
The new opcode is used to generate a new vector with a single field from the source vector replaced. This will eventually replace ir_dereference_array of vectors in the LHS of assignments. v2: Convert tabs to spaces. Suggested by Eric. v3: Add constant expression handling for ir_triop_vector_insert. This prevents the constant matrix inversion tests from regressing. Duh. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Eric Anholt <eric@anholt.net> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
1781 lines
44 KiB
C++
1781 lines
44 KiB
C++
/*
|
|
* Copyright © 2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
#include <string.h>
|
|
#include "main/core.h" /* for MAX2 */
|
|
#include "ir.h"
|
|
#include "ir_visitor.h"
|
|
#include "glsl_types.h"
|
|
|
|
ir_rvalue::ir_rvalue()
|
|
{
|
|
this->type = glsl_type::error_type;
|
|
}
|
|
|
|
bool ir_rvalue::is_zero() const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool ir_rvalue::is_one() const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool ir_rvalue::is_negative_one() const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool ir_rvalue::is_basis() const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Modify the swizzle make to move one component to another
|
|
*
|
|
* \param m IR swizzle to be modified
|
|
* \param from Component in the RHS that is to be swizzled
|
|
* \param to Desired swizzle location of \c from
|
|
*/
|
|
static void
|
|
update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
|
|
{
|
|
switch (to) {
|
|
case 0: m.x = from; break;
|
|
case 1: m.y = from; break;
|
|
case 2: m.z = from; break;
|
|
case 3: m.w = from; break;
|
|
default: assert(!"Should not get here.");
|
|
}
|
|
|
|
m.num_components = MAX2(m.num_components, (to + 1));
|
|
}
|
|
|
|
void
|
|
ir_assignment::set_lhs(ir_rvalue *lhs)
|
|
{
|
|
void *mem_ctx = this;
|
|
bool swizzled = false;
|
|
|
|
while (lhs != NULL) {
|
|
ir_swizzle *swiz = lhs->as_swizzle();
|
|
|
|
if (swiz == NULL)
|
|
break;
|
|
|
|
unsigned write_mask = 0;
|
|
ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
|
|
|
|
for (unsigned i = 0; i < swiz->mask.num_components; i++) {
|
|
unsigned c = 0;
|
|
|
|
switch (i) {
|
|
case 0: c = swiz->mask.x; break;
|
|
case 1: c = swiz->mask.y; break;
|
|
case 2: c = swiz->mask.z; break;
|
|
case 3: c = swiz->mask.w; break;
|
|
default: assert(!"Should not get here.");
|
|
}
|
|
|
|
write_mask |= (((this->write_mask >> i) & 1) << c);
|
|
update_rhs_swizzle(rhs_swiz, i, c);
|
|
}
|
|
|
|
this->write_mask = write_mask;
|
|
lhs = swiz->val;
|
|
|
|
this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
|
|
swizzled = true;
|
|
}
|
|
|
|
if (swizzled) {
|
|
/* Now, RHS channels line up with the LHS writemask. Collapse it
|
|
* to just the channels that will be written.
|
|
*/
|
|
ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
|
|
int rhs_chan = 0;
|
|
for (int i = 0; i < 4; i++) {
|
|
if (write_mask & (1 << i))
|
|
update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
|
|
}
|
|
this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
|
|
}
|
|
|
|
assert((lhs == NULL) || lhs->as_dereference());
|
|
|
|
this->lhs = (ir_dereference *) lhs;
|
|
}
|
|
|
|
ir_variable *
|
|
ir_assignment::whole_variable_written()
|
|
{
|
|
ir_variable *v = this->lhs->whole_variable_referenced();
|
|
|
|
if (v == NULL)
|
|
return NULL;
|
|
|
|
if (v->type->is_scalar())
|
|
return v;
|
|
|
|
if (v->type->is_vector()) {
|
|
const unsigned mask = (1U << v->type->vector_elements) - 1;
|
|
|
|
if (mask != this->write_mask)
|
|
return NULL;
|
|
}
|
|
|
|
/* Either all the vector components are assigned or the variable is some
|
|
* composite type (and the whole thing is assigned.
|
|
*/
|
|
return v;
|
|
}
|
|
|
|
ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
|
|
ir_rvalue *condition, unsigned write_mask)
|
|
{
|
|
this->ir_type = ir_type_assignment;
|
|
this->condition = condition;
|
|
this->rhs = rhs;
|
|
this->lhs = lhs;
|
|
this->write_mask = write_mask;
|
|
|
|
if (lhs->type->is_scalar() || lhs->type->is_vector()) {
|
|
int lhs_components = 0;
|
|
for (int i = 0; i < 4; i++) {
|
|
if (write_mask & (1 << i))
|
|
lhs_components++;
|
|
}
|
|
|
|
assert(lhs_components == this->rhs->type->vector_elements);
|
|
}
|
|
}
|
|
|
|
ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
|
|
ir_rvalue *condition)
|
|
{
|
|
this->ir_type = ir_type_assignment;
|
|
this->condition = condition;
|
|
this->rhs = rhs;
|
|
|
|
/* If the RHS is a vector type, assume that all components of the vector
|
|
* type are being written to the LHS. The write mask comes from the RHS
|
|
* because we can have a case where the LHS is a vec4 and the RHS is a
|
|
* vec3. In that case, the assignment is:
|
|
*
|
|
* (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
|
|
*/
|
|
if (rhs->type->is_vector())
|
|
this->write_mask = (1U << rhs->type->vector_elements) - 1;
|
|
else if (rhs->type->is_scalar())
|
|
this->write_mask = 1;
|
|
else
|
|
this->write_mask = 0;
|
|
|
|
this->set_lhs(lhs);
|
|
}
|
|
|
|
ir_expression::ir_expression(int op, const struct glsl_type *type,
|
|
ir_rvalue *op0, ir_rvalue *op1,
|
|
ir_rvalue *op2, ir_rvalue *op3)
|
|
{
|
|
this->ir_type = ir_type_expression;
|
|
this->type = type;
|
|
this->operation = ir_expression_operation(op);
|
|
this->operands[0] = op0;
|
|
