Files
third_party_mesa3d/src/intel/compiler/brw_compile_sf.c
Kenneth Graunke 72e9843991 intel/compiler: Introduce a new brw_isa_info structure
This structure will contain the opcode mapping tables in the next
commit.  For now, this is the mechanical change to plumb it into all
the necessary places, and it continues simply holding devinfo.

Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17309>
2022-06-30 23:46:35 +00:00

881 lines
24 KiB
C

/*
* Copyright © 2006 - 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_compiler.h"
#include "brw_eu.h"
#include "brw_prim.h"
#include "dev/intel_debug.h"
struct brw_sf_compile {
struct brw_codegen func;
struct brw_sf_prog_key key;
struct brw_sf_prog_data prog_data;
struct brw_reg pv;
struct brw_reg det;
struct brw_reg dx0;
struct brw_reg dx2;
struct brw_reg dy0;
struct brw_reg dy2;
/* z and 1/w passed in separately:
*/
struct brw_reg z[3];
struct brw_reg inv_w[3];
/* The vertices:
*/
struct brw_reg vert[3];
/* Temporaries, allocated after last vertex reg.
*/
struct brw_reg inv_det;
struct brw_reg a1_sub_a0;
struct brw_reg a2_sub_a0;
struct brw_reg tmp;
struct brw_reg m1Cx;
struct brw_reg m2Cy;
struct brw_reg m3C0;
GLuint nr_verts;
GLuint nr_attr_regs;
GLuint nr_setup_regs;
int urb_entry_read_offset;
/** The last known value of the f0.0 flag register. */
unsigned flag_value;
struct brw_vue_map vue_map;
};
/**
* Determine the vue slot corresponding to the given half of the given register.
*/
static inline int vert_reg_to_vue_slot(struct brw_sf_compile *c, GLuint reg,
int half)
{
return (reg + c->urb_entry_read_offset) * 2 + half;
}
/**
* Determine the varying corresponding to the given half of the given
* register. half=0 means the first half of a register, half=1 means the
* second half.
*/
static inline int vert_reg_to_varying(struct brw_sf_compile *c, GLuint reg,
int half)
{
int vue_slot = vert_reg_to_vue_slot(c, reg, half);
return c->vue_map.slot_to_varying[vue_slot];
}
/**
* Determine the register corresponding to the given vue slot
*/
static struct brw_reg get_vue_slot(struct brw_sf_compile *c,
struct brw_reg vert,
int vue_slot)
{
GLuint off = vue_slot / 2 - c->urb_entry_read_offset;
GLuint sub = vue_slot % 2;
return brw_vec4_grf(vert.nr + off, sub * 4);
}
/**
* Determine the register corresponding to the given varying.
*/
static struct brw_reg get_varying(struct brw_sf_compile *c,
struct brw_reg vert,
GLuint varying)
{
int vue_slot = c->vue_map.varying_to_slot[varying];
assert (vue_slot >= c->urb_entry_read_offset);
return get_vue_slot(c, vert, vue_slot);
}
static bool
have_attr(struct brw_sf_compile *c, GLuint attr)
{
return (c->key.attrs & BITFIELD64_BIT(attr)) ? 1 : 0;
}
/***********************************************************************
* Twoside lighting
*/
static void copy_bfc( struct brw_sf_compile *c,
struct brw_reg vert )
{
struct brw_codegen *p = &c->func;
GLuint i;
for (i = 0; i < 2; i++) {
if (have_attr(c, VARYING_SLOT_COL0+i) &&
have_attr(c, VARYING_SLOT_BFC0+i))
brw_MOV(p,
get_varying(c, vert, VARYING_SLOT_COL0+i),
get_varying(c, vert, VARYING_SLOT_BFC0+i));
}
}
static void do_twoside_color( struct brw_sf_compile *c )
{
struct brw_codegen *p = &c->func;
GLuint backface_conditional = c->key.frontface_ccw ? BRW_CONDITIONAL_G : BRW_CONDITIONAL_L;
/* Already done in clip program:
*/
if (c->key.primitive == BRW_SF_PRIM_UNFILLED_TRIS)
return;
/* If the vertex shader provides backface color, do the selection. The VS
* promises to set up the front color if the backface color is provided, but
* it may contain junk if never written to.
