Files
third_party_mesa3d/src/intel/compiler/brw_schedule_instructions.cpp
Francisco Jerez 5e2a7e11b4 intel/ir: Remove scheduling-based cycle count estimates.
The cycle count estimation logic part of the scheduler is now
redundant with the shader performance modeling pass, and the estimates
can be consolidated into the brw::performance analysis result object
instead of being part of the CFG, which guarantees that the estimates
cannot be accessed without previously calling the
performance_analysis::require() method, which makes sure that the
right analysis pass is executed at the right time if we don't already
have up-to-date cached results.

Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2020-04-28 23:01:27 -07:00

1832 lines
61 KiB
C++

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "brw_fs.h"
#include "brw_fs_live_variables.h"
#include "brw_vec4.h"
#include "brw_cfg.h"
#include "brw_shader.h"
using namespace brw;
/** @file brw_fs_schedule_instructions.cpp
*
* List scheduling of FS instructions.
*
* The basic model of the list scheduler is to take a basic block,
* compute a DAG of the dependencies (RAW ordering with latency, WAW
* ordering with latency, WAR ordering), and make a list of the DAG heads.
* Heuristically pick a DAG head, then put all the children that are
* now DAG heads into the list of things to schedule.
*
* The heuristic is the important part. We're trying to be cheap,
* since actually computing the optimal scheduling is NP complete.
* What we do is track a "current clock". When we schedule a node, we
* update the earliest-unblocked clock time of its children, and
* increment the clock. Then, when trying to schedule, we just pick
* the earliest-unblocked instruction to schedule.
*
* Note that often there will be many things which could execute
* immediately, and there are a range of heuristic options to choose
* from in picking among those.
*/
static bool debug = false;
class instruction_scheduler;
class schedule_node : public exec_node
{
public:
schedule_node(backend_instruction *inst, instruction_scheduler *sched);
void set_latency_gen4();
void set_latency_gen7(bool is_haswell);
backend_instruction *inst;
schedule_node **children;
int *child_latency;
int child_count;
int parent_count;
int child_array_size;
int unblocked_time;
int latency;
/**
* Which iteration of pushing groups of children onto the candidates list
* this node was a part of.
*/
unsigned cand_generation;
/**
* This is the sum of the instruction's latency plus the maximum delay of
* its children, or just the issue_time if it's a leaf node.
*/
int delay;
/**
* Preferred exit node among the (direct or indirect) successors of this
* node. Among the scheduler nodes blocked by this node, this will be the
* one that may cause earliest program termination, or NULL if none of the
* successors is an exit node.
*/
schedule_node *exit;
};
/**
* Lower bound of the scheduling time after which one of the instructions
* blocked by this node may lead to program termination.
*
* exit_unblocked_time() determines a strict partial ordering relation '«' on
* the set of scheduler nodes as follows:
*
* n « m <-> exit_unblocked_time(n) < exit_unblocked_time(m)
*
* which can be used to heuristically order nodes according to how early they
* can unblock an exit node and lead to program termination.
*/
static inline int
exit_unblocked_time(const schedule_node *n)
{
return n->exit ? n->exit->unblocked_time : INT_MAX;
}
void
schedule_node::set_latency_gen4()
{
int chans = 8;
int math_latency = 22;
switch (inst->opcode) {
case SHADER_OPCODE_RCP:
this->latency = 1 * chans * math_latency;
break;
case SHADER_OPCODE_RSQ:
this->latency = 2 * chans * math_latency;
break;
case SHADER_OPCODE_INT_QUOTIENT:
case SHADER_OPCODE_SQRT:
case SHADER_OPCODE_LOG2:
/* full precision log. partial is 2. */
this->latency = 3 * chans * math_latency;
break;
case SHADER_OPCODE_INT_REMAINDER:
case SHADER_OPCODE_EXP2:
/* full precision. partial is 3, same throughput. */
this->latency = 4 * chans * math_latency;
break;
case SHADER_OPCODE_POW:
this->latency = 8 * chans * math_latency;
break;
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_COS:
/* minimum latency, max is 12 rounds. */
this->latency = 5 * chans * math_latency;
break;
default:
this->latency = 2;
break;
}
}
void
schedule_node::set_latency_gen7(bool is_haswell)
{
switch (inst->opcode) {
case BRW_OPCODE_MAD:
/* 2 cycles
* (since the last two src operands are in different register banks):
* mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
*
* 3 cycles on IVB, 4 on HSW
* (since the last two src operands are in the same register bank):
* mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
*
* 18 cycles on IVB, 16 on HSW
* (since the last two src operands are in different register banks):
* mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
* mov(8) null g4<4,5,1>F { align16 WE_normal 1Q };
*
* 20 cycles on IVB, 18 on HSW
* (since the last two src operands are in the same register bank):
* mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
* mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
*/
/* Our register allocator doesn't know about register banks, so use the
* higher latency.
*/
latency = is_haswell ? 16 : 18;
break;
case BRW_OPCODE_LRP:
/* 2 cycles
* (since the last two src operands are in different register banks):
* lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
*
* 3 cycles on IVB, 4 on HSW
* (since the last two src operands are in the same register bank):
* lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
*
* 16 cycles on IVB, 14 on HSW
* (since the last two src operands are in different register banks):
* lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
* mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
*
* 16 cycles
* (since the last two src operands are in the same register bank):
* lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
* mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
*/
/* Our register allocator doesn't know about register banks, so use the
* higher latency.
