Files
third_party_mesa3d/src/intel/vulkan/genX_gpu_memcpy.c
Jason Ekstrand 116e818ef1 anv/gpu_memcpy: CS Stall before a MI memcpy on gen7
This fixes a pile of hangs caused by the recent shuffling of resolves
and transitions.  The particularly problematic case is when you have at
least three attachments with load ops of CLEAR, LOAD, CLEAR.  In this
case, we execute the first CLEAR followed by a MI memcpy to copy the
clear values over for the LOAD followed by a second CLEAR.  The MI
commands cause the first CLEAR to hang which causes us to get stuck on
the 3DSTATE_MULTISAMPLE in the second CLEAR.

We also add guards for BLORP to fix the same issue.  These shouldn't
actually do anything right now because the only use of indirect clears
in BLORP today is for resolves which are already guarded by a render
cache flush and CS stall.  However, this will guard us against potential
issues in the future.

Acked-by: Kenneth Graunke <kenneth@whitecape.org>
Acked-by: Nanley Chery <nanley.g.chery@intel.com>
2018-02-20 13:49:19 -08:00

299 lines
11 KiB
C

/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "anv_private.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
#include "common/gen_l3_config.h"
/**
* This file implements some lightweight memcpy/memset operations on the GPU
* using a vertex buffer and streamout.
*/
/**
* Returns the greatest common divisor of a and b that is a power of two.
*/
static uint64_t
gcd_pow2_u64(uint64_t a, uint64_t b)
{
assert(a > 0 || b > 0);
unsigned a_log2 = ffsll(a) - 1;
unsigned b_log2 = ffsll(b) - 1;
/* If either a or b is 0, then a_log2 or b_log2 will be UINT_MAX in which
* case, the MIN2() will take the other one. If both are 0 then we will
* hit the assert above.
*/
return 1 << MIN2(a_log2, b_log2);
}
void
genX(cmd_buffer_mi_memcpy)(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *dst, uint32_t dst_offset,
struct anv_bo *src, uint32_t src_offset,
uint32_t size)
{
/* This memcpy operates in units of dwords. */
assert(size % 4 == 0);
assert(dst_offset % 4 == 0);
assert(src_offset % 4 == 0);
#if GEN_GEN == 7
/* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
* and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
* in-flight when they are issued even if the memory touched is not
* currently active for rendering. The weird bit is that it is not the
* MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
* rendering hangs such that the next stalling command after the
* MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
*
* It is unclear exactly why this hang occurs. Both MI commands come with
* warnings about the 3D pipeline but that doesn't seem to fully explain
* it. My (Jason's) best theory is that it has something to do with the
* fact that we're using a GPU state register as our temporary and that
* something with reading/writing it is causing problems.
*
* In order to work around this issue, we emit a PIPE_CONTROL with the
* command streamer stall bit set.
*/
cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
#endif
for (uint32_t i = 0; i < size; i += 4) {
const struct anv_address src_addr =
(struct anv_address) { src, src_offset + i};
const struct anv_address dst_addr =
(struct anv_address) { dst, dst_offset + i};
#if GEN_GEN >= 8
anv_batch_emit(&cmd_buffer->batch, GENX(MI_COPY_MEM_MEM), cp) {
cp.DestinationMemoryAddress = dst_addr;
cp.SourceMemoryAddress = src_addr;
}
#else
/* IVB does not have a general purpose register for command streamer
* commands. Therefore, we use an alternate temporary register.
*/
#define TEMP_REG 0x2440 /* GEN7_3DPRIM_BASE_VERTEX */
anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), load) {
load.RegisterAddress = TEMP_REG;
load.MemoryAddress = src_addr;
}
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), store) {
store.RegisterAddress = TEMP_REG;
store.MemoryAddress = dst_addr;
}
#undef TEMP_REG
#endif
}
return;
}
void
genX(cmd_buffer_so_memcpy)(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *dst, uint32_t dst_offset,
struct anv_bo *src, uint32_t src_offset,
uint32_t size)
{
if (size == 0)
return;
assert(dst_offset + size <= dst->size);
assert(src_offset + size <= src->size);
/* The maximum copy block size is 4 32-bit components at a time. */
unsigned bs = 16;
bs = gcd_pow2_u64(bs, src_offset);
bs = gcd_pow2_u64(bs, dst_offset);
bs = gcd_pow2_u64(bs, size);
enum isl_format format;
switch (bs) {
case 4: format = ISL_FORMAT_R32_UINT; break;
case 8: format = ISL_FORMAT_R32G32_UINT; break;
case 16: format = ISL_FORMAT_R32G32B32A32_UINT; break;
default:
unreachable("Invalid size");
}
if (!cmd_buffer->state.current_l3_config) {
const struct gen_l3_config *cfg =
gen_get_default_l3_config(&cmd_buffer->device->info);
genX(cmd_buffer_config_l3)(cmd_buffer, cfg);