*/
if (!(have_attr(c, VARYING_SLOT_COL0) && have_attr(c, VARYING_SLOT_BFC0)) &&
!(have_attr(c, VARYING_SLOT_COL1) && have_attr(c, VARYING_SLOT_BFC1)))
return;
/* Need to use BRW_EXECUTE_4 and also do an 4-wide compare in order
* to get all channels active inside the IF. In the clipping code
* we run with NoMask, so it's not an option and we can use
* BRW_EXECUTE_1 for all comparisons.
*/
brw_CMP(p, vec4(brw_null_reg()), backface_conditional, c->det, brw_imm_f(0));
brw_IF(p, BRW_EXECUTE_4);
{
switch (c->nr_verts) {
case 3: copy_bfc(c, c->vert[2]); FALLTHROUGH;
case 2: copy_bfc(c, c->vert[1]); FALLTHROUGH;
case 1: copy_bfc(c, c->vert[0]);
}
}
brw_ENDIF(p);
}
/***********************************************************************
* Flat shading
*/
static void copy_flatshaded_attributes(struct brw_sf_compile *c,
struct brw_reg dst,
struct brw_reg src)
{
struct brw_codegen *p = &c->func;
int i;
for (i = 0; i < c->vue_map.num_slots; i++) {
if (c->key.interp_mode[i] == INTERP_MODE_FLAT) {
brw_MOV(p,
get_vue_slot(c, dst, i),
get_vue_slot(c, src, i));
}
}
}
static int count_flatshaded_attributes(struct brw_sf_compile *c)
{
int i;
int count = 0;
for (i = 0; i < c->vue_map.num_slots; i++)
if (c->key.interp_mode[i] == INTERP_MODE_FLAT)
count++;
return count;
}
/* Need to use a computed jump to copy flatshaded attributes as the
* vertices are ordered according to y-coordinate before reaching this
* point, so the PV could be anywhere.
*/
static void do_flatshade_triangle( struct brw_sf_compile *c )
{
struct brw_codegen *p = &c->func;
GLuint nr;
GLuint jmpi = 1;
/* Already done in clip program:
*/
if (c->key.primitive == BRW_SF_PRIM_UNFILLED_TRIS)
return;
if (p->devinfo->ver == 5)
jmpi = 2;
nr = count_flatshaded_attributes(c);
brw_MUL(p, c->pv, c->pv, brw_imm_d(jmpi*(nr*2+1)));
brw_JMPI(p, c->pv, BRW_PREDICATE_NONE);
copy_flatshaded_attributes(c, c->vert[1], c->vert[0]);
copy_flatshaded_attributes(c, c->vert[2], c->vert[0]);
brw_JMPI(p, brw_imm_d(jmpi*(nr*4+1)), BRW_PREDICATE_NONE);
copy_flatshaded_attributes(c, c->vert[0], c->vert[1]);
copy_flatshaded_attributes(c, c->vert[2], c->vert[1]);
brw_JMPI(p, brw_imm_d(jmpi*nr*2), BRW_PREDICATE_NONE);
copy_flatshaded_attributes(c, c->vert[0], c->vert[2]);
copy_flatshaded_attributes(c, c->vert[1], c->vert[2]);
}
static void do_flatshade_line( struct brw_sf_compile *c )
{
struct brw_codegen *p = &c->func;
GLuint nr;
GLuint jmpi = 1;
/* Already done in clip program:
*/
if (c->key.primitive == BRW_SF_PRIM_UNFILLED_TRIS)
return;
if (p->devinfo->ver == 5)
jmpi = 2;
nr = count_flatshaded_attributes(c);
brw_MUL(p, c->pv, c->pv, brw_imm_d(jmpi*(nr+1)));
brw_JMPI(p, c->pv, BRW_PREDICATE_NONE);
copy_flatshaded_attributes(c, c->vert[1], c->vert[0]);
brw_JMPI(p, brw_imm_ud(jmpi*nr), BRW_PREDICATE_NONE);
copy_flatshaded_attributes(c, c->vert[0], c->vert[1]);
}
/***********************************************************************
* Triangle setup.