*/
latency = 14;
break;
case SHADER_OPCODE_RCP:
case SHADER_OPCODE_RSQ:
case SHADER_OPCODE_SQRT:
case SHADER_OPCODE_LOG2:
case SHADER_OPCODE_EXP2:
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_COS:
/* 2 cycles:
* math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
*
* 18 cycles:
* math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*
* Same for exp2, log2, rsq, sqrt, sin, cos.
*/
latency = is_haswell ? 14 : 16;
break;
case SHADER_OPCODE_POW:
/* 2 cycles:
* math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
*
* 26 cycles:
* math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*/
latency = is_haswell ? 22 : 24;
break;
case SHADER_OPCODE_TEX:
case SHADER_OPCODE_TXD:
case SHADER_OPCODE_TXF:
case SHADER_OPCODE_TXF_LZ:
case SHADER_OPCODE_TXL:
case SHADER_OPCODE_TXL_LZ:
/* 18 cycles:
* mov(8) g115<1>F 0F { align1 WE_normal 1Q };
* mov(8) g114<1>F 0F { align1 WE_normal 1Q };
* send(8) g4<1>UW g114<8,8,1>F
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
*
* 697 +/-49 cycles (min 610, n=26):
* mov(8) g115<1>F 0F { align1 WE_normal 1Q };
* mov(8) g114<1>F 0F { align1 WE_normal 1Q };
* send(8) g4<1>UW g114<8,8,1>F
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*
* So the latency on our first texture load of the batchbuffer takes
* ~700 cycles, since the caches are cold at that point.
*
* 840 +/- 92 cycles (min 720, n=25):
* mov(8) g115<1>F 0F { align1 WE_normal 1Q };
* mov(8) g114<1>F 0F { align1 WE_normal 1Q };
* send(8) g4<1>UW g114<8,8,1>F
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
* send(8) g4<1>UW g114<8,8,1>F
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*
* On the second load, it takes just an extra ~140 cycles, and after
* accounting for the 14 cycles of the MOV's latency, that makes ~130.
*
* 683 +/- 49 cycles (min = 602, n=47):
* mov(8) g115<1>F 0F { align1 WE_normal 1Q };
* mov(8) g114<1>F 0F { align1 WE_normal 1Q };
* send(8) g4<1>UW g114<8,8,1>F
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
* send(8) g50<1>UW g114<8,8,1>F
* sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*
* The unit appears to be pipelined, since this matches up with the
* cache-cold case, despite there being two loads here. If you replace
* the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39).
*
* So, take some number between the cache-hot 140 cycles and the
* cache-cold 700 cycles. No particular tuning was done on this.
*
* I haven't done significant testing of the non-TEX opcodes. TXL at
* least looked about the same as TEX.
*/
latency = 200;
break;
case SHADER_OPCODE_TXS:
/* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
* cycles (n=15):
* mov(8) g114<1>UD 0D { align1 WE_normal 1Q };
* send(8) g6<1>UW g114<8,8,1>F
* sampler (10, 0, 10, 1) mlen 1 rlen 4 { align1 WE_normal 1Q };
* mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1Q };
*
*
* Two loads was 535 +/- 30 cycles (n=19):
* mov(16) g114<1>UD 0D { align1 WE_normal 1H };
* send(16) g6<1>UW g114<8,8,1>F
* sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
* mov(16) g114<1>UD 0D { align1 WE_normal 1H };
* mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1H };
* send(16) g8<1>UW g114<8,8,1>F
* sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
* mov(16) g8<1>F g8<8,8,1>D { align1 WE_normal 1H };
* add(16) g6<1>F g6<8,8,1>F g8<8,8,1>F { align1 WE_normal 1H };
*
* Since the only caches that should matter are just the
* instruction/state cache containing the surface state, assume that we
* always have hot caches.
*/
latency = 100;
break;
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
case VS_OPCODE_PULL_CONSTANT_LOAD:
/* testing using varying-index pull constants:
*
* 16 cycles:
* mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
* send(8) g4<1>F g4<8,8,1>D
* data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
*
* ~480 cycles:
* mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
* send(8) g4<1>F g4<8,8,1>D
* data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*
* ~620 cycles:
* mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
* send(8) g4<1>F g4<8,8,1>D
* data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
* send(8) g4<1>F g4<8,8,1>D
* data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*
* So, if it's cache-hot, it's about 140. If it's cache cold, it's
* about 460. We expect to mostly be cache hot, so pick something more
* in that direction.
*/
latency = 200;
break;
case SHADER_OPCODE_GEN7_SCRATCH_READ:
/* Testing a load from offset 0, that had been previously written:
*
* send(8) g114<1>UW g0<8,8,1>F data (0, 0, 0) mlen 1 rlen 1 { align1 WE_normal 1Q };
* mov(8) null g114<8,8,1>F { align1 WE_normal 1Q };
*
* The cycles spent seemed to be grouped around 40-50 (as low as 38),
* then around 140. Presumably this is cache hit vs miss.
