(alu_use, is_if_condition);
|
|
if (!evaluate_if_condition(nif, b->cursor, &bool_value))
|
|
return false;
|
|
|
|
nir_ssa_def *def[4] = {0};
|
|
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
|
|
if (alu->src[i].src.ssa == use_src->ssa) {
|
|
def[i] = nir_imm_bool(b, bool_value);
|
|
} else {
|
|
def[i] = alu->src[i].src.ssa;
|
|
}
|
|
}
|
|
|
|
nir_ssa_def *nalu = clone_alu_and_replace_src_defs(b, alu, def);
|
|
|
|
/* Rewrite use to use new alu instruction */
|
|
nir_src new_src = nir_src_for_ssa(nalu);
|
|
|
|
if (is_if_condition)
|
|
nir_if_rewrite_condition(alu_use->parent_if, new_src);
|
|
else
|
|
nir_instr_rewrite_src(alu_use->parent_instr, alu_use, new_src);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
can_propagate_through_alu(nir_src *src)
|
|
{
|
|
if (src->parent_instr->type != nir_instr_type_alu)
|
|
return false;
|
|
|
|
nir_alu_instr *alu = nir_instr_as_alu(src->parent_instr);
|
|
switch (alu->op) {
|
|
case nir_op_ior:
|
|
case nir_op_iand:
|
|
case nir_op_inot:
|
|
case nir_op_b2i32:
|
|
return true;
|
|
case nir_op_bcsel:
|
|
return src == &alu->src[0].src;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
evaluate_condition_use(nir_builder *b, nir_if *nif, nir_src *use_src,
|
|
bool is_if_condition)
|
|
{
|
|
bool progress = false;
|
|
|
|
b->cursor = nir_before_src(use_src, is_if_condition);
|
|
|
|
bool bool_value;
|
|
if (evaluate_if_condition(nif, b->cursor, &bool_value)) {
|
|
/* Rewrite use to use const */
|
|
nir_src imm_src = nir_src_for_ssa(nir_imm_bool(b, bool_value));
|
|
if (is_if_condition)
|
|
nir_if_rewrite_condition(use_src->parent_if, imm_src);
|
|
else
|
|
nir_instr_rewrite_src(use_src->parent_instr, use_src, imm_src);
|
|
|
|
progress = true;
|
|
}
|
|
|
|
if (!is_if_condition && can_propagate_through_alu(use_src)) {
|
|
nir_alu_instr *alu = nir_instr_as_alu(use_src->parent_instr);
|
|
|
|
nir_foreach_use_safe(alu_use, &alu->dest.dest.ssa) {
|
|
progress |= propagate_condition_eval(b, nif, use_src, alu_use, alu,
|
|
false);
|
|
}
|
|
|
|
nir_foreach_if_use_safe(alu_use, &alu->dest.dest.ssa) {
|
|
progress |= propagate_condition_eval(b, nif, use_src, alu_use, alu,
|
|
true);
|
|
}
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
static bool
|
|
opt_if_evaluate_condition_use(nir_builder *b, nir_if *nif)
|
|
{
|
|
bool progress = false;
|
|
|
|
/* Evaluate any uses of the if condition inside the if branches */
|
|
assert(nif->condition.is_ssa);
|
|
nir_foreach_use_safe(use_src, nif->condition.ssa) {
|
|
progress |= evaluate_condition_use(b, nif, use_src, false);
|
|
}
|
|
|
|
nir_foreach_if_use_safe(use_src, nif->condition.ssa) {
|
|
if (use_src->parent_if != nif)
|
|
progress |= evaluate_condition_use(b, nif, use_src, true);
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
static void
|
|
simple_merge_if(nir_if *dest_if, nir_if *src_if, bool dest_if_then,
|
|
bool src_if_then)
|
|
{
|
|
/* Now merge the if branch */
|
|
nir_block *dest_blk = dest_if_then ? nir_if_last_then_block(dest_if)
|
|
: nir_if_last_else_block(dest_if);
|
|
|
|
struct exec_list *list = src_if_then ? &src_if->then_list
|
|
: &src_if->else_list;
|
|
|
|
nir_cf_list if_cf_list;
|
|
nir_cf_extract(&if_cf_list, nir_before_cf_list(list),
|
|
nir_after_cf_list(list));
|
|
nir_cf_reinsert(&if_cf_list, nir_after_block(dest_blk));
|
|
}
|
|
|
|
static bool
|
|
opt_if_merge(nir_if *nif)
|
|
{
|
|
bool progress = false;
|
|
|
|
nir_block *next_blk = nir_cf_node_cf_tree_next(&nif->cf_node);
|
|
if (next_blk && nif->condition.is_ssa) {
|
|
nir_if *next_if = nir_block_get_following_if(next_blk);
|
|
if (next_if && next_if->condition.is_ssa) {
|
|
|
|
/* Here we merge two consecutive ifs that have the same
|
|
* condition e.g:
|
|
*
|
|
* if ssa_12 {
|
|
* ...
|
|
* } else {
|
|
* ...
|
|
* }
|
|
* if ssa_12 {
|
|
* ...
|
|
* } else {
|
|
* ...
|
|
* }
|
|
*
|
|
* Note: This only merges if-statements when the block between them
|
|
* is empty. The reason we don't try to merge ifs that just have phis
|
|
* between them is because this can results in increased register
|
|
* pressure. For example when merging if ladders created by indirect
|
|
* indexing.
