Files
third_party_mesa3d/src/compiler/nir/nir_validate.c
Karol Herbst 71c66c254b nir: add support for gather offsets
Values inside the offsets parameter of textureGatherOffsets are required to be
constants in the range of [GL_MIN_PROGRAM_TEXTURE_GATHER_OFFSET,
GL_MAX_PROGRAM_TEXTURE_GATHER_OFFSET].

As this range is never outside [-32, 31] for all existing drivers inside mesa,
we can simply store the offsets as a int8_t[4][2] array inside nir_tex_instr.

Right now only Nvidia hardware supports this in hardware, so we can turn this
on inside Nouveau for the NIR path as it is already enabled with the TGSI one.

v2: use memcpy instead of for loops
    add missing bits to nir_instr_set
    don't show offsets if they are all 0
v3: default offsets aren't all 0
v4: rename offsets -> tg4_offsets
    rename nir_tex_instr_has_explicit_offsets -> nir_tex_instr_has_explicit_tg4_offsets

Signed-off-by: Karol Herbst <kherbst@redhat.com>
2019-03-21 02:58:41 +00:00

1268 lines
40 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Connor Abbott (cwabbott0@gmail.com)
*
*/
#include "nir.h"
#include <assert.h>
/*
* This file checks for invalid IR indicating a bug somewhere in the compiler.
*/
/* Since this file is just a pile of asserts, don't bother compiling it if
* we're not building a debug build.
*/
#ifndef NDEBUG
/*
* Per-register validation state.
*/
typedef struct {
/*
* equivalent to the uses and defs in nir_register, but built up by the
* validator. At the end, we verify that the sets have the same entries.
*/
struct set *uses, *if_uses, *defs;
nir_function_impl *where_defined; /* NULL for global registers */
} reg_validate_state;
typedef struct {
/*
* equivalent to the uses in nir_ssa_def, but built up by the validator.
* At the end, we verify that the sets have the same entries.
*/
struct set *uses, *if_uses;
nir_function_impl *where_defined;
} ssa_def_validate_state;
typedef struct {
/* map of register -> validation state (struct above) */
struct hash_table *regs;
/* the current shader being validated */
nir_shader *shader;
/* the current instruction being validated */
nir_instr *instr;
/* the current variable being validated */
nir_variable *var;
/* the current basic block being validated */
nir_block *block;
/* the current if statement being validated */
nir_if *if_stmt;
/* the current loop being visited */
nir_loop *loop;
/* the parent of the current cf node being visited */
nir_cf_node *parent_node;
/* the current function implementation being validated */
nir_function_impl *impl;
/* map of SSA value -> function implementation where it is defined */
struct hash_table *ssa_defs;
/* bitset of ssa definitions we have found; used to check uniqueness */
BITSET_WORD *ssa_defs_found;
/* bitset of registers we have currently found; used to check uniqueness */
BITSET_WORD *regs_found;
/* map of variable -> function implementation where it is defined or NULL
* if it is a global variable
*/
struct hash_table *var_defs;
/* map of instruction/var/etc to failed assert string */
struct hash_table *errors;
} validate_state;
static void
log_error(validate_state *state, const char *cond, const char *file, int line)
{
const void *obj;
if (state->instr)
obj = state->instr;
else if (state->var)
obj = state->var;
else
obj = cond;
char *msg = ralloc_asprintf(state->errors, "error: %s (%s:%d)",
cond, file, line);
_mesa_hash_table_insert(state->errors, obj, msg);
}
#define validate_assert(state, cond) do { \
if (!(cond)) \
log_error(state, #cond, __FILE__, __LINE__); \
} while (0)
static void validate_src(nir_src *src, validate_state *state,
unsigned bit_sizes, unsigned num_components);
static void
validate_reg_src(nir_src *src, validate_state *state,
unsigned bit_sizes, unsigned num_components)
{
validate_assert(state, src->reg.reg != NULL);
struct hash_entry *entry;
entry = _mesa_hash_table_search(state->regs, src->reg.reg);
validate_assert(state, entry);
reg_validate_state *reg_state = (reg_validate_state *) entry->data;
if (state->instr) {
_mesa_set_add(reg_state->uses, src);
} else {
validate_assert(state, state->if_stmt);
_mesa_set_add(reg_state->if_uses, src);
}
if (!src->reg.reg->is_global) {
validate_assert(state, reg_state->where_defined == state->impl &&
"using a register declared in a different function");
}
if (!src->reg.reg->is_packed) {
if (bit_sizes)
validate_assert(state, src->reg.reg->bit_size & bit_sizes);
if (num_components)
validate_assert(state, src->reg.reg->num_components == num_components);
}
validate_assert(state, (src->reg.reg->num_array_elems == 0 ||