*/
latency = 50;
break;
case VEC4_OPCODE_UNTYPED_ATOMIC:
/* See GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP */
latency = 14000;
break;
case VEC4_OPCODE_UNTYPED_SURFACE_READ:
case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
/* See also GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ */
latency = is_haswell ? 300 : 600;
break;
case SHADER_OPCODE_SEND:
switch (inst->sfid) {
case BRW_SFID_SAMPLER: {
unsigned msg_type = (inst->desc >> 12) & 0x1f;
switch (msg_type) {
case GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO:
case GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO:
/* See also SHADER_OPCODE_TXS */
latency = 100;
break;
default:
/* See also SHADER_OPCODE_TEX */
latency = 200;
break;
}
break;
}
case GEN6_SFID_DATAPORT_RENDER_CACHE:
switch ((inst->desc >> 14) & 0x1f) {
case GEN7_DATAPORT_RC_TYPED_SURFACE_WRITE:
case GEN7_DATAPORT_RC_TYPED_SURFACE_READ:
/* See also SHADER_OPCODE_TYPED_SURFACE_READ */
assert(!is_haswell);
latency = 600;
break;
case GEN7_DATAPORT_RC_TYPED_ATOMIC_OP:
/* See also SHADER_OPCODE_TYPED_ATOMIC */
assert(!is_haswell);
latency = 14000;
break;
case GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE:
/* completely fabricated number */
latency = 600;
break;
default:
unreachable("Unknown render cache message");
}
break;
case GEN7_SFID_DATAPORT_DATA_CACHE:
switch ((inst->desc >> 14) & 0x1f) {
case GEN7_DATAPORT_DC_DWORD_SCATTERED_READ:
case GEN6_DATAPORT_WRITE_MESSAGE_DWORD_SCATTERED_WRITE:
case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_READ:
case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_WRITE:
/* We have no data for this but assume it's roughly the same as
* untyped surface read/write.
*/
latency = 300;
break;
case GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ:
case GEN7_DATAPORT_DC_UNTYPED_SURFACE_WRITE:
/* Test code:
* mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
* mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
* mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
* send(8) g4<1>UD g112<8,8,1>UD
* data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
* .
* . [repeats 8 times]
* .
* mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
* mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
* mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
* send(8) g4<1>UD g112<8,8,1>UD
* data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
*
* Running it 100 times as fragment shader on a 128x128 quad
* gives an average latency of 583 cycles per surface read,
* standard deviation 0.9%.
*/
assert(!is_haswell);
latency = 600;
break;
case GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP:
/* Test code:
* mov(8) g112<1>ud 0x00000000ud { align1 WE_all 1Q };
* mov(1) g112.7<1>ud g1.7<0,1,0>ud { align1 WE_all };
* mov(8) g113<1>ud 0x00000000ud { align1 WE_normal 1Q };
* send(8) g4<1>ud g112<8,8,1>ud
* data (38, 5, 6) mlen 2 rlen 1 { align1 WE_normal 1Q };
*
* Running it 100 times as fragment shader on a 128x128 quad
* gives an average latency of 13867 cycles per atomic op,
* standard deviation 3%. Note that this is a rather
* pessimistic estimate, the actual latency in cases with few
* collisions between threads and favorable pipelining has been
* seen to be reduced by a factor of 100.
*/
assert(!is_haswell);
latency = 14000;
break;
default:
unreachable("Unknown data cache message");
}
break;
case HSW_SFID_DATAPORT_DATA_CACHE_1:
switch ((inst->desc >> 14) & 0x1f) {
case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_READ:
case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_WRITE:
case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_READ:
case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_WRITE:
case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_WRITE:
case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_READ:
case GEN8_DATAPORT_DC_PORT1_A64_SCATTERED_WRITE:
case GEN9_DATAPORT_DC_PORT1_A64_SCATTERED_READ:
/* See also GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ */
latency = 300;
break;
case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP:
case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP_SIMD4X2:
case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP_SIMD4X2:
case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP:
case GEN9_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_FLOAT_OP:
case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_OP:
case GEN9_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_FLOAT_OP:
/* See also GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP */
latency = 14000;
break;
default:
unreachable("Unknown data cache message");
}
break;
default:
unreachable("Unknown SFID");
}
break;
default:
/* 2 cycles:
* mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
*
* 16 cycles:
* mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
* mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
*/
latency = 14;
break;
}
}
class instruction_scheduler {
public:
instruction_scheduler(const backend_shader *s, int grf_count,
unsigned hw_reg_count, int block_count,
instruction_scheduler_mode mode):
bs(s)
{
this->mem_ctx = ralloc_context(NULL);
this->grf_count = grf_count;
this->hw_reg_count = hw_reg_count;
this->instructions.make_empty();
this->post_reg_alloc = (mode == SCHEDULE_POST);
this->mode = mode;
if (!post_reg_alloc) {
this->reg_pressure_in = rzalloc_array(mem_ctx, int, block_count);
this->livein = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
for (int i = 0; i < block_count; i++)
this->livein[i] = rzalloc_array(mem_ctx, BITSET_WORD,
BITSET_WORDS(grf_count));
this->liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
for (int i = 0; i < block_count; i++)
this->liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
BITSET_WORDS(grf_count));
this->hw_liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
for (int i = 0; i < block_count; i++)
this->hw_liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
BITSET_WORDS(hw_reg_count));
this->written = rzalloc_array(mem_ctx, bool, grf_count);
this->reads_remaining = rzalloc_array(mem_ctx, int, grf_count);
this->hw_reads_remaining = rzalloc_array(mem_ctx, int, hw_reg_count);
} else {
this->reg_pressure_in = NULL;
this->livein = NULL;
this->liveout = NULL;
this->hw_liveout = NULL;
this->written = NULL;
this->reads_remaining = NULL;
this->hw_reads_remaining = NULL;
}
}
~instruction_scheduler()
{
ralloc_free(this->mem_ctx);
}
void add_barrier_deps(schedule_node *n);
void add_dep(schedule_node *before, schedule_node *after, int latency);
void add_dep(schedule_node *before, schedule_node *after);
void run(cfg_t *cfg);
void add_insts_from_block(bblock_t *block);
void compute_delays();
void compute_exits();
virtual void calculate_deps() = 0;
virtual schedule_node *choose_instruction_to_schedule() = 0;
/**
* Returns how many cycles it takes the instruction to issue.
