
v2: Move use of ir_binop_bfm and ir_triop_bfi to a later patch. Reviewed-by: Chris Forbes <chrisf@ijw.co.nz>
458 lines
12 KiB
C++
458 lines
12 KiB
C++
/*
|
|
* Copyright © 2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/**
|
|
* \file opt_algebraic.cpp
|
|
*
|
|
* Takes advantage of association, commutivity, and other algebraic
|
|
* properties to simplify expressions.
|
|
*/
|
|
|
|
#include "ir.h"
|
|
#include "ir_visitor.h"
|
|
#include "ir_rvalue_visitor.h"
|
|
#include "ir_optimization.h"
|
|
#include "glsl_types.h"
|
|
|
|
namespace {
|
|
|
|
/**
|
|
* Visitor class for replacing expressions with ir_constant values.
|
|
*/
|
|
|
|
class ir_algebraic_visitor : public ir_rvalue_visitor {
|
|
public:
|
|
ir_algebraic_visitor()
|
|
{
|
|
this->progress = false;
|
|
this->mem_ctx = NULL;
|
|
}
|
|
|
|
virtual ~ir_algebraic_visitor()
|
|
{
|
|
}
|
|
|
|
ir_rvalue *handle_expression(ir_expression *ir);
|
|
void handle_rvalue(ir_rvalue **rvalue);
|
|
bool reassociate_constant(ir_expression *ir1,
|
|
int const_index,
|
|
ir_constant *constant,
|
|
ir_expression *ir2);
|
|
void reassociate_operands(ir_expression *ir1,
|
|
int op1,
|
|
ir_expression *ir2,
|
|
int op2);
|
|
ir_rvalue *swizzle_if_required(ir_expression *expr,
|
|
ir_rvalue *operand);
|
|
|
|
void *mem_ctx;
|
|
|
|
bool progress;
|
|
};
|
|
|
|
} /* unnamed namespace */
|
|
|
|
static inline bool
|
|
is_vec_zero(ir_constant *ir)
|
|
{
|
|
return (ir == NULL) ? false : ir->is_zero();
|
|
}
|
|
|
|
static inline bool
|
|
is_vec_one(ir_constant *ir)
|
|
{
|
|
return (ir == NULL) ? false : ir->is_one();
|
|
}
|
|
|
|
static inline bool
|
|
is_vec_basis(ir_constant *ir)
|
|
{
|
|
return (ir == NULL) ? false : ir->is_basis();
|
|
}
|
|
|
|
static void
|
|
update_type(ir_expression *ir)
|
|
{
|
|
if (ir->operands[0]->type->is_vector())
|
|
ir->type = ir->operands[0]->type;
|
|
else
|
|
ir->type = ir->operands[1]->type;
|
|
}
|
|
|
|
void
|
|
ir_algebraic_visitor::reassociate_operands(ir_expression *ir1,
|
|
int op1,
|
|
ir_expression *ir2,
|
|
int op2)
|
|
{
|
|
ir_rvalue *temp = ir2->operands[op2];
|
|
ir2->operands[op2] = ir1->operands[op1];
|
|
ir1->operands[op1] = temp;
|
|
|
|
/* Update the type of ir2. The type of ir1 won't have changed --
|
|
* base types matched, and at least one of the operands of the 2
|
|
* binops is still a vector if any of them were.
|
|
*/
|
|
update_type(ir2);
|
|
|
|
this->progress = true;
|
|
}
|
|
|
|
/**
|
|
* Reassociates a constant down a tree of adds or multiplies.
|
|
*
|
|
* Consider (2 * (a * (b * 0.5))). We want to send up with a * b.