src->reg.base_offset < src->reg.reg->num_array_elems) &&
"definitely out-of-bounds array access");
if (src->reg.indirect) {
validate_assert(state, src->reg.reg->num_array_elems != 0);
validate_assert(state, (src->reg.indirect->is_ssa ||
src->reg.indirect->reg.indirect == NULL) &&
"only one level of indirection allowed");
validate_src(src->reg.indirect, state, 32, 1);
}
}
static void
validate_ssa_src(nir_src *src, validate_state *state,
unsigned bit_sizes, unsigned num_components)
{
validate_assert(state, src->ssa != NULL);
struct hash_entry *entry = _mesa_hash_table_search(state->ssa_defs, src->ssa);
validate_assert(state, entry);
if (!entry)
return;
ssa_def_validate_state *def_state = (ssa_def_validate_state *)entry->data;
validate_assert(state, def_state->where_defined == state->impl &&
"using an SSA value defined in a different function");
if (state->instr) {
_mesa_set_add(def_state->uses, src);
} else {
validate_assert(state, state->if_stmt);
_mesa_set_add(def_state->if_uses, src);
}
if (bit_sizes)
validate_assert(state, src->ssa->bit_size & bit_sizes);
if (num_components)
validate_assert(state, src->ssa->num_components == num_components);
/* TODO validate that the use is dominated by the definition */
}
static void
validate_src(nir_src *src, validate_state *state,
unsigned bit_sizes, unsigned num_components)
{
if (state->instr)
validate_assert(state, src->parent_instr == state->instr);
else
validate_assert(state, src->parent_if == state->if_stmt);
if (src->is_ssa)
validate_ssa_src(src, state, bit_sizes, num_components);
else
validate_reg_src(src, state, bit_sizes, num_components);
}
static void
validate_alu_src(nir_alu_instr *instr, unsigned index, validate_state *state)
{
nir_alu_src *src = &instr->src[index];
unsigned num_components = nir_src_num_components(src->src);
if (!src->src.is_ssa && src->src.reg.reg->is_packed)
num_components = NIR_MAX_VEC_COMPONENTS; /* can't check anything */
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
validate_assert(state, src->swizzle[i] < NIR_MAX_VEC_COMPONENTS);
if (nir_alu_instr_channel_used(instr, index, i))
validate_assert(state, src->swizzle[i] < num_components);
}
validate_src(&src->src, state, 0, 0);
}
static void
validate_reg_dest(nir_reg_dest *dest, validate_state *state,
unsigned bit_sizes, unsigned num_components)
{
validate_assert(state, dest->reg != NULL);
validate_assert(state, dest->parent_instr == state->instr);
struct hash_entry *entry2;
entry2 = _mesa_hash_table_search(state->regs, dest->reg);
validate_assert(state, entry2);
reg_validate_state *reg_state = (reg_validate_state *) entry2->data;
_mesa_set_add(reg_state->defs, dest);
if (!dest->reg->is_global) {
validate_assert(state, reg_state->where_defined == state->impl &&
"writing to a register declared in a different function");
}
if (!dest->reg->is_packed) {
if (bit_sizes)
validate_assert(state, dest->reg->bit_size & bit_sizes);
if (num_components)
validate_assert(state, dest->reg->num_components == num_components);
}
validate_assert(state, (dest->reg->num_array_elems == 0 ||
dest->base_offset < dest->reg->num_array_elems) &&
"definitely out-of-bounds array access");
if (dest->indirect) {
validate_assert(state, dest->reg->num_array_elems != 0);
validate_assert(state, (dest->indirect->is_ssa || dest->indirect->reg.indirect == NULL) &&
"only one level of indirection allowed");
validate_src(dest->indirect, state, 32, 1);
}
}
static void
validate_ssa_def(nir_ssa_def *def, validate_state *state)
{
validate_assert(state, def->index < state->impl->ssa_alloc);
validate_assert(state, !BITSET_TEST(state->ssa_defs_found, def->index));
BITSET_SET(state->ssa_defs_found, def->index);
validate_assert(state, def->parent_instr == state->instr);
validate_assert(state, (def->num_components <= 4) ||
(def->num_components == 8) ||
(def->num_components == 16));
list_validate(&def->uses);
list_validate(&def->if_uses);
ssa_def_validate_state *def_state = ralloc(state->ssa_defs,
ssa_def_validate_state);
def_state->where_defined = state->impl;
def_state->uses = _mesa_pointer_set_create(def_state);
def_state->if_uses = _mesa_pointer_set_create(def_state);
_mesa_hash_table_insert(state->ssa_defs, def, def_state);
}
static void
validate_dest(nir_dest *dest, validate_state *state,
unsigned bit_sizes, unsigned num_components)
{
if (dest->is_ssa) {
if (bit_sizes)
validate_assert(state, dest->ssa.bit_size & bit_sizes);
if (num_components)
validate_assert(state, dest->ssa.num_components == num_components);
validate_ssa_def(&dest->ssa, state);
} else {