*/
static void alloc_regs( struct brw_sf_compile *c )
{
GLuint reg, i;
/* Values computed by fixed function unit:
*/
c->pv = retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_D);
c->det = brw_vec1_grf(1, 2);
c->dx0 = brw_vec1_grf(1, 3);
c->dx2 = brw_vec1_grf(1, 4);
c->dy0 = brw_vec1_grf(1, 5);
c->dy2 = brw_vec1_grf(1, 6);
/* z and 1/w passed in separately:
*/
c->z[0] = brw_vec1_grf(2, 0);
c->inv_w[0] = brw_vec1_grf(2, 1);
c->z[1] = brw_vec1_grf(2, 2);
c->inv_w[1] = brw_vec1_grf(2, 3);
c->z[2] = brw_vec1_grf(2, 4);
c->inv_w[2] = brw_vec1_grf(2, 5);
/* The vertices:
*/
reg = 3;
for (i = 0; i < c->nr_verts; i++) {
c->vert[i] = brw_vec8_grf(reg, 0);
reg += c->nr_attr_regs;
}
/* Temporaries, allocated after last vertex reg.
*/
c->inv_det = brw_vec1_grf(reg, 0); reg++;
c->a1_sub_a0 = brw_vec8_grf(reg, 0); reg++;
c->a2_sub_a0 = brw_vec8_grf(reg, 0); reg++;
c->tmp = brw_vec8_grf(reg, 0); reg++;
/* Note grf allocation:
*/
c->prog_data.total_grf = reg;
/* Outputs of this program - interpolation coefficients for
* rasterization:
*/
c->m1Cx = brw_vec8_reg(BRW_MESSAGE_REGISTER_FILE, 1, 0);
c->m2Cy = brw_vec8_reg(BRW_MESSAGE_REGISTER_FILE, 2, 0);
c->m3C0 = brw_vec8_reg(BRW_MESSAGE_REGISTER_FILE, 3, 0);
}
static void copy_z_inv_w( struct brw_sf_compile *c )
{
struct brw_codegen *p = &c->func;
GLuint i;
/* Copy both scalars with a single MOV:
*/
for (i = 0; i < c->nr_verts; i++)
brw_MOV(p, vec2(suboffset(c->vert[i], 2)), vec2(c->z[i]));
}
static void invert_det( struct brw_sf_compile *c)
{
/* Looks like we invert all 8 elements just to get 1/det in
* position 2 !?!
*/
gfx4_math(&c->func,
c->inv_det,
BRW_MATH_FUNCTION_INV,
0,
c->det,
BRW_MATH_PRECISION_FULL);
}
static bool
calculate_masks(struct brw_sf_compile *c,
GLuint reg,
GLushort *pc,
GLushort *pc_persp,
GLushort *pc_linear)
{
bool is_last_attr = (reg == c->nr_setup_regs - 1);
enum glsl_interp_mode interp;
*pc_persp = 0;
*pc_linear = 0;
*pc = 0xf;
interp = c->key.interp_mode[vert_reg_to_vue_slot(c, reg, 0)];
if (interp == INTERP_MODE_SMOOTH) {
*pc_linear = 0xf;
*pc_persp = 0xf;
} else if (interp == INTERP_MODE_NOPERSPECTIVE)
*pc_linear = 0xf;
/* Maybe only process one attribute on the final round:
*/
if (vert_reg_to_varying(c, reg, 1) != BRW_VARYING_SLOT_COUNT) {
*pc |= 0xf0;
interp = c->key.interp_mode[vert_reg_to_vue_slot(c, reg, 1)];
if (interp == INTERP_MODE_SMOOTH) {
*pc_linear |= 0xf0;
*pc_persp |= 0xf0;
} else if (interp == INTERP_MODE_NOPERSPECTIVE)
*pc_linear |= 0xf0;
}
return is_last_attr;
}
/* Calculates the predicate control for which channels of a reg
* (containing 2 attrs) to do point sprite coordinate replacement on.