*
* Instructions in gen hardware are handled one simd4 vector at a time,
* with 1 cycle per vector dispatched. Thus SIMD8 pixel shaders take 2
* cycles to dispatch and SIMD16 (compressed) instructions take 4.
*/
virtual int issue_time(backend_instruction *inst) = 0;
virtual void count_reads_remaining(backend_instruction *inst) = 0;
virtual void setup_liveness(cfg_t *cfg) = 0;
virtual void update_register_pressure(backend_instruction *inst) = 0;
virtual int get_register_pressure_benefit(backend_instruction *inst) = 0;
void schedule_instructions(bblock_t *block);
void *mem_ctx;
bool post_reg_alloc;
int grf_count;
unsigned hw_reg_count;
int reg_pressure;
int block_idx;
exec_list instructions;
const backend_shader *bs;
instruction_scheduler_mode mode;
/*
* The register pressure at the beginning of each basic block.
*/
int *reg_pressure_in;
/*
* The virtual GRF's whose range overlaps the beginning of each basic block.
*/
BITSET_WORD **livein;
/*
* The virtual GRF's whose range overlaps the end of each basic block.
*/
BITSET_WORD **liveout;
/*
* The hardware GRF's whose range overlaps the end of each basic block.
*/
BITSET_WORD **hw_liveout;
/*
* Whether we've scheduled a write for this virtual GRF yet.
*/
bool *written;
/*
* How many reads we haven't scheduled for this virtual GRF yet.
*/
int *reads_remaining;
/*
* How many reads we haven't scheduled for this hardware GRF yet.
*/
int *hw_reads_remaining;
};
class fs_instruction_scheduler : public instruction_scheduler
{
public:
fs_instruction_scheduler(const fs_visitor *v, int grf_count, int hw_reg_count,
int block_count,
instruction_scheduler_mode mode);
void calculate_deps();
bool is_compressed(const fs_inst *inst);
schedule_node *choose_instruction_to_schedule();
int issue_time(backend_instruction *inst);
const fs_visitor *v;
void count_reads_remaining(backend_instruction *inst);
void setup_liveness(cfg_t *cfg);
void update_register_pressure(backend_instruction *inst);
int get_register_pressure_benefit(backend_instruction *inst);
};
fs_instruction_scheduler::fs_instruction_scheduler(const fs_visitor *v,
int grf_count, int hw_reg_count,
int block_count,
instruction_scheduler_mode mode)
: instruction_scheduler(v, grf_count, hw_reg_count, block_count, mode),
v(v)
{
}
static bool
is_src_duplicate(fs_inst *inst, int src)
{
for (int i = 0; i < src; i++)
if (inst->src[i].equals(inst->src[src]))
return true;
return false;
}
void
fs_instruction_scheduler::count_reads_remaining(backend_instruction *be)
{
fs_inst *inst = (fs_inst *)be;
if (!reads_remaining)
return;
for (int i = 0; i < inst->sources; i++) {
if (is_src_duplicate(inst, i))
continue;
if (inst->src[i].file == VGRF) {
reads_remaining[inst->src[i].nr]++;
} else if (inst->src[i].file == FIXED_GRF) {
if (inst->src[i].nr >= hw_reg_count)
continue;
for (unsigned j = 0; j < regs_read(inst, i); j++)
hw_reads_remaining[inst->src[i].nr + j]++;
}
}
}
void
fs_instruction_scheduler::setup_liveness(cfg_t *cfg)
{
const fs_live_variables &live = v->live_analysis.require();
/* First, compute liveness on a per-GRF level using the in/out sets from
* liveness calculation.
*/
for (int block = 0; block < cfg->num_blocks; block++) {
for (int i = 0; i < live.num_vars; i++) {
if (BITSET_TEST(live.block_data[block].livein, i)) {
int vgrf = live.vgrf_from_var[i];
if (!BITSET_TEST(livein[block], vgrf)) {
reg_pressure_in[block] += v->alloc.sizes[vgrf];
BITSET_SET(livein[block], vgrf);
}
}
if (BITSET_TEST(live.block_data[block].liveout, i))
BITSET_SET(liveout[block], live.vgrf_from_var[i]);
}
}
/* Now, extend the live in/live out sets for when a range crosses a block
* boundary, which matches what our register allocator/interference code
* does to account for force_writemask_all and incompatible exec_mask's.