validate_reg_dest(&dest->reg, state, bit_sizes, num_components);
}
}
static void
validate_alu_dest(nir_alu_instr *instr, validate_state *state)
{
nir_alu_dest *dest = &instr->dest;
unsigned dest_size = nir_dest_num_components(dest->dest);
bool is_packed = !dest->dest.is_ssa && dest->dest.reg.reg->is_packed;
/*
* validate that the instruction doesn't write to components not in the
* register/SSA value
*/
validate_assert(state, is_packed || !(dest->write_mask & ~((1 << dest_size) - 1)));
/* validate that saturate is only ever used on instructions with
* destinations of type float
*/
nir_alu_instr *alu = nir_instr_as_alu(state->instr);
validate_assert(state,
(nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type) ==
nir_type_float) ||
!dest->saturate);
validate_dest(&dest->dest, state, 0, 0);
}
static void
validate_alu_instr(nir_alu_instr *instr, validate_state *state)
{
validate_assert(state, instr->op < nir_num_opcodes);
unsigned instr_bit_size = 0;
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
nir_alu_type src_type = nir_op_infos[instr->op].input_types[i];
unsigned src_bit_size = nir_src_bit_size(instr->src[i].src);
if (nir_alu_type_get_type_size(src_type)) {
validate_assert(state, src_bit_size == nir_alu_type_get_type_size(src_type));
} else if (instr_bit_size) {
validate_assert(state, src_bit_size == instr_bit_size);
} else {
instr_bit_size = src_bit_size;
}
if (nir_alu_type_get_base_type(src_type) == nir_type_float) {
/* 8-bit float isn't a thing */
validate_assert(state, src_bit_size == 16 || src_bit_size == 32 ||
src_bit_size == 64);
}
validate_alu_src(instr, i, state);
}
nir_alu_type dest_type = nir_op_infos[instr->op].output_type;
unsigned dest_bit_size = nir_dest_bit_size(instr->dest.dest);
if (nir_alu_type_get_type_size(dest_type)) {
validate_assert(state, dest_bit_size == nir_alu_type_get_type_size(dest_type));
} else if (instr_bit_size) {
validate_assert(state, dest_bit_size == instr_bit_size);
} else {
/* The only unsized thing is the destination so it's vacuously valid */
}
if (nir_alu_type_get_base_type(dest_type) == nir_type_float) {
/* 8-bit float isn't a thing */
validate_assert(state, dest_bit_size == 16 || dest_bit_size == 32 ||
dest_bit_size == 64);
}
validate_alu_dest(instr, state);
}
static void
validate_var_use(nir_variable *var, validate_state *state)
{
struct hash_entry *entry = _mesa_hash_table_search(state->var_defs, var);
validate_assert(state, entry);
if (var->data.mode == nir_var_function_temp)
validate_assert(state, (nir_function_impl *) entry->data == state->impl);
}
static void
validate_deref_instr(nir_deref_instr *instr, validate_state *state)
{
if (instr->deref_type == nir_deref_type_var) {
/* Variable dereferences are stupid simple. */
validate_assert(state, instr->mode == instr->var->data.mode);
validate_assert(state, instr->type == instr->var->type);
validate_var_use(instr->var, state);
} else if (instr->deref_type == nir_deref_type_cast) {
/* For cast, we simply have to trust the instruction. It's up to
* lowering passes and front/back-ends to make them sane.
*/
validate_src(&instr->parent, state, 0, 0);
/* We just validate that the type and mode are there */
validate_assert(state, instr->mode);
validate_assert(state, instr->type);
} else {
/* We require the parent to be SSA. This may be lifted in the future */
validate_assert(state, instr->parent.is_ssa);
/* The parent pointer value must have the same number of components
* as the destination.
*/
validate_src(&instr->parent, state, nir_dest_bit_size(instr->dest),
nir_dest_num_components(instr->dest));
nir_instr *parent_instr = instr->parent.ssa->parent_instr;
/* The parent must come from another deref instruction */
validate_assert(state, parent_instr->type == nir_instr_type_deref);
nir_deref_instr *parent = nir_instr_as_deref(parent_instr);
validate_assert(state, instr->mode == parent->mode);
switch (instr->deref_type) {
case nir_deref_type_struct:
validate_assert(state, glsl_type_is_struct_or_ifc(parent->type));
validate_assert(state,
instr->strct.index < glsl_get_length(parent->type));
validate_assert(state, instr->type ==
glsl_get_struct_field(parent->type, instr->strct.index));
break;
case nir_deref_type_array:
case nir_deref_type_array_wildcard:
if (instr->mode == nir_var_mem_ubo ||
instr->mode == nir_var_mem_ssbo ||
instr->mode == nir_var_mem_shared ||
instr->mode == nir_var_mem_global) {
/* Shared variables and UBO/SSBOs have a bit more relaxed rules
* because we need to be able to handle array derefs on vectors.
* Fortunately, nir_lower_io handles these just fine.