|
|
*/
|
|
bool
|
|
ir_algebraic_visitor::reassociate_constant(ir_expression *ir1, int const_index,
|
|
ir_constant *constant,
|
|
ir_expression *ir2)
|
|
{
|
|
if (!ir2 || ir1->operation != ir2->operation)
|
|
return false;
|
|
|
|
/* Don't want to even think about matrices. */
|
|
if (ir1->operands[0]->type->is_matrix() ||
|
|
ir1->operands[1]->type->is_matrix() ||
|
|
ir2->operands[0]->type->is_matrix() ||
|
|
ir2->operands[1]->type->is_matrix())
|
|
return false;
|
|
|
|
ir_constant *ir2_const[2];
|
|
ir2_const[0] = ir2->operands[0]->constant_expression_value();
|
|
ir2_const[1] = ir2->operands[1]->constant_expression_value();
|
|
|
|
if (ir2_const[0] && ir2_const[1])
|
|
return false;
|
|
|
|
if (ir2_const[0]) {
|
|
reassociate_operands(ir1, const_index, ir2, 1);
|
|
return true;
|
|
} else if (ir2_const[1]) {
|
|
reassociate_operands(ir1, const_index, ir2, 0);
|
|
return true;
|
|
}
|
|
|
|
if (reassociate_constant(ir1, const_index, constant,
|
|
ir2->operands[0]->as_expression())) {
|
|
update_type(ir2);
|
|
return true;
|
|
}
|
|
|
|
if (reassociate_constant(ir1, const_index, constant,
|
|
ir2->operands[1]->as_expression())) {
|
|
update_type(ir2);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* When eliminating an expression and just returning one of its operands,
|
|
* we may need to swizzle that operand out to a vector if the expression was
|
|
* vector type.
|
|
*/
|
|
ir_rvalue *
|
|
ir_algebraic_visitor::swizzle_if_required(ir_expression *expr,
|
|
ir_rvalue *operand)
|
|
{
|
|
if (expr->type->is_vector() && operand->type->is_scalar()) {
|
|
return new(mem_ctx) ir_swizzle(operand, 0, 0, 0, 0,
|
|
expr->type->vector_elements);
|
|
} else
|
|
return operand;
|
|
}
|
|
|
|
ir_rvalue *
|
|
ir_algebraic_visitor::handle_expression(ir_expression *ir)
|
|
{
|
|
ir_constant *op_const[4] = {NULL, NULL, NULL, NULL};
|
|
ir_expression *op_expr[4] = {NULL, NULL, NULL, NULL};
|
|
ir_expression *temp;
|
|
unsigned int i;
|
|
|
|
assert(ir->get_num_operands() <= 4);
|
|
for (i = 0; i < ir->get_num_operands(); i++) {
|
|
if (ir->operands[i]->type->is_matrix())
|
|
return ir;
|
|
|
|
op_const[i] = ir->operands[i]->constant_expression_value();
|
|
op_expr[i] = ir->operands[i]->as_expression();
|
|
}
|
|
|
|
if (this->mem_ctx == NULL)
|
|
this->mem_ctx = ralloc_parent(ir);
|
|
|
|
switch (ir->operation) {
|
|
case ir_unop_logic_not: {
|
|
enum ir_expression_operation new_op = ir_unop_logic_not;
|
|
|
|
if (op_expr[0] == NULL)
|
|
break;
|
|
|
|
switch (op_expr[0]->operation) {
|
|
case ir_binop_less: new_op = ir_binop_gequal; break;
|
|
case ir_binop_greater: new_op = ir_binop_lequal; break;
|
|
case ir_binop_lequal: new_op = ir_binop_greater; break;
|
|
case ir_binop_gequal: new_op = ir_binop_less; break;
|
|
case ir_binop_equal: new_op = ir_binop_nequal; break;
|
|
case ir_binop_nequal: new_op = ir_binop_equal; break;
|
|
case ir_binop_all_equal: new_op = ir_binop_any_nequal; break;
|
|
case ir_binop_any_nequal: new_op = ir_binop_all_equal; break;
|
|
|
|
default:
|
|
/* The default case handler is here to silence a warning from GCC.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
if (new_op != ir_unop_logic_not) {
|
|
this->progress = true;
|
|
return new(mem_ctx) ir_expression(new_op,
|
|
ir->type,
|
|
op_expr[0]->operands[0],
|
|
op_expr[0]->operands[1]);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case ir_binop_add:
|
|
if (is_vec_zero(op_const[0])) {
|
|
this->progress = true;
|
|
return swizzle_if_required(ir, ir->operands[1]);
|
|
}
|
|
if (is_vec_zero(op_const[1])) {
|
|
this->progress = true;
|
|
return swizzle_if_required(ir, ir->operands[0]);
|
|
}
|
|
|
|
/* Reassociate addition of constants so that we can do constant
|
|
* folding.