this->operands[1] = op1;
|
|
this->operands[2] = op2;
|
|
this->operands[3] = op3;
|
|
#ifndef NDEBUG
|
|
int num_operands = get_num_operands(this->operation);
|
|
for (int i = num_operands; i < 4; i++) {
|
|
assert(this->operands[i] == NULL);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
ir_expression::ir_expression(int op, ir_rvalue *op0)
|
|
{
|
|
this->ir_type = ir_type_expression;
|
|
|
|
this->operation = ir_expression_operation(op);
|
|
this->operands[0] = op0;
|
|
this->operands[1] = NULL;
|
|
this->operands[2] = NULL;
|
|
this->operands[3] = NULL;
|
|
|
|
assert(op <= ir_last_unop);
|
|
|
|
switch (this->operation) {
|
|
case ir_unop_bit_not:
|
|
case ir_unop_logic_not:
|
|
case ir_unop_neg:
|
|
case ir_unop_abs:
|
|
case ir_unop_sign:
|
|
case ir_unop_rcp:
|
|
case ir_unop_rsq:
|
|
case ir_unop_sqrt:
|
|
case ir_unop_exp:
|
|
case ir_unop_log:
|
|
case ir_unop_exp2:
|
|
case ir_unop_log2:
|
|
case ir_unop_trunc:
|
|
case ir_unop_ceil:
|
|
case ir_unop_floor:
|
|
case ir_unop_fract:
|
|
case ir_unop_round_even:
|
|
case ir_unop_sin:
|
|
case ir_unop_cos:
|
|
case ir_unop_sin_reduced:
|
|
case ir_unop_cos_reduced:
|
|
case ir_unop_dFdx:
|
|
case ir_unop_dFdy:
|
|
this->type = op0->type;
|
|
break;
|
|
|
|
case ir_unop_f2i:
|
|
case ir_unop_b2i:
|
|
case ir_unop_u2i:
|
|
case ir_unop_bitcast_f2i:
|
|
this->type = glsl_type::get_instance(GLSL_TYPE_INT,
|
|
op0->type->vector_elements, 1);
|
|
break;
|
|
|
|
case ir_unop_b2f:
|
|
case ir_unop_i2f:
|
|
case ir_unop_u2f:
|
|
case ir_unop_bitcast_i2f:
|
|
case ir_unop_bitcast_u2f:
|
|
this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
|
|
op0->type->vector_elements, 1);
|
|
break;
|
|
|
|
case ir_unop_f2b:
|
|
case ir_unop_i2b:
|
|
this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
|
|
op0->type->vector_elements, 1);
|
|
break;
|
|
|
|
case ir_unop_i2u:
|
|
case ir_unop_f2u:
|
|
case ir_unop_bitcast_f2u:
|
|
this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
|
|
op0->type->vector_elements, 1);
|
|
break;
|
|
|
|
case ir_unop_noise:
|
|
case ir_unop_unpack_half_2x16_split_x:
|
|
case ir_unop_unpack_half_2x16_split_y:
|
|
this->type = glsl_type::float_type;
|
|
break;
|
|
|
|
case ir_unop_any:
|
|
this->type = glsl_type::bool_type;
|
|
break;
|
|
|
|
case ir_unop_pack_snorm_2x16:
|
|
case ir_unop_pack_snorm_4x8:
|
|
case ir_unop_pack_unorm_2x16:
|
|
case ir_unop_pack_unorm_4x8:
|
|
case ir_unop_pack_half_2x16:
|
|
this->type = glsl_type::uint_type;
|
|
break;
|
|
|
|
case ir_unop_unpack_snorm_2x16:
|
|
case ir_unop_unpack_unorm_2x16:
|
|
case ir_unop_unpack_half_2x16:
|
|
this->type = glsl_type::vec2_type;
|
|
break;
|
|
|
|
case ir_unop_unpack_snorm_4x8:
|
|
case ir_unop_unpack_unorm_4x8:
|
|
this->type = glsl_type::vec4_type;
|
|
break;
|
|
|
|
default:
|
|
assert(!"not reached: missing automatic type setup for ir_expression");
|
|
this->type = op0->type;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
|
|
{
|
|
this->ir_type = ir_type_expression;
|
|
|
|
this->operation = ir_expression_operation(op);
|
|
this->operands[0] = op0;
|
|
this->operands[1] = op1;
|
|
this->operands[2] = NULL;
|
|
this->operands[3] = NULL;
|
|
|
|
assert(op > ir_last_unop);
|
|
|
|
switch (this->operation) {
|
|
case ir_binop_all_equal:
|
|
case ir_binop_any_nequal:
|
|
this->type = glsl_type::bool_type;
|
|
break;
|
|
|
|
case ir_binop_add:
|
|
case ir_binop_sub:
|
|
case ir_binop_min:
|
|
case ir_binop_max:
|
|
case ir_binop_pow:
|
|
case ir_binop_mul:
|
|
case ir_binop_div:
|
|
case ir_binop_mod:
|
|
if (op0->type->is_scalar()) {
|
|
this->type = op1->type;
|
|
} else if (op1->type->is_scalar()) {
|
|
this->type = op0->type;
|
|
} else {
|
|
/* FINISHME: matrix types */
|
|
assert(!op0->type->is_matrix() && !op1->type->is_matrix());
|
|
assert(op0->type == op1->type);
|
|
this->type = op0->type;
|
|
}
|
|
break;
|
|
|
|
case ir_binop_logic_and:
|
|
case ir_binop_logic_xor:
|
|
case ir_binop_logic_or:
|
|
case ir_binop_bit_and:
|
|
case ir_binop_bit_xor:
|
|
case ir_binop_bit_or:
|
|
assert(!op0->type->is_matrix());
|
|
assert(!op1->type->is_matrix());
|
|
if (op0->type->is_scalar()) {
|
|
this->type = op1->type;
|
|
} else if (op1->type->is_scalar()) {
|
|
this->type = op0->type;
|
|
} else {
|
|
assert(op0->type->vector_elements == op1->type->vector_elements);
|
|
this->type = op0->type;
|
|
}
|
|
break;
|
|
|
|
case ir_binop_equal:
|
|
case ir_binop_nequal:
|
|
case ir_binop_lequal:
|
|
case ir_binop_gequal:
|
|
case ir_binop_less:
|
|
case ir_binop_greater:
|
|
assert(op0->type == op1->type);
|
|
this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
|
|
op0->type->vector_elements, 1);
|
|
break;
|
|
|
|
case ir_binop_dot:
|
|
this->type = glsl_type::float_type;
|
|
break;
|
|
|
|
case ir_binop_pack_half_2x16_split:
|
|
this->type = glsl_type::uint_type;
|
|
break;
|
|
|
|
case ir_binop_lshift:
|
|
case ir_binop_rshift:
|
|
this->type = op0->type;
|
|
break;
|
|
|
|
case ir_binop_vector_extract:
|
|
this->type = op0->type->get_scalar_type();
|
|
break;
|
|
|
|
default:
|
|
assert(!"not reached: missing automatic type setup for ir_expression");
|
|
this->type = glsl_type::float_type;
|
|
}
|
|
}
|
|
|
|
unsigned int
|
|
ir_expression::get_num_operands(ir_expression_operation op)
|
|
{
|
|
assert(op <= ir_last_opcode);
|
|
|
|
if (op <= ir_last_unop)
|
|
return 1;
|
|