*/
validate_assert(state, glsl_type_is_array(parent->type) ||
glsl_type_is_matrix(parent->type) ||
glsl_type_is_vector(parent->type));
} else {
/* Most of NIR cannot handle array derefs on vectors */
validate_assert(state, glsl_type_is_array(parent->type) ||
glsl_type_is_matrix(parent->type));
}
validate_assert(state,
instr->type == glsl_get_array_element(parent->type));
if (instr->deref_type == nir_deref_type_array) {
validate_src(&instr->arr.index, state,
nir_dest_bit_size(instr->dest), 1);
}
break;
case nir_deref_type_ptr_as_array:
/* ptr_as_array derefs must have a parent that is either an array,
* ptr_as_array, or cast. If the parent is a cast, we get the stride
* information (if any) from the cast deref.
*/
validate_assert(state,
parent->deref_type == nir_deref_type_array ||
parent->deref_type == nir_deref_type_ptr_as_array ||
parent->deref_type == nir_deref_type_cast);
validate_src(&instr->arr.index, state,
nir_dest_bit_size(instr->dest), 1);
break;
default:
unreachable("Invalid deref instruction type");
}
}
/* We intentionally don't validate the size of the destination because we
* want to let other compiler components such as SPIR-V decide how big
* pointers should be.
*/
validate_dest(&instr->dest, state, 0, 0);
/* Deref instructions as if conditions don't make sense because if
* conditions expect well-formed Booleans. If you want to compare with
* NULL, an explicit comparison operation should be used.
*/
validate_assert(state, list_empty(&instr->dest.ssa.if_uses));
}
static void
validate_intrinsic_instr(nir_intrinsic_instr *instr, validate_state *state)
{
unsigned dest_bit_size = 0;
unsigned src_bit_sizes[NIR_INTRINSIC_MAX_INPUTS] = { 0, };
switch (instr->intrinsic) {
case nir_intrinsic_load_param: {
unsigned param_idx = nir_intrinsic_param_idx(instr);
validate_assert(state, param_idx < state->impl->function->num_params);
nir_parameter *param = &state->impl->function->params[param_idx];
validate_assert(state, instr->num_components == param->num_components);
dest_bit_size = param->bit_size;
break;
}
case nir_intrinsic_load_deref: {
nir_deref_instr *src = nir_src_as_deref(instr->src[0]);
validate_assert(state, glsl_type_is_vector_or_scalar(src->type) ||
(src->mode == nir_var_uniform &&
glsl_get_base_type(src->type) == GLSL_TYPE_SUBROUTINE));
validate_assert(state, instr->num_components ==
glsl_get_vector_elements(src->type));
dest_bit_size = glsl_get_bit_size(src->type);
/* Also allow 32-bit boolean load operations */
if (glsl_type_is_boolean(src->type))
dest_bit_size |= 32;
break;
}
case nir_intrinsic_store_deref: {
nir_deref_instr *dst = nir_src_as_deref(instr->src[0]);
validate_assert(state, glsl_type_is_vector_or_scalar(dst->type));
validate_assert(state, instr->num_components ==
glsl_get_vector_elements(dst->type));
src_bit_sizes[1] = glsl_get_bit_size(dst->type);
/* Also allow 32-bit boolean store operations */
if (glsl_type_is_boolean(dst->type))
src_bit_sizes[1] |= 32;
validate_assert(state, (dst->mode & (nir_var_shader_in |
nir_var_uniform)) == 0);
validate_assert(state, (nir_intrinsic_write_mask(instr) & ~((1 << instr->num_components) - 1)) == 0);
break;
}
case nir_intrinsic_copy_deref: {
nir_deref_instr *dst = nir_src_as_deref(instr->src[0]);
nir_deref_instr *src = nir_src_as_deref(instr->src[1]);
validate_assert(state, glsl_get_bare_type(dst->type) ==
glsl_get_bare_type(src->type));
validate_assert(state, (dst->mode & (nir_var_shader_in |
nir_var_uniform)) == 0);
break;
}
default:
break;
}
unsigned num_srcs = nir_intrinsic_infos[instr->intrinsic].num_srcs;
for (unsigned i = 0; i < num_srcs; i++) {
unsigned components_read = nir_intrinsic_src_components(instr, i);
validate_assert(state, components_read > 0);
validate_src(&instr->src[i], state, src_bit_sizes[i], components_read);
}
if (nir_intrinsic_infos[instr->intrinsic].has_dest) {
unsigned components_written = nir_intrinsic_dest_components(instr);
unsigned bit_sizes = nir_intrinsic_infos[instr->intrinsic].dest_bit_sizes;
validate_assert(state, components_written > 0);
if (dest_bit_size && bit_sizes)
validate_assert(state, dest_bit_size & bit_sizes);
else
dest_bit_size = dest_bit_size ? dest_bit_size : bit_sizes;
validate_dest(&instr->dest, state, dest_bit_size, components_written);
}
}
static void
validate_tex_instr(nir_tex_instr *instr, validate_state *state)
{
bool src_type_seen[nir_num_tex_src_types];
for (unsigned i = 0; i < nir_num_tex_src_types; i++)
src_type_seen[i] = false;
for (unsigned i = 0; i < instr->num_srcs; i++) {
validate_assert(state, !src_type_seen[instr->src[i].src_type]);
src_type_seen[instr->src[i].src_type] = true;
validate_src(&instr->src[i].src, state,
0, nir_tex_instr_src_size(instr, i));
}
if (nir_tex_instr_has_explicit_tg4_offsets(instr)) {
validate_assert(state, instr->op == nir_texop_tg4);
validate_assert(state, !src_type_seen[nir_tex_src_offset]);
}
validate_dest(&instr->dest, state, 0, nir_tex_instr_dest_size(instr));
}
static void
validate_call_instr(nir_call_instr *instr, validate_state *state)
{
validate_assert(state, instr->num_params == instr->callee->num_params);
for (unsigned i = 0; i < instr->num_params; i++) {
validate_src(&instr->params[i], state,
instr->callee->params[i].bit_size,
instr->callee->params[i].num_components);
}
}
static void
validate_load_const_instr(nir_load_const_instr *instr, validate_state *state)
{
validate_ssa_def(&instr->def, state);
}
static void
validate_ssa_undef_instr(nir_ssa_undef_instr *instr, validate_state *state)
{
validate_ssa_def(&instr->def, state);
}
static void
validate_phi_instr(nir_phi_instr *instr, validate_state *state)
{
/*
* don't validate the sources until we get to them from their predecessor
* basic blocks, to avoid validating an SSA use before its definition.