*/
static uint16_t
calculate_point_sprite_mask(struct brw_sf_compile *c, GLuint reg)
{
int varying1, varying2;
uint16_t pc = 0;
varying1 = vert_reg_to_varying(c, reg, 0);
if (varying1 >= VARYING_SLOT_TEX0 && varying1 <= VARYING_SLOT_TEX7) {
if (c->key.point_sprite_coord_replace & (1 << (varying1 - VARYING_SLOT_TEX0)))
pc |= 0x0f;
}
if (varying1 == BRW_VARYING_SLOT_PNTC)
pc |= 0x0f;
varying2 = vert_reg_to_varying(c, reg, 1);
if (varying2 >= VARYING_SLOT_TEX0 && varying2 <= VARYING_SLOT_TEX7) {
if (c->key.point_sprite_coord_replace & (1 << (varying2 -
VARYING_SLOT_TEX0)))
pc |= 0xf0;
}
if (varying2 == BRW_VARYING_SLOT_PNTC)
pc |= 0xf0;
return pc;
}
static void
set_predicate_control_flag_value(struct brw_codegen *p,
struct brw_sf_compile *c,
unsigned value)
{
brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
if (value != 0xff) {
if (value != c->flag_value) {
brw_MOV(p, brw_flag_reg(0, 0), brw_imm_uw(value));
c->flag_value = value;
}
brw_set_default_predicate_control(p, BRW_PREDICATE_NORMAL);
}
}
static void brw_emit_tri_setup(struct brw_sf_compile *c, bool allocate)
{
struct brw_codegen *p = &c->func;
GLuint i;
c->flag_value = 0xff;
c->nr_verts = 3;
if (allocate)
alloc_regs(c);
invert_det(c);
copy_z_inv_w(c);
if (c->key.do_twoside_color)
do_twoside_color(c);
if (c->key.contains_flat_varying)
do_flatshade_triangle(c);
for (i = 0; i < c->nr_setup_regs; i++)
{
/* Pair of incoming attributes:
*/
struct brw_reg a0 = offset(c->vert[0], i);
struct brw_reg a1 = offset(c->vert[1], i);
struct brw_reg a2 = offset(c->vert[2], i);
GLushort pc, pc_persp, pc_linear;
bool last = calculate_masks(c, i, &pc, &pc_persp, &pc_linear);
if (pc_persp)
{
set_predicate_control_flag_value(p, c, pc_persp);
brw_MUL(p, a0, a0, c->inv_w[0]);
brw_MUL(p, a1, a1, c->inv_w[1]);
brw_MUL(p, a2, a2, c->inv_w[2]);
}
/* Calculate coefficients for interpolated values:
*/
if (pc_linear)
{
set_predicate_control_flag_value(p, c, pc_linear);
brw_ADD(p, c->a1_sub_a0, a1, negate(a0));
brw_ADD(p, c->a2_sub_a0, a2, negate(a0));
/* calculate dA/dx
*/
brw_MUL(p, brw_null_reg(), c->a1_sub_a0, c->dy2);
brw_MAC(p, c->tmp, c->a2_sub_a0, negate(c->dy0));
brw_MUL(p, c->m1Cx, c->tmp, c->inv_det);
/* calculate dA/dy
*/
brw_MUL(p, brw_null_reg(), c->a2_sub_a0, c->dx0);
brw_MAC(p, c->tmp, c->a1_sub_a0, negate(c->dx2));
brw_MUL(p, c->m2Cy, c->tmp, c->inv_det);
}
{
set_predicate_control_flag_value(p, c, pc);
/* start point for interpolation
*/
brw_MOV(p, c->m3C0, a0);
/* Copy m0..m3 to URB. m0 is implicitly copied from r0 in
* the send instruction:
*/