|
|
if (op <= ir_last_binop)
|
|
return 2;
|
|
|
|
if (op <= ir_last_triop)
|
|
return 3;
|
|
|
|
if (op <= ir_last_quadop)
|
|
return 4;
|
|
|
|
assert(false);
|
|
return 0;
|
|
}
|
|
|
|
static const char *const operator_strs[] = {
|
|
"~",
|
|
"!",
|
|
"neg",
|
|
"abs",
|
|
"sign",
|
|
"rcp",
|
|
"rsq",
|
|
"sqrt",
|
|
"exp",
|
|
"log",
|
|
"exp2",
|
|
"log2",
|
|
"f2i",
|
|
"f2u",
|
|
"i2f",
|
|
"f2b",
|
|
"b2f",
|
|
"i2b",
|
|
"b2i",
|
|
"u2f",
|
|
"i2u",
|
|
"u2i",
|
|
"bitcast_i2f",
|
|
"bitcast_f2i",
|
|
"bitcast_u2f",
|
|
"bitcast_f2u",
|
|
"any",
|
|
"trunc",
|
|
"ceil",
|
|
"floor",
|
|
"fract",
|
|
"round_even",
|
|
"sin",
|
|
"cos",
|
|
"sin_reduced",
|
|
"cos_reduced",
|
|
"dFdx",
|
|
"dFdy",
|
|
"packSnorm2x16",
|
|
"packSnorm4x8",
|
|
"packUnorm2x16",
|
|
"packUnorm4x8",
|
|
"packHalf2x16",
|
|
"unpackSnorm2x16",
|
|
"unpackSnorm4x8",
|
|
"unpackUnorm2x16",
|
|
"unpackUnorm4x8",
|
|
"unpackHalf2x16",
|
|
"unpackHalf2x16_split_x",
|
|
"unpackHalf2x16_split_y",
|
|
"bitfield_reverse",
|
|
"bit_count",
|
|
"find_msb",
|
|
"find_lsb",
|
|
"noise",
|
|
"+",
|
|
"-",
|
|
"*",
|
|
"/",
|
|
"%",
|
|
"<",
|
|
">",
|
|
"<=",
|
|
">=",
|
|
"==",
|
|
"!=",
|
|
"all_equal",
|
|
"any_nequal",
|
|
"<<",
|
|
">>",
|
|
"&",
|
|
"^",
|
|
"|",
|
|
"&&",
|
|
"^^",
|
|
"||",
|
|
"dot",
|
|
"min",
|
|
"max",
|
|
"pow",
|
|
"packHalf2x16_split",
|
|
"bfm",
|
|
"ubo_load",
|
|
"vector_extract",
|
|
"lrp",
|
|
"bfi",
|
|
"bitfield_extract",
|
|
"vector_insert",
|
|
"bitfield_insert",
|
|
"vector",
|
|
};
|
|
|
|
const char *ir_expression::operator_string(ir_expression_operation op)
|
|
{
|
|
assert((unsigned int) op < Elements(operator_strs));
|
|
assert(Elements(operator_strs) == (ir_quadop_vector + 1));
|
|
return operator_strs[op];
|
|
}
|
|
|
|
const char *ir_expression::operator_string()
|
|
{
|
|
return operator_string(this->operation);
|
|
}
|
|
|
|
const char*
|
|
depth_layout_string(ir_depth_layout layout)
|
|
{
|
|
switch(layout) {
|
|
case ir_depth_layout_none: return "";
|
|
case ir_depth_layout_any: return "depth_any";
|
|
case ir_depth_layout_greater: return "depth_greater";
|
|
case ir_depth_layout_less: return "depth_less";
|
|
case ir_depth_layout_unchanged: return "depth_unchanged";
|
|
|
|
default:
|
|
assert(0);
|
|
return "";
|
|
}
|
|
}
|
|
|
|
ir_expression_operation
|
|
ir_expression::get_operator(const char *str)
|
|
{
|
|
const int operator_count = sizeof(operator_strs) / sizeof(operator_strs[0]);
|
|
for (int op = 0; op < operator_count; op++) {
|
|
if (strcmp(str, operator_strs[op]) == 0)
|
|
return (ir_expression_operation) op;
|
|
}
|
|
return (ir_expression_operation) -1;
|
|
}
|
|
|
|
ir_constant::ir_constant()
|
|
{
|
|
this->ir_type = ir_type_constant;
|
|
}
|
|
|
|
ir_constant::ir_constant(const struct glsl_type *type,
|
|
const ir_constant_data *data)
|
|
{
|
|
assert((type->base_type >= GLSL_TYPE_UINT)
|
|
&& (type->base_type <= GLSL_TYPE_BOOL));
|
|
|
|
this->ir_type = ir_type_constant;
|
|
this->type = type;
|
|
memcpy(& this->value, data, sizeof(this->value));
|
|
}
|
|
|
|
ir_constant::ir_constant(float f)
|
|
{
|
|
this->ir_type = ir_type_constant;
|
|
this->type = glsl_type::float_type;
|
|
this->value.f[0] = f;
|
|
for (int i = 1; i < 16; i++) {
|
|
this->value.f[i] = 0;
|
|
}
|
|
}
|
|
|
|
ir_constant::ir_constant(unsigned int u)
|
|
{
|
|
this->ir_type = ir_type_constant;
|
|
this->type = glsl_type::uint_type;
|
|
this->value.u[0] = u;
|
|
for (int i = 1; i < 16; i++) {
|
|
this->value.u[i] = 0;
|
|
}
|
|
}
|
|
|
|
ir_constant::ir_constant(int i)
|
|
{
|
|
this->ir_type = ir_type_constant;
|
|
this->type = glsl_type::int_type;
|
|
this->value.i[0] = i;
|
|
for (int i = 1; i < 16; i++) {
|
|
this->value.i[i] = 0;
|
|
}
|
|
}
|
|
|
|
ir_constant::ir_constant(bool b)
|
|
{
|
|
this->ir_type = ir_type_constant;
|
|
this->type = glsl_type::bool_type;
|
|
this->value.b[0] = b;
|
|
for (int i = 1; i < 16; i++) {
|
|
this->value.b[i] = false;
|
|
}
|
|
}
|
|
|
|
ir_constant::ir_constant(const ir_constant *c, unsigned i)
|
|
{
|
|
this->ir_type = ir_type_constant;
|
|
this->type = c->type->get_base_type();
|
|
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_UINT: this->value.u[0] = c->value.u[i]; break;
|
|
case GLSL_TYPE_INT: this->value.i[0] = c->value.i[i]; break;
|
|
case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
|
|
case GLSL_TYPE_BOOL: this->value.b[0] = c->value.b[i]; break;
|
|
default: assert(!"Should not get here."); break;
|
|
}
|
|
}
|
|
|
|
ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
|
|
{
|
|
this->ir_type = ir_type_constant;
|
|
this->type = type;
|
|
|
|
assert(type->is_scalar() || type->is_vector() || type->is_matrix()
|
|
|| type->is_record() || type->is_array());
|
|
|
|
if (type->is_array()) {
|
|
this->array_elements = ralloc_array(this, ir_constant *, type->length);
|
|
unsigned i = 0;
|
|
foreach_list(node, value_list) {
|
|
ir_constant *value = (ir_constant *) node;
|
|
assert(value->as_constant() != NULL);
|
|
|
|
this->array_elements[i++] = value;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* If the constant is a record, the types of each of the entries in
|
|
* value_list must be a 1-for-1 match with the structure components. Each
|
|
* entry must also be a constant. Just move the nodes from the value_list
|
|
* to the list in the ir_constant.