*/
validate_dest(&instr->dest, state, 0, 0);
exec_list_validate(&instr->srcs);
validate_assert(state, exec_list_length(&instr->srcs) ==
state->block->predecessors->entries);
}
static void
validate_instr(nir_instr *instr, validate_state *state)
{
validate_assert(state, instr->block == state->block);
state->instr = instr;
switch (instr->type) {
case nir_instr_type_alu:
validate_alu_instr(nir_instr_as_alu(instr), state);
break;
case nir_instr_type_deref:
validate_deref_instr(nir_instr_as_deref(instr), state);
break;
case nir_instr_type_call:
validate_call_instr(nir_instr_as_call(instr), state);
break;
case nir_instr_type_intrinsic:
validate_intrinsic_instr(nir_instr_as_intrinsic(instr), state);
break;
case nir_instr_type_tex:
validate_tex_instr(nir_instr_as_tex(instr), state);
break;
case nir_instr_type_load_const:
validate_load_const_instr(nir_instr_as_load_const(instr), state);
break;
case nir_instr_type_phi:
validate_phi_instr(nir_instr_as_phi(instr), state);
break;
case nir_instr_type_ssa_undef:
validate_ssa_undef_instr(nir_instr_as_ssa_undef(instr), state);
break;
case nir_instr_type_jump:
break;
default:
validate_assert(state, !"Invalid ALU instruction type");
break;
}
state->instr = NULL;
}
static void
validate_phi_src(nir_phi_instr *instr, nir_block *pred, validate_state *state)
{
state->instr = &instr->instr;
validate_assert(state, instr->dest.is_ssa);
exec_list_validate(&instr->srcs);
nir_foreach_phi_src(src, instr) {
if (src->pred == pred) {
validate_assert(state, src->src.is_ssa);
validate_src(&src->src, state, instr->dest.ssa.bit_size,
instr->dest.ssa.num_components);
state->instr = NULL;
return;
}
}
abort();
}
static void
validate_phi_srcs(nir_block *block, nir_block *succ, validate_state *state)
{
nir_foreach_instr(instr, succ) {
if (instr->type != nir_instr_type_phi)
break;
validate_phi_src(nir_instr_as_phi(instr), block, state);
}
}
static void validate_cf_node(nir_cf_node *node, validate_state *state);
static void
validate_block(nir_block *block, validate_state *state)
{
validate_assert(state, block->cf_node.parent == state->parent_node);
state->block = block;
exec_list_validate(&block->instr_list);
nir_foreach_instr(instr, block) {
if (instr->type == nir_instr_type_phi) {
validate_assert(state, instr == nir_block_first_instr(block) ||
nir_instr_prev(instr)->type == nir_instr_type_phi);
}
if (instr->type == nir_instr_type_jump) {
validate_assert(state, instr == nir_block_last_instr(block));
}
validate_instr(instr, state);
}
validate_assert(state, block->successors[0] != NULL);
validate_assert(state, block->successors[0] != block->successors[1]);
for (unsigned i = 0; i < 2; i++) {
if (block->successors[i] != NULL) {
struct set_entry *entry =
_mesa_set_search(block->successors[i]->predecessors, block);
validate_assert(state, entry);
validate_phi_srcs(block, block->successors[i], state);
}
}
set_foreach(block->predecessors, entry) {
const nir_block *pred = entry->key;
validate_assert(state, pred->successors[0] == block ||
pred->successors[1] == block);
}
if (!exec_list_is_empty(&block->instr_list) &&
nir_block_last_instr(block)->type == nir_instr_type_jump) {
validate_assert(state, block->successors[1] == NULL);
nir_jump_instr *jump = nir_instr_as_jump(nir_block_last_instr(block));
switch (jump->type) {
case nir_jump_break: {
nir_block *after =
nir_cf_node_as_block(nir_cf_node_next(&state->loop->cf_node));
validate_assert(state, block->successors[0] == after);
break;
}
case nir_jump_continue: {
nir_block *first = nir_loop_first_block(state->loop);
validate_assert(state, block->successors[0] == first);
break;
}
case nir_jump_return:
validate_assert(state, block->successors[0] == state->impl->end_block);
break;
default:
unreachable("bad jump type");
}
} else {
nir_cf_node *next = nir_cf_node_next(&block->cf_node);
if (next == NULL) {
switch (state->parent_node->type) {
case nir_cf_node_loop: {
nir_block *first = nir_loop_first_block(state->loop);
validate_assert(state, block->successors[0] == first);
/* due to the hack for infinite loops, block->successors[1] may
* point to the block after the loop.