*/
for (int block = 0; block < cfg->num_blocks - 1; block++) {
for (int i = 0; i < grf_count; i++) {
if (live.vgrf_start[i] <= cfg->blocks[block]->end_ip &&
live.vgrf_end[i] >= cfg->blocks[block + 1]->start_ip) {
if (!BITSET_TEST(livein[block + 1], i)) {
reg_pressure_in[block + 1] += v->alloc.sizes[i];
BITSET_SET(livein[block + 1], i);
}
BITSET_SET(liveout[block], i);
}
}
}
int payload_last_use_ip[hw_reg_count];
v->calculate_payload_ranges(hw_reg_count, payload_last_use_ip);
for (unsigned i = 0; i < hw_reg_count; i++) {
if (payload_last_use_ip[i] == -1)
continue;
for (int block = 0; block < cfg->num_blocks; block++) {
if (cfg->blocks[block]->start_ip <= payload_last_use_ip[i])
reg_pressure_in[block]++;
if (cfg->blocks[block]->end_ip <= payload_last_use_ip[i])
BITSET_SET(hw_liveout[block], i);
}
}
}
void
fs_instruction_scheduler::update_register_pressure(backend_instruction *be)
{
fs_inst *inst = (fs_inst *)be;
if (!reads_remaining)
return;
if (inst->dst.file == VGRF) {
written[inst->dst.nr] = true;
}
for (int i = 0; i < inst->sources; i++) {
if (is_src_duplicate(inst, i))
continue;
if (inst->src[i].file == VGRF) {
reads_remaining[inst->src[i].nr]--;
} else if (inst->src[i].file == FIXED_GRF &&
inst->src[i].nr < hw_reg_count) {
for (unsigned off = 0; off < regs_read(inst, i); off++)
hw_reads_remaining[inst->src[i].nr + off]--;
}
}
}
int
fs_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
{
fs_inst *inst = (fs_inst *)be;
int benefit = 0;
if (inst->dst.file == VGRF) {
if (!BITSET_TEST(livein[block_idx], inst->dst.nr) &&
!written[inst->dst.nr])
benefit -= v->alloc.sizes[inst->dst.nr];
}
for (int i = 0; i < inst->sources; i++) {
if (is_src_duplicate(inst, i))
continue;
if (inst->src[i].file == VGRF &&
!BITSET_TEST(liveout[block_idx], inst->src[i].nr) &&
reads_remaining[inst->src[i].nr] == 1)
benefit += v->alloc.sizes[inst->src[i].nr];
if (inst->src[i].file == FIXED_GRF &&
inst->src[i].nr < hw_reg_count) {
for (unsigned off = 0; off < regs_read(inst, i); off++) {
int reg = inst->src[i].nr + off;
if (!BITSET_TEST(hw_liveout[block_idx], reg) &&
hw_reads_remaining[reg] == 1) {
benefit++;
}
}
}
}
return benefit;
}
class vec4_instruction_scheduler : public instruction_scheduler
{
public:
vec4_instruction_scheduler(const vec4_visitor *v, int grf_count);
void calculate_deps();
schedule_node *choose_instruction_to_schedule();
int issue_time(backend_instruction *inst);
const vec4_visitor *v;
void count_reads_remaining(backend_instruction *inst);
void setup_liveness(cfg_t *cfg);
void update_register_pressure(backend_instruction *inst);
int get_register_pressure_benefit(backend_instruction *inst);
};
vec4_instruction_scheduler::vec4_instruction_scheduler(const vec4_visitor *v,
int grf_count)
: instruction_scheduler(v, grf_count, 0, 0, SCHEDULE_POST),
v(v)
{
}
void
vec4_instruction_scheduler::count_reads_remaining(backend_instruction *)
{
}
void
vec4_instruction_scheduler::setup_liveness(cfg_t *)
{
}
void
vec4_instruction_scheduler::update_register_pressure(backend_instruction *)
{
}
int
vec4_instruction_scheduler::get_register_pressure_benefit(backend_instruction *)
{
return 0;
}
schedule_node::schedule_node(backend_instruction *inst,
instruction_scheduler *sched)
{
const struct gen_device_info *devinfo = sched->bs->devinfo;
this->inst = inst;
this->child_array_size = 0;
this->children = NULL;
this->child_latency = NULL;
this->child_count = 0;
this->parent_count = 0;
this->unblocked_time = 0;
this->cand_generation = 0;
this->delay = 0;
this->exit = NULL;
/* We can't measure Gen6 timings directly but expect them to be much
* closer to Gen7 than Gen4.
*/
if (!sched->post_reg_alloc)
this->latency = 1;
else if (devinfo->gen >= 6)
set_latency_gen7(devinfo->is_haswell);
else
set_latency_gen4();
}
void
instruction_scheduler::add_insts_from_block(bblock_t *block)
{
foreach_inst_in_block(backend_instruction, inst, block) {
schedule_node *n = new(mem_ctx) schedule_node(inst, this);
instructions.push_tail(n);
}
}
/** Computation of the delay member of each node. */
void
instruction_scheduler::compute_delays()
{
foreach_in_list_reverse(schedule_node, n, &instructions) {
if (!n->child_count) {
n->delay = issue_time(n->inst);
} else {
for (int i = 0; i < n->child_count; i++) {
assert(n->children[i]->delay);
n->delay = MAX2(n->delay, n->latency + n->children[i]->delay);
}
}
}
}
void
instruction_scheduler::compute_exits()
{
/* Calculate a lower bound of the scheduling time of each node in the
* graph. This is analogous to the node's critical path but calculated
* from the top instead of from the bottom of the block.
*/
foreach_in_list(schedule_node, n, &instructions) {
for (int i = 0; i < n->child_count; i++) {
n->children[i]->unblocked_time =
MAX2(n->children[i]->unblocked_time,
n->unblocked_time + issue_time(n->inst) + n->child_latency[i]);
}
}
/* Calculate the exit of each node by induction based on the exit nodes of
* its children. The preferred exit of a node is the one among the exit
* nodes of its children which can be unblocked first according to the
* optimistic unblocked time estimate calculated above.
*/
foreach_in_list_reverse(schedule_node, n, &instructions) {
n->exit = (n->inst->opcode == FS_OPCODE_DISCARD_JUMP ? n : NULL);
for (int i = 0; i < n->child_count; i++) {
if (exit_unblocked_time(n->children[i]) < exit_unblocked_time(n))
n->exit = n->children[i]->exit;
}
}
}
/**
* Add a dependency between two instruction nodes.
*
* The @after node will be scheduled after @before. We will try to
* schedule it @latency cycles after @before, but no guarantees there.