|
|
*/
|
|
/* FINISHME: Should there be some type checking and / or assertions here? */
|
|
/* FINISHME: Should the new constant take ownership of the nodes from
|
|
* FINISHME: value_list, or should it make copies?
|
|
*/
|
|
if (type->is_record()) {
|
|
value_list->move_nodes_to(& this->components);
|
|
return;
|
|
}
|
|
|
|
for (unsigned i = 0; i < 16; i++) {
|
|
this->value.u[i] = 0;
|
|
}
|
|
|
|
ir_constant *value = (ir_constant *) (value_list->head);
|
|
|
|
/* Constructors with exactly one scalar argument are special for vectors
|
|
* and matrices. For vectors, the scalar value is replicated to fill all
|
|
* the components. For matrices, the scalar fills the components of the
|
|
* diagonal while the rest is filled with 0.
|
|
*/
|
|
if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
|
|
if (type->is_matrix()) {
|
|
/* Matrix - fill diagonal (rest is already set to 0) */
|
|
assert(type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned i = 0; i < type->matrix_columns; i++)
|
|
this->value.f[i * type->vector_elements + i] = value->value.f[0];
|
|
} else {
|
|
/* Vector or scalar - fill all components */
|
|
switch (type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
case GLSL_TYPE_INT:
|
|
for (unsigned i = 0; i < type->components(); i++)
|
|
this->value.u[i] = value->value.u[0];
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
for (unsigned i = 0; i < type->components(); i++)
|
|
this->value.f[i] = value->value.f[0];
|
|
break;
|
|
case GLSL_TYPE_BOOL:
|
|
for (unsigned i = 0; i < type->components(); i++)
|
|
this->value.b[i] = value->value.b[0];
|
|
break;
|
|
default:
|
|
assert(!"Should not get here.");
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (type->is_matrix() && value->type->is_matrix()) {
|
|
assert(value->next->is_tail_sentinel());
|
|
|
|
/* From section 5.4.2 of the GLSL 1.20 spec:
|
|
* "If a matrix is constructed from a matrix, then each component
|
|
* (column i, row j) in the result that has a corresponding component
|
|
* (column i, row j) in the argument will be initialized from there."
|
|
*/
|
|
unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
|
|
unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
|
|
for (unsigned i = 0; i < cols; i++) {
|
|
for (unsigned j = 0; j < rows; j++) {
|
|
const unsigned src = i * value->type->vector_elements + j;
|
|
const unsigned dst = i * type->vector_elements + j;
|
|
this->value.f[dst] = value->value.f[src];
|
|
}
|
|
}
|
|
|
|
/* "All other components will be initialized to the identity matrix." */
|
|
for (unsigned i = cols; i < type->matrix_columns; i++)
|
|
this->value.f[i * type->vector_elements + i] = 1.0;
|
|
|
|
return;
|
|
}
|
|
|
|
/* Use each component from each entry in the value_list to initialize one
|
|
* component of the constant being constructed.
|
|
*/
|
|
for (unsigned i = 0; i < type->components(); /* empty */) {
|
|
assert(value->as_constant() != NULL);
|
|
assert(!value->is_tail_sentinel());
|
|
|
|
for (unsigned j = 0; j < value->type->components(); j++) {
|
|
switch (type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
this->value.u[i] = value->get_uint_component(j);
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
this->value.i[i] = value->get_int_component(j);
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
this->value.f[i] = value->get_float_component(j);
|
|
break;
|
|
case GLSL_TYPE_BOOL:
|
|
this->value.b[i] = value->get_bool_component(j);
|
|
break;
|
|
default:
|
|
/* FINISHME: What to do? Exceptions are not the answer.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
i++;
|
|
if (i >= type->components())
|
|
break;
|
|
}
|
|
|
|
value = (ir_constant *) value->next;
|
|
}
|
|
}
|
|
|
|
ir_constant *
|
|
ir_constant::zero(void *mem_ctx, const glsl_type *type)
|
|
{
|
|
assert(type->is_scalar() || type->is_vector() || type->is_matrix()
|
|
|| type->is_record() || type->is_array());
|
|
|
|
ir_constant *c = new(mem_ctx) ir_constant;
|
|
c->type = type;
|
|
memset(&c->value, 0, sizeof(c->value));
|
|
|
|
if (type->is_array()) {
|
|
c->array_elements = ralloc_array(c, ir_constant *, type->length);
|
|
|
|
for (unsigned i = 0; i < type->length; i++)
|
|
c->array_elements[i] = ir_constant::zero(c, type->element_type());
|
|
}
|
|
|
|
if (type->is_record()) {
|
|
for (unsigned i = 0; i < type->length; i++) {
|
|
ir_constant *comp = ir_constant::zero(mem_ctx, type->fields.structure[i].type);
|
|
c->components.push_tail(comp);
|
|
}
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
bool
|
|
ir_constant::get_bool_component(unsigned i) const
|
|
{
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_UINT: return this->value.u[i] != 0;
|
|
case GLSL_TYPE_INT: return this->value.i[i] != 0;
|
|
case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
|
|
case GLSL_TYPE_BOOL: return this->value.b[i];
|
|
default: assert(!"Should not get here."); break;
|
|
}
|
|
|
|
/* Must return something to make the compiler happy. This is clearly an
|
|
* error case.
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
float
|
|
ir_constant::get_float_component(unsigned i) const
|
|
{
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_UINT: return (float) this->value.u[i];
|
|
case GLSL_TYPE_INT: return (float) this->value.i[i];
|
|
case GLSL_TYPE_FLOAT: return this->value.f[i];
|
|
case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0f : 0.0f;
|
|
default: assert(!"Should not get here."); break;
|
|
}
|
|
|
|
/* Must return something to make the compiler happy. This is clearly an
|
|
* error case.
|
|
*/
|
|
return 0.0;
|
|
}
|
|
|
|
int
|
|
ir_constant::get_int_component(unsigned i) const
|
|
{
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_UINT: return this->value.u[i];
|
|
case GLSL_TYPE_INT: return this->value.i[i];
|
|
case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
|
|
case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
|
|
default: assert(!"Should not get here."); break;
|
|
}
|
|
|
|
/* Must return something to make the compiler happy. This is clearly an
|
|
* error case.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
unsigned
|
|
ir_constant::get_uint_component(unsigned i) const
|
|
{
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_UINT: return this->value.u[i];
|
|
case GLSL_TYPE_INT: return this->value.i[i];
|
|
case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
|
|
case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
|
|
default: assert(!"Should not get here."); break;
|
|
}
|
|
|
|
/* Must return something to make the compiler happy. This is clearly an
|
|
* error case.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
ir_constant *
|
|
ir_constant::get_array_element(unsigned i) const
|
|
{
|
|
assert(this->type->is_array());
|
|
|
|
/* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
|
|
*
|
|
* "Behavior is undefined if a shader subscripts an array with an index
|
|
* less than 0 or greater than or equal to the size the array was
|
|
* declared with."