*/
break;
}
case nir_cf_node_if: {
nir_block *after =
nir_cf_node_as_block(nir_cf_node_next(state->parent_node));
validate_assert(state, block->successors[0] == after);
validate_assert(state, block->successors[1] == NULL);
break;
}
case nir_cf_node_function:
validate_assert(state, block->successors[0] == state->impl->end_block);
validate_assert(state, block->successors[1] == NULL);
break;
default:
unreachable("unknown control flow node type");
}
} else {
if (next->type == nir_cf_node_if) {
nir_if *if_stmt = nir_cf_node_as_if(next);
validate_assert(state, block->successors[0] ==
nir_if_first_then_block(if_stmt));
validate_assert(state, block->successors[1] ==
nir_if_first_else_block(if_stmt));
} else {
validate_assert(state, next->type == nir_cf_node_loop);
nir_loop *loop = nir_cf_node_as_loop(next);
validate_assert(state, block->successors[0] ==
nir_loop_first_block(loop));
validate_assert(state, block->successors[1] == NULL);
}
}
}
}
static void
validate_if(nir_if *if_stmt, validate_state *state)
{
state->if_stmt = if_stmt;
validate_assert(state, !exec_node_is_head_sentinel(if_stmt->cf_node.node.prev));
nir_cf_node *prev_node = nir_cf_node_prev(&if_stmt->cf_node);
validate_assert(state, prev_node->type == nir_cf_node_block);
validate_assert(state, !exec_node_is_tail_sentinel(if_stmt->cf_node.node.next));
nir_cf_node *next_node = nir_cf_node_next(&if_stmt->cf_node);
validate_assert(state, next_node->type == nir_cf_node_block);
validate_src(&if_stmt->condition, state, 0, 1);
validate_assert(state, !exec_list_is_empty(&if_stmt->then_list));
validate_assert(state, !exec_list_is_empty(&if_stmt->else_list));
nir_cf_node *old_parent = state->parent_node;
state->parent_node = &if_stmt->cf_node;
exec_list_validate(&if_stmt->then_list);
foreach_list_typed(nir_cf_node, cf_node, node, &if_stmt->then_list) {
validate_cf_node(cf_node, state);
}
exec_list_validate(&if_stmt->else_list);
foreach_list_typed(nir_cf_node, cf_node, node, &if_stmt->else_list) {
validate_cf_node(cf_node, state);
}
state->parent_node = old_parent;
state->if_stmt = NULL;
}
static void
validate_loop(nir_loop *loop, validate_state *state)
{
validate_assert(state, !exec_node_is_head_sentinel(loop->cf_node.node.prev));
nir_cf_node *prev_node = nir_cf_node_prev(&loop->cf_node);
validate_assert(state, prev_node->type == nir_cf_node_block);
validate_assert(state, !exec_node_is_tail_sentinel(loop->cf_node.node.next));
nir_cf_node *next_node = nir_cf_node_next(&loop->cf_node);
validate_assert(state, next_node->type == nir_cf_node_block);
validate_assert(state, !exec_list_is_empty(&loop->body));
nir_cf_node *old_parent = state->parent_node;
state->parent_node = &loop->cf_node;
nir_loop *old_loop = state->loop;
state->loop = loop;
exec_list_validate(&loop->body);
foreach_list_typed(nir_cf_node, cf_node, node, &loop->body) {
validate_cf_node(cf_node, state);
}
state->parent_node = old_parent;
state->loop = old_loop;
}
static void
validate_cf_node(nir_cf_node *node, validate_state *state)
{
validate_assert(state, node->parent == state->parent_node);
switch (node->type) {
case nir_cf_node_block:
validate_block(nir_cf_node_as_block(node), state);
break;
case nir_cf_node_if:
validate_if(nir_cf_node_as_if(node), state);
break;
case nir_cf_node_loop:
validate_loop(nir_cf_node_as_loop(node), state);
break;
default:
unreachable("Invalid CF node type");
}
}
static void
prevalidate_reg_decl(nir_register *reg, bool is_global, validate_state *state)
{
validate_assert(state, reg->is_global == is_global);
if (is_global)
validate_assert(state, reg->index < state->shader->reg_alloc);
else
validate_assert(state, reg->index < state->impl->reg_alloc);
validate_assert(state, !BITSET_TEST(state->regs_found, reg->index));
BITSET_SET(state->regs_found, reg->index);
list_validate(&reg->uses);
list_validate(&reg->defs);
list_validate(&reg->if_uses);
reg_validate_state *reg_state = ralloc(state->regs, reg_validate_state);
reg_state->uses = _mesa_pointer_set_create(reg_state);
reg_state->if_uses = _mesa_pointer_set_create(reg_state);
reg_state->defs = _mesa_pointer_set_create(reg_state);