|
|
*/
|
|
if (nif->condition.ssa == next_if->condition.ssa &&
|
|
exec_list_is_empty(&next_blk->instr_list)) {
|
|
|
|
simple_merge_if(nif, next_if, true, true);
|
|
simple_merge_if(nif, next_if, false, false);
|
|
|
|
nir_block *new_then_block = nir_if_last_then_block(nif);
|
|
nir_block *new_else_block = nir_if_last_else_block(nif);
|
|
|
|
nir_block *old_then_block = nir_if_last_then_block(next_if);
|
|
nir_block *old_else_block = nir_if_last_else_block(next_if);
|
|
|
|
/* Rewrite the predecessor block for any phis following the second
|
|
* if-statement.
|
|
*/
|
|
rewrite_phi_predecessor_blocks(next_if, old_then_block,
|
|
old_else_block,
|
|
new_then_block,
|
|
new_else_block);
|
|
|
|
/* Move phis after merged if to avoid them being deleted when we
|
|
* remove the merged if-statement.
|
|
*/
|
|
nir_block *after_next_if_block =
|
|
nir_cf_node_as_block(nir_cf_node_next(&next_if->cf_node));
|
|
|
|
nir_foreach_instr_safe(instr, after_next_if_block) {
|
|
if (instr->type != nir_instr_type_phi)
|
|
break;
|
|
|
|
exec_node_remove(&instr->node);
|
|
exec_list_push_tail(&next_blk->instr_list, &instr->node);
|
|
instr->block = next_blk;
|
|
}
|
|
|
|
nir_cf_node_remove(&next_if->cf_node);
|
|
|
|
progress = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
static bool
|
|
opt_if_cf_list(nir_builder *b, struct exec_list *cf_list,
|
|
bool aggressive_last_continue)
|
|
{
|
|
bool progress = false;
|
|
foreach_list_typed(nir_cf_node, cf_node, node, cf_list) {
|
|
switch (cf_node->type) {
|
|
case nir_cf_node_block:
|
|
break;
|
|
|
|
case nir_cf_node_if: {
|
|
nir_if *nif = nir_cf_node_as_if(cf_node);
|
|
progress |= opt_if_cf_list(b, &nif->then_list,
|
|
aggressive_last_continue);
|
|
progress |= opt_if_cf_list(b, &nif->else_list,
|
|
aggressive_last_continue);
|
|
progress |= opt_if_loop_terminator(nif);
|
|
progress |= opt_if_merge(nif);
|
|
progress |= opt_if_simplification(b, nif);
|
|
break;
|
|
}
|
|
|
|
case nir_cf_node_loop: {
|
|
nir_loop *loop = nir_cf_node_as_loop(cf_node);
|
|
progress |= opt_if_cf_list(b, &loop->body,
|
|
aggressive_last_continue);
|
|
progress |= opt_simplify_bcsel_of_phi(b, loop);
|
|
progress |= opt_peel_loop_initial_if(loop);
|
|
progress |= opt_if_loop_last_continue(loop,
|
|
aggressive_last_continue);
|
|
break;
|
|
}
|
|
|
|
case nir_cf_node_function:
|
|
unreachable("Invalid cf type");
|
|
}
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
/**
|
|
* These optimisations depend on nir_metadata_block_index and therefore must
|
|
* not do anything to cause the metadata to become invalid.
|
|
*/
|
|
static bool
|
|
opt_if_safe_cf_list(nir_builder *b, struct exec_list *cf_list)
|
|
{
|
|
bool progress = false;
|
|
foreach_list_typed(nir_cf_node, cf_node, node, cf_list) {
|
|
switch (cf_node->type) {
|
|
case nir_cf_node_block:
|
|
break;
|
|
|
|
case nir_cf_node_if: {
|
|
nir_if *nif = nir_cf_node_as_if(cf_node);
|
|
progress |= opt_if_safe_cf_list(b, &nif->then_list);
|
|
progress |= opt_if_safe_cf_list(b, &nif->else_list);
|
|
progress |= opt_if_evaluate_condition_use(b, nif);
|
|
break;
|
|
}
|
|
|
|
case nir_cf_node_loop: {
|
|
nir_loop *loop = nir_cf_node_as_loop(cf_node);
|
|
progress |= opt_if_safe_cf_list(b, &loop->body);
|
|
progress |= opt_split_alu_of_phi(b, loop);
|
|
break;
|
|
}
|
|
|
|
case nir_cf_node_function:
|
|
unreachable("Invalid cf type");
|
|
}
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
bool
|
|
nir_opt_if(nir_shader *shader, bool aggressive_last_continue)
|
|
{
|
|
bool progress = false;
|
|
|
|
nir_foreach_function(function, shader) {
|
|
if (function->impl == NULL)
|
|
continue;
|
|
|
|
nir_builder b;
|
|
nir_builder_init(&b, function->impl);
|
|
|
|
nir_metadata_require(function->impl, nir_metadata_block_index |
|
|
nir_metadata_dominance);
|
|
progress = opt_if_safe_cf_list(&b, &function->impl->body);
|
|
nir_metadata_preserve(function->impl, nir_metadata_block_index |
|
|
nir_metadata_dominance);
|
|
|
|
if (opt_if_cf_list(&b, &function->impl->body,
|
|
aggressive_last_continue)) {
|
|
nir_metadata_preserve(function->impl, nir_metadata_none);
|
|
|
|
/* If that made progress, we're no longer really in SSA form. We
|
|
* need to convert registers back into SSA defs and clean up SSA defs
|
|
* that don't dominate their uses.
|
|
*/
|
|
nir_lower_regs_to_ssa_impl(function->impl);
|
|
|
|
progress = true;
|
|
} else {
|
|
#ifndef NDEBUG
|
|
function->impl->valid_metadata &= ~nir_metadata_not_properly_reset;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
return progress;
|
|
}
|