|
|
*
|
|
* Most out-of-bounds accesses are removed before things could get this far.
|
|
* There are cases where non-constant array index values can get constant
|
|
* folded.
|
|
*/
|
|
if (int(i) < 0)
|
|
i = 0;
|
|
else if (i >= this->type->length)
|
|
i = this->type->length - 1;
|
|
|
|
return array_elements[i];
|
|
}
|
|
|
|
ir_constant *
|
|
ir_constant::get_record_field(const char *name)
|
|
{
|
|
int idx = this->type->field_index(name);
|
|
|
|
if (idx < 0)
|
|
return NULL;
|
|
|
|
if (this->components.is_empty())
|
|
return NULL;
|
|
|
|
exec_node *node = this->components.head;
|
|
for (int i = 0; i < idx; i++) {
|
|
node = node->next;
|
|
|
|
/* If the end of the list is encountered before the element matching the
|
|
* requested field is found, return NULL.
|
|
*/
|
|
if (node->is_tail_sentinel())
|
|
return NULL;
|
|
}
|
|
|
|
return (ir_constant *) node;
|
|
}
|
|
|
|
void
|
|
ir_constant::copy_offset(ir_constant *src, int offset)
|
|
{
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
case GLSL_TYPE_INT:
|
|
case GLSL_TYPE_FLOAT:
|
|
case GLSL_TYPE_BOOL: {
|
|
unsigned int size = src->type->components();
|
|
assert (size <= this->type->components() - offset);
|
|
for (unsigned int i=0; i<size; i++) {
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
value.u[i+offset] = src->get_uint_component(i);
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
value.i[i+offset] = src->get_int_component(i);
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
value.f[i+offset] = src->get_float_component(i);
|
|
break;
|
|
case GLSL_TYPE_BOOL:
|
|
value.b[i+offset] = src->get_bool_component(i);
|
|
break;
|
|
default: // Shut up the compiler
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case GLSL_TYPE_STRUCT: {
|
|
assert (src->type == this->type);
|
|
this->components.make_empty();
|
|
foreach_list(node, &src->components) {
|
|
ir_constant *const orig = (ir_constant *) node;
|
|
|
|
this->components.push_tail(orig->clone(this, NULL));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case GLSL_TYPE_ARRAY: {
|
|
assert (src->type == this->type);
|
|
for (unsigned i = 0; i < this->type->length; i++) {
|
|
this->array_elements[i] = src->array_elements[i]->clone(this, NULL);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
assert(!"Should not get here.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
ir_constant::copy_masked_offset(ir_constant *src, int offset, unsigned int mask)
|
|
{
|
|
assert (!type->is_array() && !type->is_record());
|
|
|
|
if (!type->is_vector() && !type->is_matrix()) {
|
|
offset = 0;
|
|
mask = 1;
|
|
}
|
|
|
|
int id = 0;
|
|
for (int i=0; i<4; i++) {
|
|
if (mask & (1 << i)) {
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
value.u[i+offset] = src->get_uint_component(id++);
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
value.i[i+offset] = src->get_int_component(id++);
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
value.f[i+offset] = src->get_float_component(id++);
|
|
break;
|
|
case GLSL_TYPE_BOOL:
|
|
value.b[i+offset] = src->get_bool_component(id++);
|
|
break;
|
|
default:
|
|
assert(!"Should not get here.");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool
|
|
ir_constant::has_value(const ir_constant *c) const
|
|
{
|
|
if (this->type != c->type)
|
|
return false;
|
|
|
|
if (this->type->is_array()) {
|
|
for (unsigned i = 0; i < this->type->length; i++) {
|
|
if (!this->array_elements[i]->has_value(c->array_elements[i]))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (this->type->base_type == GLSL_TYPE_STRUCT) {
|
|
const exec_node *a_node = this->components.head;
|
|
const exec_node *b_node = c->components.head;
|
|
|
|
while (!a_node->is_tail_sentinel()) {
|
|
assert(!b_node->is_tail_sentinel());
|
|
|
|
const ir_constant *const a_field = (ir_constant *) a_node;
|
|
const ir_constant *const b_field = (ir_constant *) b_node;
|
|
|
|
if (!a_field->has_value(b_field))
|
|
return false;
|
|
|
|
a_node = a_node->next;
|
|
b_node = b_node->next;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
for (unsigned i = 0; i < this->type->components(); i++) {
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
if (this->value.u[i] != c->value.u[i])
|
|
return false;
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
if (this->value.i[i] != c->value.i[i])
|
|
return false;
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
if (this->value.f[i] != c->value.f[i])
|
|
return false;
|
|
break;
|
|
case GLSL_TYPE_BOOL:
|
|
if (this->value.b[i] != c->value.b[i])
|
|
return false;
|
|
break;
|
|
default:
|
|
assert(!"Should not get here.");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
ir_constant::is_zero() const
|
|
{
|
|
if (!this->type->is_scalar() && !this->type->is_vector())
|
|
return false;
|
|
|
|
for (unsigned c = 0; c < this->type->vector_elements; c++) {
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_FLOAT:
|
|
if (this->value.f[c] != 0.0)
|
|
return false;
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
if (this->value.i[c] != 0)
|
|
return false;
|
|
break;
|
|
case GLSL_TYPE_UINT:
|
|
if (this->value.u[c] != 0)
|
|
return false;
|
|
break;
|
|
case GLSL_TYPE_BOOL:
|
|
if (this->value.b[c] != false)
|
|
return false;
|
|
break;
|
|
default:
|
|
/* The only other base types are structures, arrays, and samplers.
|
|
* Samplers cannot be constants, and the others should have been
|
|
* filtered out above.
|
|
*/
|
|
assert(!"Should not get here.");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
ir_constant::is_one() const
|
|
{
|
|
if (!this->type->is_scalar() && !this->type->is_vector())
|
|
return false;
|
|
|
|
for (unsigned c = 0; c < this->type->vector_elements; c++) {
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_FLOAT:
|
|
if (this->value.f[c] != 1.0)
|
|
return false;
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
if (this->value.i[c] != 1)
|
|
return false;
|
|
break;
|
|
case GLSL_TYPE_UINT:
|
|
if (this->value.u[c] != 1)
|
|
return false;
|
|
break;
|
|
case GLSL_TYPE_BOOL:
|
|
if (this->value.b[c] != true)
|
|
return false;
|
|
break;
|
|
default:
|
|
/* The only other base types are structures, arrays, and samplers.