reg_state->where_defined = is_global ? NULL : state->impl;
_mesa_hash_table_insert(state->regs, reg, reg_state);
}
static void
postvalidate_reg_decl(nir_register *reg, validate_state *state)
{
struct hash_entry *entry = _mesa_hash_table_search(state->regs, reg);
assume(entry);
reg_validate_state *reg_state = (reg_validate_state *) entry->data;
nir_foreach_use(src, reg) {
struct set_entry *entry = _mesa_set_search(reg_state->uses, src);
validate_assert(state, entry);
_mesa_set_remove(reg_state->uses, entry);
}
if (reg_state->uses->entries != 0) {
printf("extra entries in register uses:\n");
set_foreach(reg_state->uses, entry)
printf("%p\n", entry->key);
abort();
}
nir_foreach_if_use(src, reg) {
struct set_entry *entry = _mesa_set_search(reg_state->if_uses, src);
validate_assert(state, entry);
_mesa_set_remove(reg_state->if_uses, entry);
}
if (reg_state->if_uses->entries != 0) {
printf("extra entries in register if_uses:\n");
set_foreach(reg_state->if_uses, entry)
printf("%p\n", entry->key);
abort();
}
nir_foreach_def(src, reg) {
struct set_entry *entry = _mesa_set_search(reg_state->defs, src);
validate_assert(state, entry);
_mesa_set_remove(reg_state->defs, entry);
}
if (reg_state->defs->entries != 0) {
printf("extra entries in register defs:\n");
set_foreach(reg_state->defs, entry)
printf("%p\n", entry->key);
abort();
}
}
static void
validate_var_decl(nir_variable *var, bool is_global, validate_state *state)
{
state->var = var;
validate_assert(state, is_global == nir_variable_is_global(var));
/* Must have exactly one mode set */
validate_assert(state, util_is_power_of_two_nonzero(var->data.mode));
if (var->data.compact) {
/* The "compact" flag is only valid on arrays of scalars. */
assert(glsl_type_is_array(var->type));
const struct glsl_type *type = glsl_get_array_element(var->type);
if (nir_is_per_vertex_io(var, state->shader->info.stage)) {
assert(glsl_type_is_array(type));
assert(glsl_type_is_scalar(glsl_get_array_element(type)));
} else {
assert(glsl_type_is_scalar(type));
}
}
if (var->num_members > 0) {
const struct glsl_type *without_array = glsl_without_array(var->type);
validate_assert(state, glsl_type_is_struct_or_ifc(without_array));
validate_assert(state, var->num_members == glsl_get_length(without_array));
validate_assert(state, var->members != NULL);
}
/*
* TODO validate some things ir_validate.cpp does (requires more GLSL type
* support)
*/
_mesa_hash_table_insert(state->var_defs, var,
is_global ? NULL : state->impl);
state->var = NULL;
}
static bool
postvalidate_ssa_def(nir_ssa_def *def, void *void_state)
{
validate_state *state = void_state;
struct hash_entry *entry = _mesa_hash_table_search(state->ssa_defs, def);
assume(entry);
ssa_def_validate_state *def_state = (ssa_def_validate_state *)entry->data;
nir_foreach_use(src, def) {
struct set_entry *entry = _mesa_set_search(def_state->uses, src);
validate_assert(state, entry);
_mesa_set_remove(def_state->uses, entry);
}
if (def_state->uses->entries != 0) {
printf("extra entries in SSA def uses:\n");
set_foreach(def_state->uses, entry)
printf("%p\n", entry->key);
abort();
}
nir_foreach_if_use(src, def) {
struct set_entry *entry = _mesa_set_search(def_state->if_uses, src);
validate_assert(state, entry);
_mesa_set_remove(def_state->if_uses, entry);
}
if (def_state->if_uses->entries != 0) {
printf("extra entries in SSA def uses:\n");
set_foreach(def_state->if_uses, entry)
printf("%p\n", entry->key);
abort();
}
return true;
}
static void
validate_function_impl(nir_function_impl *impl, validate_state *state)
{
validate_assert(state, impl->function->impl == impl);
validate_assert(state, impl->cf_node.parent == NULL);
validate_assert(state, exec_list_is_empty(&impl->end_block->instr_list));
validate_assert(state, impl->end_block->successors[0] == NULL);
validate_assert(state, impl->end_block->successors[1] == NULL);
state->impl = impl;
state->parent_node = &impl->cf_node;
exec_list_validate(&impl->locals);
nir_foreach_variable(var, &impl->locals) {
validate_var_decl(var, false, state);
}
state->regs_found = realloc(state->regs_found,
BITSET_WORDS(impl->reg_alloc) *