*/
void
instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
int latency)
{
if (!before || !after)
return;
assert(before != after);
for (int i = 0; i < before->child_count; i++) {
if (before->children[i] == after) {
before->child_latency[i] = MAX2(before->child_latency[i], latency);
return;
}
}
if (before->child_array_size <= before->child_count) {
if (before->child_array_size < 16)
before->child_array_size = 16;
else
before->child_array_size *= 2;
before->children = reralloc(mem_ctx, before->children,
schedule_node *,
before->child_array_size);
before->child_latency = reralloc(mem_ctx, before->child_latency,
int, before->child_array_size);
}
before->children[before->child_count] = after;
before->child_latency[before->child_count] = latency;
before->child_count++;
after->parent_count++;
}
void
instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
{
if (!before)
return;
add_dep(before, after, before->latency);
}
static bool
is_scheduling_barrier(const backend_instruction *inst)
{
return inst->opcode == FS_OPCODE_PLACEHOLDER_HALT ||
inst->is_control_flow() ||
inst->has_side_effects();
}
/**
* Sometimes we really want this node to execute after everything that
* was before it and before everything that followed it. This adds
* the deps to do so.
*/
void
instruction_scheduler::add_barrier_deps(schedule_node *n)
{
schedule_node *prev = (schedule_node *)n->prev;
schedule_node *next = (schedule_node *)n->next;
if (prev) {
while (!prev->is_head_sentinel()) {
add_dep(prev, n, 0);
if (is_scheduling_barrier(prev->inst))
break;
prev = (schedule_node *)prev->prev;
}
}
if (next) {
while (!next->is_tail_sentinel()) {
add_dep(n, next, 0);
if (is_scheduling_barrier(next->inst))
break;
next = (schedule_node *)next->next;
}
}
}
/* instruction scheduling needs to be aware of when an MRF write
* actually writes 2 MRFs.
*/
bool
fs_instruction_scheduler::is_compressed(const fs_inst *inst)
{
return inst->exec_size == 16;
}
void
fs_instruction_scheduler::calculate_deps()
{
/* Pre-register-allocation, this tracks the last write per VGRF offset.
* After register allocation, reg_offsets are gone and we track individual
* GRF registers.
*/
schedule_node **last_grf_write;
schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
schedule_node *last_conditional_mod[8] = {};
schedule_node *last_accumulator_write = NULL;
/* Fixed HW registers are assumed to be separate from the virtual
* GRFs, so they can be tracked separately. We don't really write
* to fixed GRFs much, so don't bother tracking them on a more
* granular level.
*/
schedule_node *last_fixed_grf_write = NULL;
last_grf_write = (schedule_node **)calloc(sizeof(schedule_node *), grf_count * 16);
memset(last_mrf_write, 0, sizeof(last_mrf_write));
/* top-to-bottom dependencies: RAW and WAW. */
foreach_in_list(schedule_node, n, &instructions) {
fs_inst *inst = (fs_inst *)n->inst;
if (is_scheduling_barrier(inst))
add_barrier_deps(n);
/* read-after-write deps. */
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF) {
if (post_reg_alloc) {
for (unsigned r = 0; r < regs_read(inst, i); r++)
add_dep(last_grf_write[inst->src[i].nr + r], n);
} else {
for (unsigned r = 0; r < regs_read(inst, i); r++) {
add_dep(last_grf_write[inst->src[i].nr * 16 +
inst->src[i].offset / REG_SIZE + r], n);
}
}
} else if (inst->src[i].file == FIXED_GRF) {
if (post_reg_alloc) {
for (unsigned r = 0; r < regs_read(inst, i); r++)
add_dep(last_grf_write[inst->src[i].nr + r], n);
} else {
add_dep(last_fixed_grf_write, n);
}
} else if (inst->src[i].is_accumulator()) {
add_dep(last_accumulator_write, n);
} else if (inst->src[i].file == ARF) {
add_barrier_deps(n);
}
}
if (inst->base_mrf != -1) {
for (int i = 0; i < inst->mlen; i++) {
/* It looks like the MRF regs are released in the send
* instruction once it's sent, not when the result comes
* back.