|
|
* Samplers cannot be constants, and the others should have been
|
|
* filtered out above.
|
|
*/
|
|
assert(!"Should not get here.");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
ir_constant::is_negative_one() const
|
|
{
|
|
if (!this->type->is_scalar() && !this->type->is_vector())
|
|
return false;
|
|
|
|
if (this->type->is_boolean())
|
|
return false;
|
|
|
|
for (unsigned c = 0; c < this->type->vector_elements; c++) {
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_FLOAT:
|
|
if (this->value.f[c] != -1.0)
|
|
return false;
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
if (this->value.i[c] != -1)
|
|
return false;
|
|
break;
|
|
case GLSL_TYPE_UINT:
|
|
if (int(this->value.u[c]) != -1)
|
|
return false;
|
|
break;
|
|
default:
|
|
/* The only other base types are structures, arrays, samplers, and
|
|
* booleans. Samplers cannot be constants, and the others should
|
|
* have been filtered out above.
|
|
*/
|
|
assert(!"Should not get here.");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
ir_constant::is_basis() const
|
|
{
|
|
if (!this->type->is_scalar() && !this->type->is_vector())
|
|
return false;
|
|
|
|
if (this->type->is_boolean())
|
|
return false;
|
|
|
|
unsigned ones = 0;
|
|
for (unsigned c = 0; c < this->type->vector_elements; c++) {
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_FLOAT:
|
|
if (this->value.f[c] == 1.0)
|
|
ones++;
|
|
else if (this->value.f[c] != 0.0)
|
|
return false;
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
if (this->value.i[c] == 1)
|
|
ones++;
|
|
else if (this->value.i[c] != 0)
|
|
return false;
|
|
break;
|
|
case GLSL_TYPE_UINT:
|
|
if (int(this->value.u[c]) == 1)
|
|
ones++;
|
|
else if (int(this->value.u[c]) != 0)
|
|
return false;
|
|
break;
|
|
default:
|
|
/* The only other base types are structures, arrays, samplers, and
|
|
* booleans. Samplers cannot be constants, and the others should
|
|
* have been filtered out above.
|
|
*/
|
|
assert(!"Should not get here.");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return ones == 1;
|
|
}
|
|
|
|
ir_loop::ir_loop()
|
|
{
|
|
this->ir_type = ir_type_loop;
|
|
this->cmp = ir_unop_neg;
|
|
this->from = NULL;
|
|
this->to = NULL;
|
|
this->increment = NULL;
|
|
this->counter = NULL;
|
|
}
|
|
|
|
|
|
ir_dereference_variable::ir_dereference_variable(ir_variable *var)
|
|
{
|
|
assert(var != NULL);
|
|
|
|
this->ir_type = ir_type_dereference_variable;
|
|
this->var = var;
|
|
this->type = var->type;
|
|
}
|
|
|
|
|
|
ir_dereference_array::ir_dereference_array(ir_rvalue *value,
|
|
ir_rvalue *array_index)
|
|
{
|
|
this->ir_type = ir_type_dereference_array;
|
|
this->array_index = array_index;
|
|
this->set_array(value);
|
|
}
|
|
|
|
|
|
ir_dereference_array::ir_dereference_array(ir_variable *var,
|
|
ir_rvalue *array_index)
|
|
{
|
|
void *ctx = ralloc_parent(var);
|
|
|
|
this->ir_type = ir_type_dereference_array;
|
|
this->array_index = array_index;
|
|
this->set_array(new(ctx) ir_dereference_variable(var));
|
|
}
|
|
|
|
|
|
void
|
|
ir_dereference_array::set_array(ir_rvalue *value)
|
|
{
|
|
assert(value != NULL);
|
|
|
|
this->array = value;
|
|
|
|
const glsl_type *const vt = this->array->type;
|
|
|
|
if (vt->is_array()) {
|
|
type = vt->element_type();
|
|
} else if (vt->is_matrix()) {
|
|
type = vt->column_type();
|
|
} else if (vt->is_vector()) {
|
|
type = vt->get_base_type();
|
|
}
|
|
}
|
|
|
|
|
|
ir_dereference_record::ir_dereference_record(ir_rvalue *value,
|
|
const char *field)
|
|
{
|
|
assert(value != NULL);
|
|
|
|
this->ir_type = ir_type_dereference_record;
|
|
this->record = value;
|
|
this->field = ralloc_strdup(this, field);
|
|
this->type = this->record->type->field_type(field);
|
|
}
|
|
|
|
|
|
ir_dereference_record::ir_dereference_record(ir_variable *var,
|
|
const char *field)
|
|
{
|
|
void *ctx = ralloc_parent(var);
|
|
|
|
this->ir_type = ir_type_dereference_record;
|
|
this->record = new(ctx) ir_dereference_variable(var);
|
|
this->field = ralloc_strdup(this, field);
|
|
this->type = this->record->type->field_type(field);
|
|
}
|
|
|
|
bool
|
|
ir_dereference::is_lvalue() const
|
|
{
|
|
ir_variable *var = this->variable_referenced();
|
|
|
|
/* Every l-value derference chain eventually ends in a variable.
|
|
*/
|
|
if ((var == NULL) || var->read_only)
|
|
return false;
|
|
|
|
/* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
|
|
*
|
|
* "Samplers cannot be treated as l-values; hence cannot be used
|
|
* as out or inout function parameters, nor can they be
|
|
* assigned into."
|
|
*/
|
|
if (this->type->contains_sampler())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
static const char *tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txf_ms", "txs", "lod" };
|
|
|
|
const char *ir_texture::opcode_string()
|
|
{
|
|
assert((unsigned int) op <=
|
|
sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]));
|
|
return tex_opcode_strs[op];
|
|
}
|
|
|
|
ir_texture_opcode
|
|
ir_texture::get_opcode(const char *str)
|
|
{
|
|
const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
|
|
for (int op = 0; op < count; op++) {
|
|
if (strcmp(str, tex_opcode_strs[op]) == 0)
|
|
return (ir_texture_opcode) op;
|
|
}
|
|
return (ir_texture_opcode) -1;
|
|
}
|
|
|
|
|
|
void
|
|
ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
|
|
{
|
|
assert(sampler != NULL);
|
|
assert(type != NULL);
|
|
this->sampler = sampler;
|
|
this->type = type;
|
|
|
|
if (this->op == ir_txs) {
|
|
assert(type->base_type == GLSL_TYPE_INT);
|
|
} else if (this->op == ir_lod) {
|
|
assert(type->vector_elements == 2);
|
|
assert(type->base_type == GLSL_TYPE_FLOAT);
|
|
} else {
|
|
assert(sampler->type->sampler_type == (int) type->base_type);
|
|
if (sampler->type->sampler_shadow)
|
|
assert(type->vector_elements == 4 || type->vector_elements == 1);
|
|
else
|
|
assert(type->vector_elements == 4);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
ir_swizzle::init_mask(const unsigned *comp, unsigned count)
|
|
{
|
|
assert((count >= 1) && (count <= 4));
|
|
|
|
memset(&this->mask, 0, sizeof(this->mask));
|
|
this->mask.num_components = count;
|
|
|
|
unsigned dup_mask = 0;
|
|
switch (count) {
|
|
case 4:
|
|
assert(comp[3] <= 3);
|
|
dup_mask |= (1U << comp[3])
|
|
& ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
|
|
this->mask.w = comp[3];
|
|
|
|
case 3:
|
|
assert(comp[2] <= 3);
|
|
dup_mask |= (1U << comp[2])
|
|
& ((1U << comp[0]) | (1U << comp[1]));
|
|
this->mask.z = comp[2];
|
|
|
|
case 2:
|
|
assert(comp[1] <= 3);
|
|
dup_mask |= (1U << comp[1])
|
|
& ((1U << comp[0]));
|
|
this->mask.y = comp[1];
|
|
|
|
case 1:
|
|
assert(comp[0] <= 3);
|
|
this->mask.x = comp[0];
|
|
}
|
|
|
|
this->mask.has_duplicates = dup_mask != 0;
|
|
|
|
/* Based on the number of elements in the swizzle and the base type
|
|
* (i.e., float, int, unsigned, or bool) of the vector being swizzled,
|
|
* generate the type of the resulting value.