sizeof(BITSET_WORD));
memset(state->regs_found, 0, BITSET_WORDS(impl->reg_alloc) *
sizeof(BITSET_WORD));
exec_list_validate(&impl->registers);
foreach_list_typed(nir_register, reg, node, &impl->registers) {
prevalidate_reg_decl(reg, false, state);
}
state->ssa_defs_found = realloc(state->ssa_defs_found,
BITSET_WORDS(impl->ssa_alloc) *
sizeof(BITSET_WORD));
memset(state->ssa_defs_found, 0, BITSET_WORDS(impl->ssa_alloc) *
sizeof(BITSET_WORD));
exec_list_validate(&impl->body);
foreach_list_typed(nir_cf_node, node, node, &impl->body) {
validate_cf_node(node, state);
}
foreach_list_typed(nir_register, reg, node, &impl->registers) {
postvalidate_reg_decl(reg, state);
}
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block)
nir_foreach_ssa_def(instr, postvalidate_ssa_def, state);
}
}
static void
validate_function(nir_function *func, validate_state *state)
{
if (func->impl != NULL) {
validate_assert(state, func->impl->function == func);
validate_function_impl(func->impl, state);
}
}
static void
init_validate_state(validate_state *state)
{
state->regs = _mesa_pointer_hash_table_create(NULL);
state->ssa_defs = _mesa_pointer_hash_table_create(NULL);
state->ssa_defs_found = NULL;
state->regs_found = NULL;
state->var_defs = _mesa_pointer_hash_table_create(NULL);
state->errors = _mesa_pointer_hash_table_create(NULL);
state->loop = NULL;
state->instr = NULL;
state->var = NULL;
}
static void
destroy_validate_state(validate_state *state)
{
_mesa_hash_table_destroy(state->regs, NULL);
_mesa_hash_table_destroy(state->ssa_defs, NULL);
free(state->ssa_defs_found);
free(state->regs_found);
_mesa_hash_table_destroy(state->var_defs, NULL);
_mesa_hash_table_destroy(state->errors, NULL);
}
static void
dump_errors(validate_state *state, const char *when)
{
struct hash_table *errors = state->errors;
if (when) {
fprintf(stderr, "NIR validation failed %s\n", when);
fprintf(stderr, "%d errors:\n", _mesa_hash_table_num_entries(errors));
} else {
fprintf(stderr, "NIR validation failed with %d errors:\n",
_mesa_hash_table_num_entries(errors));
}
nir_print_shader_annotated(state->shader, stderr, errors);
if (_mesa_hash_table_num_entries(errors) > 0) {
fprintf(stderr, "%d additional errors:\n",
_mesa_hash_table_num_entries(errors));
hash_table_foreach(errors, entry) {
fprintf(stderr, "%s\n", (char *)entry->data);
}
}
abort();
}
void
nir_validate_shader(nir_shader *shader, const char *when)
{
static int should_validate = -1;
if (should_validate < 0)
should_validate = env_var_as_boolean("NIR_VALIDATE", true);
if (!should_validate)
return;
validate_state state;
init_validate_state(&state);
state.shader = shader;
exec_list_validate(&shader->uniforms);
nir_foreach_variable(var, &shader->uniforms) {
validate_var_decl(var, true, &state);
}
exec_list_validate(&shader->inputs);
nir_foreach_variable(var, &shader->inputs) {
validate_var_decl(var, true, &state);
}
exec_list_validate(&shader->outputs);
nir_foreach_variable(var, &shader->outputs) {
validate_var_decl(var, true, &state);
}
exec_list_validate(&shader->shared);
nir_foreach_variable(var, &shader->shared) {
validate_var_decl(var, true, &state);
}
exec_list_validate(&shader->globals);
nir_foreach_variable(var, &shader->globals) {
validate_var_decl(var, true, &state);
}
exec_list_validate(&shader->system_values);
nir_foreach_variable(var, &shader->system_values) {
validate_var_decl(var, true, &state);
}
state.regs_found = realloc(state.regs_found,
BITSET_WORDS(shader->reg_alloc) *
sizeof(BITSET_WORD));
memset(state.regs_found, 0, BITSET_WORDS(shader->reg_alloc) *
sizeof(BITSET_WORD));
exec_list_validate(&shader->registers);
foreach_list_typed(nir_register, reg, node, &shader->registers) {
prevalidate_reg_decl(reg, true, &state);
}
exec_list_validate(&shader->functions);
foreach_list_typed(nir_function, func, node, &shader->functions) {
validate_function(func, &state);
}
foreach_list_typed(nir_register, reg, node, &shader->registers) {
postvalidate_reg_decl(reg, &state);
}
if (_mesa_hash_table_num_entries(state.errors) > 0)
dump_errors(&state, when);
destroy_validate_state(&state);
}
#endif /* NDEBUG */