*/
add_dep(last_mrf_write[inst->base_mrf + i], n);
}
}
if (const unsigned mask = inst->flags_read(v->devinfo)) {
assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
if (mask & (1 << i))
add_dep(last_conditional_mod[i], n);
}
}
if (inst->reads_accumulator_implicitly()) {
add_dep(last_accumulator_write, n);
}
/* write-after-write deps. */
if (inst->dst.file == VGRF) {
if (post_reg_alloc) {
for (unsigned r = 0; r < regs_written(inst); r++) {
add_dep(last_grf_write[inst->dst.nr + r], n);
last_grf_write[inst->dst.nr + r] = n;
}
} else {
for (unsigned r = 0; r < regs_written(inst); r++) {
add_dep(last_grf_write[inst->dst.nr * 16 +
inst->dst.offset / REG_SIZE + r], n);
last_grf_write[inst->dst.nr * 16 +
inst->dst.offset / REG_SIZE + r] = n;
}
}
} else if (inst->dst.file == MRF) {
int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
add_dep(last_mrf_write[reg], n);
last_mrf_write[reg] = n;
if (is_compressed(inst)) {
if (inst->dst.nr & BRW_MRF_COMPR4)
reg += 4;
else
reg++;
add_dep(last_mrf_write[reg], n);
last_mrf_write[reg] = n;
}
} else if (inst->dst.file == FIXED_GRF) {
if (post_reg_alloc) {
for (unsigned r = 0; r < regs_written(inst); r++)
last_grf_write[inst->dst.nr + r] = n;
} else {
last_fixed_grf_write = n;
}
} else if (inst->dst.is_accumulator()) {
add_dep(last_accumulator_write, n);
last_accumulator_write = n;
} else if (inst->dst.file == ARF && !inst->dst.is_null()) {
add_barrier_deps(n);
}
if (inst->mlen > 0 && inst->base_mrf != -1) {
for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
add_dep(last_mrf_write[inst->base_mrf + i], n);
last_mrf_write[inst->base_mrf + i] = n;
}
}
if (const unsigned mask = inst->flags_written()) {
assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
if (mask & (1 << i)) {
add_dep(last_conditional_mod[i], n, 0);
last_conditional_mod[i] = n;
}
}
}
if (inst->writes_accumulator_implicitly(v->devinfo) &&
!inst->dst.is_accumulator()) {
add_dep(last_accumulator_write, n);
last_accumulator_write = n;
}
}
/* bottom-to-top dependencies: WAR */
memset(last_grf_write, 0, sizeof(schedule_node *) * grf_count * 16);
memset(last_mrf_write, 0, sizeof(last_mrf_write));
memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
last_accumulator_write = NULL;
last_fixed_grf_write = NULL;
foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
fs_inst *inst = (fs_inst *)n->inst;
/* write-after-read deps. */
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF) {
if (post_reg_alloc) {
for (unsigned r = 0; r < regs_read(inst, i); r++)
add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
} else {
for (unsigned r = 0; r < regs_read(inst, i); r++) {
add_dep(n, last_grf_write[inst->src[i].nr * 16 +
inst->src[i].offset / REG_SIZE + r], 0);
}
}
} else if (inst->src[i].file == FIXED_GRF) {
if (post_reg_alloc) {
for (unsigned r = 0; r < regs_read(inst, i); r++)
add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
} else {
add_dep(n, last_fixed_grf_write, 0);
}
} else if (inst->src[i].is_accumulator()) {
add_dep(n, last_accumulator_write, 0);
} else if (inst->src[i].file == ARF) {
add_barrier_deps(n);
}
}
if (inst->base_mrf != -1) {
for (int i = 0; i < inst->mlen; i++) {
/* It looks like the MRF regs are released in the send
* instruction once it's sent, not when the result comes
* back.
*/
add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
}
}
if (const unsigned mask = inst->flags_read(v->devinfo)) {
assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
if (mask & (1 << i))
add_dep(n, last_conditional_mod[i]);
}
}
if (inst->reads_accumulator_implicitly()) {
add_dep(n, last_accumulator_write);
}
/* Update the things this instruction wrote, so earlier reads
* can mark this as WAR dependency.
*/
if (inst->dst.file == VGRF) {
if (post_reg_alloc) {
for (unsigned r = 0; r < regs_written(inst); r++)
last_grf_write[inst->dst.nr + r] = n;
} else {
for (unsigned r = 0; r < regs_written(inst); r++) {
last_grf_write[inst->dst.nr * 16 +
inst->dst.offset / REG_SIZE + r] = n;
}
}
} else if (inst->dst.file == MRF) {
int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
last_mrf_write[reg] = n;
if (is_compressed(inst)) {
if (inst->dst.nr & BRW_MRF_COMPR4)
reg += 4;
else
reg++;
last_mrf_write[reg] = n;
}
} else if (inst->dst.file == FIXED_GRF) {
if (post_reg_alloc) {
for (unsigned r = 0; r < regs_written(inst); r++)
last_grf_write[inst->dst.nr + r] = n;
} else {
last_fixed_grf_write = n;
}
} else if (inst->dst.is_accumulator()) {
last_accumulator_write = n;
} else if (inst->dst.file == ARF && !inst->dst.is_null()) {
add_barrier_deps(n);
}
if (inst->mlen > 0 && inst->base_mrf != -1) {
for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
last_mrf_write[inst->base_mrf + i] = n;
}
}
if (const unsigned mask = inst->flags_written()) {
assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
if (mask & (1 << i))
last_conditional_mod[i] = n;
}
}
if (inst->writes_accumulator_implicitly(v->devinfo)) {
last_accumulator_write = n;
}
}
free(last_grf_write);
}
void
vec4_instruction_scheduler::calculate_deps()
{
schedule_node *last_grf_write[grf_count];
schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
schedule_node *last_conditional_mod = NULL;
schedule_node *last_accumulator_write = NULL;
/* Fixed HW registers are assumed to be separate from the virtual
* GRFs, so they can be tracked separately. We don't really write
* to fixed GRFs much, so don't bother tracking them on a more
* granular level.
*/
schedule_node *last_fixed_grf_write = NULL;
memset(last_grf_write, 0, sizeof(last_grf_write));
memset(last_mrf_write, 0, sizeof(last_mrf_write));
/* top-to-bottom dependencies: RAW and WAW. */
foreach_in_list(schedule_node, n, &instructions) {
vec4_instruction *inst = (vec4_instruction *)n->inst;
if (is_scheduling_barrier(inst))
add_barrier_deps(n);
/* read-after-write deps. */
for (int i = 0; i < 3; i++) {
if (inst->src[i].file == VGRF) {
for (unsigned j = 0; j < regs_read(inst, i); ++j)
add_dep(last_grf_write[inst->src[i].nr + j], n);
} else if (inst->src[i].file == FIXED_GRF) {
add_dep(last_fixed_grf_write, n);
} else if (inst->src[i].is_accumulator()) {
assert(last_accumulator_write);
add_dep(last_accumulator_write, n);
} else if (inst->src[i].file == ARF) {
add_barrier_deps(n);
}
}
if (inst->reads_g0_implicitly())
add_dep(last_fixed_grf_write, n);
if (!inst->is_send_from_grf()) {
for (int i = 0; i < inst->mlen; i++) {
/* It looks like the MRF regs are released in the send
* instruction once it's sent, not when the result comes
* back.