|
|
*/
|
|
if (op_const[0] && !op_const[1])
|
|
reassociate_constant(ir, 0, op_const[0],
|
|
ir->operands[1]->as_expression());
|
|
if (op_const[1] && !op_const[0])
|
|
reassociate_constant(ir, 1, op_const[1],
|
|
ir->operands[0]->as_expression());
|
|
break;
|
|
|
|
case ir_binop_sub:
|
|
if (is_vec_zero(op_const[0])) {
|
|
this->progress = true;
|
|
temp = new(mem_ctx) ir_expression(ir_unop_neg,
|
|
ir->operands[1]->type,
|
|
ir->operands[1],
|
|
NULL);
|
|
return swizzle_if_required(ir, temp);
|
|
}
|
|
if (is_vec_zero(op_const[1])) {
|
|
this->progress = true;
|
|
return swizzle_if_required(ir, ir->operands[0]);
|
|
}
|
|
break;
|
|
|
|
case ir_binop_mul:
|
|
if (is_vec_one(op_const[0])) {
|
|
this->progress = true;
|
|
return swizzle_if_required(ir, ir->operands[1]);
|
|
}
|
|
if (is_vec_one(op_const[1])) {
|
|
this->progress = true;
|
|
return swizzle_if_required(ir, ir->operands[0]);
|
|
}
|
|
|
|
if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
|
|
this->progress = true;
|
|
return ir_constant::zero(ir, ir->type);
|
|
}
|
|
|
|
/* Reassociate multiplication of constants so that we can do
|
|
* constant folding.
|
|
*/
|
|
if (op_const[0] && !op_const[1])
|
|
reassociate_constant(ir, 0, op_const[0],
|
|
ir->operands[1]->as_expression());
|
|
if (op_const[1] && !op_const[0])
|
|
reassociate_constant(ir, 1, op_const[1],
|
|
ir->operands[0]->as_expression());
|
|
|
|
break;
|
|
|
|
case ir_binop_div:
|
|
if (is_vec_one(op_const[0]) && ir->type->base_type == GLSL_TYPE_FLOAT) {
|
|
this->progress = true;
|
|
temp = new(mem_ctx) ir_expression(ir_unop_rcp,
|
|
ir->operands[1]->type,
|
|
ir->operands[1],
|
|
NULL);
|
|
return swizzle_if_required(ir, temp);
|
|
}
|
|
if (is_vec_one(op_const[1])) {
|
|
this->progress = true;
|
|
return swizzle_if_required(ir, ir->operands[0]);
|
|
}
|
|
break;
|
|
|
|
case ir_binop_dot:
|
|
if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
|
|
this->progress = true;
|
|
return ir_constant::zero(mem_ctx, ir->type);
|
|
}
|
|
if (is_vec_basis(op_const[0])) {
|
|
this->progress = true;
|
|
unsigned component = 0;
|
|
for (unsigned c = 0; c < op_const[0]->type->vector_elements; c++) {
|
|
if (op_const[0]->value.f[c] == 1.0)
|
|
component = c;
|
|
}
|
|
return new(mem_ctx) ir_swizzle(ir->operands[1], component, 0, 0, 0, 1);
|
|
}
|
|
if (is_vec_basis(op_const[1])) {
|
|
this->progress = true;
|
|
unsigned component = 0;
|
|
for (unsigned c = 0; c < op_const[1]->type->vector_elements; c++) {
|
|
if (op_const[1]->value.f[c] == 1.0)
|
|
component = c;
|
|
}
|
|
return new(mem_ctx) ir_swizzle(ir->operands[0], component, 0, 0, 0, 1);
|
|
}
|
|
break;
|
|
|
|
case ir_binop_logic_and:
|
|
/* FINISHME: Also simplify (a && a) to (a). */
|
|
if (is_vec_one(op_const[0])) {
|
|
this->progress = true;
|
|
return ir->operands[1];
|
|
} else if (is_vec_one(op_const[1])) {
|
|