|
|
*/
|
|
type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
|
|
}
|
|
|
|
ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
|
|
unsigned w, unsigned count)
|
|
: val(val)
|
|
{
|
|
const unsigned components[4] = { x, y, z, w };
|
|
this->ir_type = ir_type_swizzle;
|
|
this->init_mask(components, count);
|
|
}
|
|
|
|
ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
|
|
unsigned count)
|
|
: val(val)
|
|
{
|
|
this->ir_type = ir_type_swizzle;
|
|
this->init_mask(comp, count);
|
|
}
|
|
|
|
ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
|
|
{
|
|
this->ir_type = ir_type_swizzle;
|
|
this->val = val;
|
|
this->mask = mask;
|
|
this->type = glsl_type::get_instance(val->type->base_type,
|
|
mask.num_components, 1);
|
|
}
|
|
|
|
#define X 1
|
|
#define R 5
|
|
#define S 9
|
|
#define I 13
|
|
|
|
ir_swizzle *
|
|
ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
|
|
{
|
|
void *ctx = ralloc_parent(val);
|
|
|
|
/* For each possible swizzle character, this table encodes the value in
|
|
* \c idx_map that represents the 0th element of the vector. For invalid
|
|
* swizzle characters (e.g., 'k'), a special value is used that will allow
|
|
* detection of errors.
|
|
*/
|
|
static const unsigned char base_idx[26] = {
|
|
/* a b c d e f g h i j k l m */
|
|
R, R, I, I, I, I, R, I, I, I, I, I, I,
|
|
/* n o p q r s t u v w x y z */
|
|
I, I, S, S, R, S, S, I, I, X, X, X, X
|
|
};
|
|
|
|
/* Each valid swizzle character has an entry in the previous table. This
|
|
* table encodes the base index encoded in the previous table plus the actual
|
|
* index of the swizzle character. When processing swizzles, the first
|
|
* character in the string is indexed in the previous table. Each character
|
|
* in the string is indexed in this table, and the value found there has the
|
|
* value form the first table subtracted. The result must be on the range
|
|
* [0,3].
|
|
*
|
|
* For example, the string "wzyx" will get X from the first table. Each of
|
|
* the charcaters will get X+3, X+2, X+1, and X+0 from this table. After
|
|
* subtraction, the swizzle values are { 3, 2, 1, 0 }.
|
|
*
|
|
* The string "wzrg" will get X from the first table. Each of the characters
|
|
* will get X+3, X+2, R+0, and R+1 from this table. After subtraction, the
|
|
* swizzle values are { 3, 2, 4, 5 }. Since 4 and 5 are outside the range
|
|
* [0,3], the error is detected.
|
|
*/
|
|
static const unsigned char idx_map[26] = {
|
|
/* a b c d e f g h i j k l m */
|
|
R+3, R+2, 0, 0, 0, 0, R+1, 0, 0, 0, 0, 0, 0,
|
|
/* n o p q r s t u v w x y z */
|
|
0, 0, S+2, S+3, R+0, S+0, S+1, 0, 0, X+3, X+0, X+1, X+2
|
|
};
|
|
|
|
int swiz_idx[4] = { 0, 0, 0, 0 };
|
|
unsigned i;
|
|
|
|
|
|
/* Validate the first character in the swizzle string and look up the base
|
|
* index value as described above.
|
|
*/
|
|
if ((str[0] < 'a') || (str[0] > 'z'))
|
|
return NULL;
|
|
|
|
const unsigned base = base_idx[str[0] - 'a'];
|
|
|
|
|
|
for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
|
|
/* Validate the next character, and, as described above, convert it to a
|
|
* swizzle index.