brw_urb_WRITE(p,
brw_null_reg(),
0,
brw_vec8_grf(0, 0), /* r0, will be copied to m0 */
last ? BRW_URB_WRITE_EOT_COMPLETE
: BRW_URB_WRITE_NO_FLAGS,
4, /* msg len */
0, /* response len */
i*4, /* offset */
BRW_URB_SWIZZLE_TRANSPOSE); /* XXX: Swizzle control "SF to windower" */
}
}
brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
}
static void brw_emit_line_setup(struct brw_sf_compile *c, bool allocate)
{
struct brw_codegen *p = &c->func;
GLuint i;
c->flag_value = 0xff;
c->nr_verts = 2;
if (allocate)
alloc_regs(c);
invert_det(c);
copy_z_inv_w(c);
if (c->key.contains_flat_varying)
do_flatshade_line(c);
for (i = 0; i < c->nr_setup_regs; i++)
{
/* Pair of incoming attributes:
*/
struct brw_reg a0 = offset(c->vert[0], i);
struct brw_reg a1 = offset(c->vert[1], i);
GLushort pc, pc_persp, pc_linear;
bool last = calculate_masks(c, i, &pc, &pc_persp, &pc_linear);
if (pc_persp)
{
set_predicate_control_flag_value(p, c, pc_persp);
brw_MUL(p, a0, a0, c->inv_w[0]);
brw_MUL(p, a1, a1, c->inv_w[1]);
}
/* Calculate coefficients for position, color:
*/
if (pc_linear) {
set_predicate_control_flag_value(p, c, pc_linear);
brw_ADD(p, c->a1_sub_a0, a1, negate(a0));
brw_MUL(p, c->tmp, c->a1_sub_a0, c->dx0);
brw_MUL(p, c->m1Cx, c->tmp, c->inv_det);
brw_MUL(p, c->tmp, c->a1_sub_a0, c->dy0);
brw_MUL(p, c->m2Cy, c->tmp, c->inv_det);
}
{
set_predicate_control_flag_value(p, c, pc);
/* start point for interpolation
*/
brw_MOV(p, c->m3C0, a0);
/* Copy m0..m3 to URB.
*/
brw_urb_WRITE(p,
brw_null_reg(),
0,
brw_vec8_grf(0, 0),
last ? BRW_URB_WRITE_EOT_COMPLETE
: BRW_URB_WRITE_NO_FLAGS,
4, /* msg len */
0, /* response len */
i*4, /* urb destination offset */
BRW_URB_SWIZZLE_TRANSPOSE);
}
}
brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
}
static void brw_emit_point_sprite_setup(struct brw_sf_compile *c, bool allocate)
{
struct brw_codegen *p = &c->func;
GLuint i;
c->flag_value = 0xff;
c->nr_verts = 1;
if (allocate)
alloc_regs(c);
copy_z_inv_w(c);
for (i = 0; i < c->nr_setup_regs; i++)
{
struct brw_reg a0 = offset(c->vert[0], i);
GLushort pc, pc_persp, pc_linear, pc_coord_replace;
bool last = calculate_masks(c, i, &pc, &pc_persp, &pc_linear);
pc_coord_replace = calculate_point_sprite_mask(c, i);
pc_persp &= ~pc_coord_replace;
if (pc_persp) {
set_predicate_control_flag_value(p, c, pc_persp);
brw_MUL(p, a0, a0, c->inv_w[0]);
}
/* Point sprite coordinate replacement: A texcoord with this
* enabled gets replaced with the value (x, y, 0, 1) where x and
* y vary from 0 to 1 across the horizontal and vertical of the
* point.