this->progress = true;
|
|
return ir->operands[0];
|
|
} else if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
|
|
this->progress = true;
|
|
return ir_constant::zero(mem_ctx, ir->type);
|
|
}
|
|
break;
|
|
|
|
case ir_binop_logic_xor:
|
|
/* FINISHME: Also simplify (a ^^ a) to (false). */
|
|
if (is_vec_zero(op_const[0])) {
|
|
this->progress = true;
|
|
return ir->operands[1];
|
|
} else if (is_vec_zero(op_const[1])) {
|
|
this->progress = true;
|
|
return ir->operands[0];
|
|
} else if (is_vec_one(op_const[0])) {
|
|
this->progress = true;
|
|
return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
|
|
ir->operands[1], NULL);
|
|
} else if (is_vec_one(op_const[1])) {
|
|
this->progress = true;
|
|
return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
|
|
ir->operands[0], NULL);
|
|
}
|
|
break;
|
|
|
|
case ir_binop_logic_or:
|
|
/* FINISHME: Also simplify (a || a) to (a). */
|
|
if (is_vec_zero(op_const[0])) {
|
|
this->progress = true;
|
|
return ir->operands[1];
|
|
} else if (is_vec_zero(op_const[1])) {
|
|
this->progress = true;
|
|
return ir->operands[0];
|
|
} else if (is_vec_one(op_const[0]) || is_vec_one(op_const[1])) {
|
|
ir_constant_data data;
|
|
|
|
for (unsigned i = 0; i < 16; i++)
|
|
data.b[i] = true;
|
|
|
|
this->progress = true;
|
|
return new(mem_ctx) ir_constant(ir->type, &data);
|
|
}
|
|
break;
|
|
|
|
case ir_unop_rcp:
|
|
if (op_expr[0] && op_expr[0]->operation == ir_unop_rcp) {
|
|
this->progress = true;
|
|
return op_expr[0]->operands[0];
|
|
}
|
|
|
|
/* FINISHME: We should do rcp(rsq(x)) -> sqrt(x) for some
|
|
* backends, except that some backends will have done sqrt ->
|
|
* rcp(rsq(x)) and we don't want to undo it for them.
|
|
*/
|
|
|
|
/* As far as we know, all backends are OK with rsq. */
|
|
if (op_expr[0] && op_expr[0]->operation == ir_unop_sqrt) {
|
|
this->progress = true;
|
|
temp = new(mem_ctx) ir_expression(ir_unop_rsq,
|
|
op_expr[0]->operands[0]->type,
|
|
op_expr[0]->operands[0],
|
|
NULL);
|
|
return swizzle_if_required(ir, temp);
|
|
}
|
|
|
|
break;
|
|
|
|
case ir_triop_lrp:
|
|
/* Operands are (x, y, a). */
|
|
if (is_vec_zero(op_const[2])) {
|
|
this->progress = true;
|
|
return swizzle_if_required(ir, ir->operands[0]);
|
|
} else if (is_vec_one(op_const[2])) {
|
|
this->progress = true;
|
|
return swizzle_if_required(ir, ir->operands[1]);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ir;
|
|
}
|
|
|
|
void
|
|
ir_algebraic_visitor::handle_rvalue(ir_rvalue **rvalue)
|
|
{
|
|
if (!*rvalue)
|
|
return;
|
|
|
|
ir_expression *expr = (*rvalue)->as_expression();
|
|
if (!expr || expr->operation == ir_quadop_vector)
|
|
return;
|
|
|
|
*rvalue = handle_expression(expr);
|
|
}
|
|
|
|
bool
|
|
do_algebraic(exec_list *instructions)
|
|
{
|
|
ir_algebraic_visitor v;
|
|
|
|
visit_list_elements(&v, instructions);
|
|
|
|
return v.progress;
|
|
}
|