|
|
*/
|
|
if ((str[i] < 'a') || (str[i] > 'z'))
|
|
return NULL;
|
|
|
|
swiz_idx[i] = idx_map[str[i] - 'a'] - base;
|
|
if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
|
|
return NULL;
|
|
}
|
|
|
|
if (str[i] != '\0')
|
|
return NULL;
|
|
|
|
return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
|
|
swiz_idx[3], i);
|
|
}
|
|
|
|
#undef X
|
|
#undef R
|
|
#undef S
|
|
#undef I
|
|
|
|
ir_variable *
|
|
ir_swizzle::variable_referenced() const
|
|
{
|
|
return this->val->variable_referenced();
|
|
}
|
|
|
|
|
|
ir_variable::ir_variable(const struct glsl_type *type, const char *name,
|
|
ir_variable_mode mode)
|
|
: max_array_access(0), read_only(false), centroid(false), invariant(false),
|
|
mode(mode), interpolation(INTERP_QUALIFIER_NONE)
|
|
{
|
|
this->ir_type = ir_type_variable;
|
|
this->type = type;
|
|
this->name = ralloc_strdup(this, name);
|
|
this->explicit_location = false;
|
|
this->has_initializer = false;
|
|
this->location = -1;
|
|
this->location_frac = 0;
|
|
this->warn_extension = NULL;
|
|
this->constant_value = NULL;
|
|
this->constant_initializer = NULL;
|
|
this->origin_upper_left = false;
|
|
this->pixel_center_integer = false;
|
|
this->depth_layout = ir_depth_layout_none;
|
|
this->used = false;
|
|
|
|
if (type && type->base_type == GLSL_TYPE_SAMPLER)
|
|
this->read_only = true;
|
|
}
|
|
|
|
|
|
const char *
|
|
ir_variable::interpolation_string() const
|
|
{
|
|
switch (this->interpolation) {
|
|
case INTERP_QUALIFIER_NONE: return "no";
|
|
case INTERP_QUALIFIER_SMOOTH: return "smooth";
|
|
case INTERP_QUALIFIER_FLAT: return "flat";
|
|
case INTERP_QUALIFIER_NOPERSPECTIVE: return "noperspective";
|
|
}
|
|
|
|
assert(!"Should not get here.");
|
|
return "";
|
|
}
|
|
|
|
|
|
glsl_interp_qualifier
|
|
ir_variable::determine_interpolation_mode(bool flat_shade)
|
|
{
|
|
if (this->interpolation != INTERP_QUALIFIER_NONE)
|
|
return (glsl_interp_qualifier) this->interpolation;
|
|
int location = this->location;
|
|
bool is_gl_Color =
|
|
location == VARYING_SLOT_COL0 || location == VARYING_SLOT_COL1;
|
|
if (flat_shade && is_gl_Color)
|
|
return INTERP_QUALIFIER_FLAT;
|
|
else
|
|
return INTERP_QUALIFIER_SMOOTH;
|
|
}
|
|
|
|
|
|
ir_function_signature::ir_function_signature(const glsl_type *return_type)
|
|
: return_type(return_type), is_defined(false), _function(NULL)
|
|
{
|
|
this->ir_type = ir_type_function_signature;
|
|
this->is_builtin = false;
|
|
this->origin = NULL;
|
|
}
|
|
|
|
|
|
static bool
|
|
modes_match(unsigned a, unsigned b)
|
|
{
|
|
if (a == b)
|
|
return true;
|
|
|
|
/* Accept "in" vs. "const in" */
|
|
if ((a == ir_var_const_in && b == ir_var_function_in) ||
|
|
(b == ir_var_const_in && a == ir_var_function_in))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
const char *
|
|
ir_function_signature::qualifiers_match(exec_list *params)
|
|
{
|
|
exec_list_iterator iter_a = parameters.iterator();
|
|
exec_list_iterator iter_b = params->iterator();
|
|
|
|
/* check that the qualifiers match. */
|
|
while (iter_a.has_next()) {
|
|
ir_variable *a = (ir_variable *)iter_a.get();
|
|
ir_variable *b = (ir_variable *)iter_b.get();
|
|
|
|
if (a->read_only != b->read_only ||
|
|
!modes_match(a->mode, b->mode) ||
|
|
a->interpolation != b->interpolation ||
|
|
a->centroid != b->centroid) {
|
|
|
|
/* parameter a's qualifiers don't match */
|
|
return a->name;
|
|
}
|
|
|
|
iter_a.next();
|
|
iter_b.next();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void
|
|
ir_function_signature::replace_parameters(exec_list *new_params)
|
|
{
|
|
/* Destroy all of the previous parameter information. If the previous
|
|
* parameter information comes from the function prototype, it may either
|
|
* specify incorrect parameter names or not have names at all.
|
|
*/
|
|
foreach_iter(exec_list_iterator, iter, parameters) {
|
|
assert(((ir_instruction *) iter.get())->as_variable() != NULL);
|
|
|
|
iter.remove();
|
|
}
|
|
|
|
new_params->move_nodes_to(¶meters);
|
|
}
|
|
|
|
|
|
ir_function::ir_function(const char *name)
|
|
{
|
|
this->ir_type = ir_type_function;
|
|
this->name = ralloc_strdup(this, name);
|
|
}
|
|
|
|
|
|
bool
|
|
ir_function::has_user_signature()
|
|
{
|
|
foreach_list(n, &this->signatures) {
|
|
ir_function_signature *const sig = (ir_function_signature *) n;
|
|
if (!sig->is_builtin)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
ir_rvalue *
|
|
ir_rvalue::error_value(void *mem_ctx)
|
|
{
|
|
ir_rvalue *v = new(mem_ctx) ir_rvalue;
|
|
|
|
v->type = glsl_type::error_type;
|
|
return v;
|
|
}
|
|
|
|
|
|
void
|
|
visit_exec_list(exec_list *list, ir_visitor *visitor)
|
|
{
|
|
foreach_iter(exec_list_iterator, iter, *list) {
|
|
((ir_instruction *)iter.get())->accept(visitor);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
steal_memory(ir_instruction *ir, void *new_ctx)
|
|
{
|
|
ir_variable *var = ir->as_variable();
|
|
ir_constant *constant = ir->as_constant();
|
|
if (var != NULL && var->constant_value != NULL)
|
|
steal_memory(var->constant_value, ir);
|
|
|
|
if (var != NULL && var->constant_initializer != NULL)
|
|
steal_memory(var->constant_initializer, ir);
|
|
|
|
/* The components of aggregate constants are not visited by the normal
|
|
* visitor, so steal their values by hand.
|
|
*/
|
|
if (constant != NULL) {
|
|
if (constant->type->is_record()) {
|
|
foreach_iter(exec_list_iterator, iter, constant->components) {
|
|
ir_constant *field = (ir_constant *)iter.get();
|
|
steal_memory(field, ir);
|
|
}
|
|
} else if (constant->type->is_array()) {
|
|
for (unsigned int i = 0; i < constant->type->length; i++) {
|
|
steal_memory(constant->array_elements[i], ir);
|
|
}
|
|
}
|
|
}
|
|
|
|
ralloc_steal(new_ctx, ir);
|
|
}
|
|
|
|
|
|
void
|
|
reparent_ir(exec_list *list, void *mem_ctx)
|
|
{
|
|
foreach_list(node, list) {
|
|
visit_tree((ir_instruction *) node, steal_memory, mem_ctx);
|
|
}
|
|
}
|
|
|
|
|
|
static ir_rvalue *
|
|
try_min_one(ir_rvalue *ir)
|
|
{
|
|
ir_expression *expr = ir->as_expression();
|
|
|
|
if (!expr || expr->operation != ir_binop_min)
|
|
return NULL;
|
|
|
|
if (expr->operands[0]->is_one())
|
|
return expr->operands[1];
|
|
|
|
if (expr->operands[1]->is_one())
|
|
return expr->operands[0];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static ir_rvalue *
|
|
try_max_zero(ir_rvalue *ir)
|
|
{
|
|
ir_expression *expr = ir->as_expression();
|
|
|
|
if (!expr || expr->operation != ir_binop_max)
|
|
return NULL;
|
|
|
|
if (expr->operands[0]->is_zero())
|
|
return expr->operands[1];
|
|
|
|
if (expr->operands[1]->is_zero())
|
|
return expr->operands[0];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
ir_rvalue *
|
|
ir_rvalue::as_rvalue_to_saturate()
|
|
{
|
|
ir_expression *expr = this->as_expression();
|
|
|
|
if (!expr)
|
|
return NULL;
|
|
|
|
ir_rvalue *max_zero = try_max_zero(expr);
|
|
if (max_zero) {
|
|
return try_min_one(max_zero);
|
|
} else {
|
|
ir_rvalue *min_one = try_min_one(expr);
|
|
if (min_one) {
|
|
return try_max_zero(min_one);
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|