*/
if (pc_coord_replace) {
set_predicate_control_flag_value(p, c, pc_coord_replace);
/* Calculate 1.0/PointWidth */
gfx4_math(&c->func,
c->tmp,
BRW_MATH_FUNCTION_INV,
0,
c->dx0,
BRW_MATH_PRECISION_FULL);
brw_set_default_access_mode(p, BRW_ALIGN_16);
/* dA/dx, dA/dy */
brw_MOV(p, c->m1Cx, brw_imm_f(0.0));
brw_MOV(p, c->m2Cy, brw_imm_f(0.0));
brw_MOV(p, brw_writemask(c->m1Cx, WRITEMASK_X), c->tmp);
if (c->key.sprite_origin_lower_left) {
brw_MOV(p, brw_writemask(c->m2Cy, WRITEMASK_Y), negate(c->tmp));
} else {
brw_MOV(p, brw_writemask(c->m2Cy, WRITEMASK_Y), c->tmp);
}
/* attribute constant offset */
brw_MOV(p, c->m3C0, brw_imm_f(0.0));
if (c->key.sprite_origin_lower_left) {
brw_MOV(p, brw_writemask(c->m3C0, WRITEMASK_YW), brw_imm_f(1.0));
} else {
brw_MOV(p, brw_writemask(c->m3C0, WRITEMASK_W), brw_imm_f(1.0));
}
brw_set_default_access_mode(p, BRW_ALIGN_1);
}
if (pc & ~pc_coord_replace) {
set_predicate_control_flag_value(p, c, pc & ~pc_coord_replace);
brw_MOV(p, c->m1Cx, brw_imm_ud(0));
brw_MOV(p, c->m2Cy, brw_imm_ud(0));
brw_MOV(p, c->m3C0, a0); /* constant value */
}
set_predicate_control_flag_value(p, c, pc);
/* Copy m0..m3 to URB. */
brw_urb_WRITE(p,
brw_null_reg(),
0,
brw_vec8_grf(0, 0),
last ? BRW_URB_WRITE_EOT_COMPLETE
: BRW_URB_WRITE_NO_FLAGS,
4, /* msg len */
0, /* response len */
i*4, /* urb destination offset */
BRW_URB_SWIZZLE_TRANSPOSE);
}
brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
}
/* Points setup - several simplifications as all attributes are
* constant across the face of the point (point sprites excluded!)
*/
static void brw_emit_point_setup(struct brw_sf_compile *c, bool allocate)
{
struct brw_codegen *p = &c->func;
GLuint i;
c->flag_value = 0xff;
c->nr_verts = 1;
if (allocate)
alloc_regs(c);
copy_z_inv_w(c);
brw_MOV(p, c->m1Cx, brw_imm_ud(0)); /* zero - move out of loop */
brw_MOV(p, c->m2Cy, brw_imm_ud(0)); /* zero - move out of loop */
for (i = 0; i < c->nr_setup_regs; i++)
{
struct brw_reg a0 = offset(c->vert[0], i);
GLushort pc, pc_persp, pc_linear;
bool last = calculate_masks(c, i, &pc, &pc_persp, &pc_linear);
if (pc_persp)
{
/* This seems odd as the values are all constant, but the
* fragment shader will be expecting it:
*/
set_predicate_control_flag_value(p, c, pc_persp);
brw_MUL(p, a0, a0, c->inv_w[0]);
}
/* The delta values are always zero, just send the starting
* coordinate. Again, this is to fit in with the interpolation
* code in the fragment shader.
*/
{
set_predicate_control_flag_value(p, c, pc);
brw_MOV(p, c->m3C0, a0); /* constant value */
/* Copy m0..m3 to URB.
*/
brw_urb_WRITE(p,
brw_null_reg(),
0,
brw_vec8_grf(0, 0),
last ? BRW_URB_WRITE_EOT_COMPLETE
: BRW_URB_WRITE_NO_FLAGS,
4, /* msg len */
0, /* response len */
i*4, /* urb destination offset */
BRW_URB_SWIZZLE_TRANSPOSE);
}
}
brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
}
static void brw_emit_anyprim_setup( struct brw_sf_compile *c )
{
struct brw_codegen *p = &c->func;
struct brw_reg payload_prim = brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 1, 0);
struct brw_reg payload_attr = get_element_ud(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, 1, 0), 0);
struct brw_reg primmask;
int jmp;
struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
c->nr_verts = 3;
alloc_regs(c);