}
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
genX(flush_pipeline_select_3d)(cmd_buffer);
uint32_t *dw;
dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(3DSTATE_VERTEX_BUFFERS));
GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, dw + 1,
&(struct GENX(VERTEX_BUFFER_STATE)) {
.VertexBufferIndex = 32, /* Reserved for this */
.AddressModifyEnable = true,
.BufferStartingAddress = { src, src_offset },
.BufferPitch = bs,
#if (GEN_GEN >= 8)
.MemoryObjectControlState = GENX(MOCS),
.BufferSize = size,
#else
.VertexBufferMemoryObjectControlState = GENX(MOCS),
.EndAddress = { src, src_offset + size - 1 },
#endif
});
dw = anv_batch_emitn(&cmd_buffer->batch, 3, GENX(3DSTATE_VERTEX_ELEMENTS));
GENX(VERTEX_ELEMENT_STATE_pack)(&cmd_buffer->batch, dw + 1,
&(struct GENX(VERTEX_ELEMENT_STATE)) {
.VertexBufferIndex = 32,
.Valid = true,
.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) format,
.SourceElementOffset = 0,
.Component0Control = (bs >= 4) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
.Component1Control = (bs >= 8) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
.Component2Control = (bs >= 12) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
.Component3Control = (bs >= 16) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
});
#if GEN_GEN >= 8
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_SGVS), sgvs);
#endif
/* Disable all shader stages */
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VS), vs);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HS), hs);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_TE), te);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DS), DS);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_GS), gs);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_PS), gs);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SBE), sbe) {
sbe.VertexURBEntryReadOffset = 1;
sbe.NumberofSFOutputAttributes = 1;
sbe.VertexURBEntryReadLength = 1;
#if GEN_GEN >= 8
sbe.ForceVertexURBEntryReadLength = true;
sbe.ForceVertexURBEntryReadOffset = true;
#endif
#if GEN_GEN >= 9
for (unsigned i = 0; i < 32; i++)
sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
#endif
}
/* Emit URB setup. We tell it that the VS is active because we want it to
* allocate space for the VS. Even though one isn't run, we need VUEs to
* store the data that VF is going to pass to SOL.
*/
const unsigned entry_size[4] = { DIV_ROUND_UP(32, 64), 1, 1, 1 };
genX(emit_urb_setup)(cmd_buffer->device, &cmd_buffer->batch,
cmd_buffer->state.current_l3_config,
VK_SHADER_STAGE_VERTEX_BIT, entry_size);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
sob.SOBufferIndex = 0;
sob.SOBufferObjectControlState = GENX(MOCS);
sob.SurfaceBaseAddress = (struct anv_address) { dst, dst_offset };
#if GEN_GEN >= 8
sob.SOBufferEnable = true;
sob.SurfaceSize = size - 1;
#else
sob.SurfacePitch = bs;
sob.SurfaceEndAddress = sob.SurfaceBaseAddress;
sob.SurfaceEndAddress.offset += size;
#endif
#if GEN_GEN >= 8
/* As SOL writes out data, it updates the SO_WRITE_OFFSET registers with
* the end position of the stream. We need to reset this value to 0 at
* the beginning of the run or else SOL will start at the offset from
* the previous draw.
*/
sob.StreamOffsetWriteEnable = true;
sob.StreamOffset = 0;
#endif
}
#if GEN_GEN <= 7
/* The hardware can do this for us on BDW+ (see above) */
anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), load) {
load.RegisterOffset = GENX(SO_WRITE_OFFSET0_num);
load.DataDWord = 0;
}
#endif
dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(3DSTATE_SO_DECL_LIST),
.StreamtoBufferSelects0 = (1 << 0),
.NumEntries0 = 1);
GENX(SO_DECL_ENTRY_pack)(&cmd_buffer->batch, dw + 3,
&(struct GENX(SO_DECL_ENTRY)) {
.Stream0Decl = {
.OutputBufferSlot = 0,
.RegisterIndex = 0,
.ComponentMask = (1 << (bs / 4)) - 1,
},
});
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STREAMOUT), so) {
so.SOFunctionEnable = true;
so.RenderingDisable = true;
so.Stream0VertexReadOffset = 0;
so.Stream0VertexReadLength = DIV_ROUND_UP(32, 64);
#if GEN_GEN >= 8
so.Buffer0SurfacePitch = bs;
#else
so.SOBufferEnable0 = true;
#endif
}
#if GEN_GEN >= 8
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
topo.PrimitiveTopologyType = _3DPRIM_POINTLIST;
}
#endif
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_STATISTICS), vf) {
vf.StatisticsEnable = false;
}
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.VertexAccessType = SEQUENTIAL;
prim.PrimitiveTopologyType = _3DPRIM_POINTLIST;
prim.VertexCountPerInstance = size / bs;
prim.StartVertexLocation = 0;
prim.InstanceCount = 1;
prim.StartInstanceLocation = 0;
prim.BaseVertexLocation = 0;
}
cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
}