primmask = retype(get_element(c->tmp, 0), BRW_REGISTER_TYPE_UD);
brw_MOV(p, primmask, brw_imm_ud(1));
brw_SHL(p, primmask, primmask, payload_prim);
brw_AND(p, v1_null_ud, primmask, brw_imm_ud((1<<_3DPRIM_TRILIST) |
(1<<_3DPRIM_TRISTRIP) |
(1<<_3DPRIM_TRIFAN) |
(1<<_3DPRIM_TRISTRIP_REVERSE) |
(1<<_3DPRIM_POLYGON) |
(1<<_3DPRIM_RECTLIST) |
(1<<_3DPRIM_TRIFAN_NOSTIPPLE)));
brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_Z);
jmp = brw_JMPI(p, brw_imm_d(0), BRW_PREDICATE_NORMAL) - p->store;
brw_emit_tri_setup(c, false);
brw_land_fwd_jump(p, jmp);
brw_AND(p, v1_null_ud, primmask, brw_imm_ud((1<<_3DPRIM_LINELIST) |
(1<<_3DPRIM_LINESTRIP) |
(1<<_3DPRIM_LINELOOP) |
(1<<_3DPRIM_LINESTRIP_CONT) |
(1<<_3DPRIM_LINESTRIP_BF) |
(1<<_3DPRIM_LINESTRIP_CONT_BF)));
brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_Z);
jmp = brw_JMPI(p, brw_imm_d(0), BRW_PREDICATE_NORMAL) - p->store;
brw_emit_line_setup(c, false);
brw_land_fwd_jump(p, jmp);
brw_AND(p, v1_null_ud, payload_attr, brw_imm_ud(1<<BRW_SPRITE_POINT_ENABLE));
brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_Z);
jmp = brw_JMPI(p, brw_imm_d(0), BRW_PREDICATE_NORMAL) - p->store;
brw_emit_point_sprite_setup(c, false);
brw_land_fwd_jump(p, jmp);
brw_emit_point_setup( c, false );
}
const unsigned *
brw_compile_sf(const struct brw_compiler *compiler,
void *mem_ctx,
const struct brw_sf_prog_key *key,
struct brw_sf_prog_data *prog_data,
struct brw_vue_map *vue_map,
unsigned *final_assembly_size)
{
struct brw_sf_compile c;
memset(&c, 0, sizeof(c));
/* Begin the compilation:
*/
brw_init_codegen(&compiler->isa, &c.func, mem_ctx);
c.key = *key;
c.vue_map = *vue_map;
if (c.key.do_point_coord) {
/*
* gl_PointCoord is a FS instead of VS builtin variable, thus it's
* not included in c.vue_map generated in VS stage. Here we add
* it manually to let SF shader generate the needed interpolation
* coefficient for FS shader.
*/
c.vue_map.varying_to_slot[BRW_VARYING_SLOT_PNTC] = c.vue_map.num_slots;
c.vue_map.slot_to_varying[c.vue_map.num_slots++] = BRW_VARYING_SLOT_PNTC;
}
c.urb_entry_read_offset = BRW_SF_URB_ENTRY_READ_OFFSET;
c.nr_attr_regs = (c.vue_map.num_slots + 1)/2 - c.urb_entry_read_offset;
c.nr_setup_regs = c.nr_attr_regs;
c.prog_data.urb_read_length = c.nr_attr_regs;
c.prog_data.urb_entry_size = c.nr_setup_regs * 2;
/* Which primitive? Or all three?
*/
switch (key->primitive) {
case BRW_SF_PRIM_TRIANGLES:
c.nr_verts = 3;
brw_emit_tri_setup( &c, true );
break;
case BRW_SF_PRIM_LINES:
c.nr_verts = 2;
brw_emit_line_setup( &c, true );
break;
case BRW_SF_PRIM_POINTS:
c.nr_verts = 1;
if (key->do_point_sprite)
brw_emit_point_sprite_setup( &c, true );
else
brw_emit_point_setup( &c, true );
break;
case BRW_SF_PRIM_UNFILLED_TRIS:
c.nr_verts = 3;
brw_emit_anyprim_setup( &c );
break;
default:
unreachable("not reached");
}
/* FINISHME: SF programs use calculated jumps (i.e., JMPI with a register
* source). Compacting would be difficult.
*/
/* brw_compact_instructions(&c.func, 0, 0, NULL); */
*prog_data = c.prog_data;
const unsigned *program = brw_get_program(&c.func, final_assembly_size);
if (INTEL_DEBUG(DEBUG_SF)) {
fprintf(stderr, "sf:\n");
brw_disassemble_with_labels(&compiler->isa,
program, 0, *final_assembly_size, stderr);
fprintf(stderr, "\n");
}
return program;
}