*/
add_dep(last_mrf_write[inst->base_mrf + i], n);
}
}
if (inst->reads_flag()) {
assert(last_conditional_mod);
add_dep(last_conditional_mod, n);
}
if (inst->reads_accumulator_implicitly()) {
assert(last_accumulator_write);
add_dep(last_accumulator_write, n);
}
/* write-after-write deps. */
if (inst->dst.file == VGRF) {
for (unsigned j = 0; j < regs_written(inst); ++j) {
add_dep(last_grf_write[inst->dst.nr + j], n);
last_grf_write[inst->dst.nr + j] = n;
}
} else if (inst->dst.file == MRF) {
add_dep(last_mrf_write[inst->dst.nr], n);
last_mrf_write[inst->dst.nr] = n;
} else if (inst->dst.file == FIXED_GRF) {
last_fixed_grf_write = n;
} else if (inst->dst.is_accumulator()) {
add_dep(last_accumulator_write, n);
last_accumulator_write = n;
} else if (inst->dst.file == ARF && !inst->dst.is_null()) {
add_barrier_deps(n);
}
if (inst->mlen > 0 && !inst->is_send_from_grf()) {
for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
add_dep(last_mrf_write[inst->base_mrf + i], n);
last_mrf_write[inst->base_mrf + i] = n;
}
}
if (inst->writes_flag()) {
add_dep(last_conditional_mod, n, 0);
last_conditional_mod = n;
}
if (inst->writes_accumulator_implicitly(v->devinfo) &&
!inst->dst.is_accumulator()) {
add_dep(last_accumulator_write, n);
last_accumulator_write = n;
}
}
/* bottom-to-top dependencies: WAR */
memset(last_grf_write, 0, sizeof(last_grf_write));
memset(last_mrf_write, 0, sizeof(last_mrf_write));
last_conditional_mod = NULL;
last_accumulator_write = NULL;
last_fixed_grf_write = NULL;
foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
vec4_instruction *inst = (vec4_instruction *)n->inst;
/* write-after-read deps. */
for (int i = 0; i < 3; i++) {
if (inst->src[i].file == VGRF) {
for (unsigned j = 0; j < regs_read(inst, i); ++j)
add_dep(n, last_grf_write[inst->src[i].nr + j]);
} else if (inst->src[i].file == FIXED_GRF) {
add_dep(n, last_fixed_grf_write);
} else if (inst->src[i].is_accumulator()) {
add_dep(n, last_accumulator_write);
} else if (inst->src[i].file == ARF) {
add_barrier_deps(n);
}
}
if (!inst->is_send_from_grf()) {
for (int i = 0; i < inst->mlen; i++) {
/* It looks like the MRF regs are released in the send
* instruction once it's sent, not when the result comes
* back.
*/
add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
}
}
if (inst->reads_flag()) {
add_dep(n, last_conditional_mod);
}
if (inst->reads_accumulator_implicitly()) {
add_dep(n, last_accumulator_write);
}
/* Update the things this instruction wrote, so earlier reads
* can mark this as WAR dependency.
*/
if (inst->dst.file == VGRF) {
for (unsigned j = 0; j < regs_written(inst); ++j)
last_grf_write[inst->dst.nr + j] = n;
} else if (inst->dst.file == MRF) {
last_mrf_write[inst->dst.nr] = n;
} else if (inst->dst.file == FIXED_GRF) {
last_fixed_grf_write = n;
} else if (inst->dst.is_accumulator()) {
last_accumulator_write = n;
} else if (inst->dst.file == ARF && !inst->dst.is_null()) {
add_barrier_deps(n);
}
if (inst->mlen > 0 && !inst->is_send_from_grf()) {
for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
last_mrf_write[inst->base_mrf + i] = n;
}
}
if (inst->writes_flag()) {
last_conditional_mod = n;
}
if (inst->writes_accumulator_implicitly(v->devinfo)) {
last_accumulator_write = n;
}
}
}
schedule_node *
fs_instruction_scheduler::choose_instruction_to_schedule()
{
schedule_node *chosen = NULL;
if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) {
int chosen_time = 0;
/* Of the instructions ready to execute or the closest to being ready,
* choose the one most likely to unblock an early program exit, or
* otherwise the oldest one.
*/
foreach_in_list(schedule_node, n, &instructions) {
if (!chosen ||
exit_unblocked_time(n) < exit_unblocked_time(chosen) ||
(exit_unblocked_time(n) == exit_unblocked_time(chosen) &&
n->unblocked_time < chosen_time)) {
chosen = n;
chosen_time = n->unblocked_time;
}
}
} else {
/* Before register allocation, we don't care about the latencies of
* instructions. All we care about is reducing live intervals of
* variables so that we can avoid register spilling, or get SIMD16
* shaders which naturally do a better job of hiding instruction
* latency.
*/
foreach_in_list(schedule_node, n, &instructions) {
fs_inst *inst = (fs_inst *)n->inst;
if (!chosen) {
chosen = n;
continue;
}
/* Most important: If we can definitely reduce register pressure, do
* so immediately.
*/
int register_pressure_benefit = get_register_pressure_benefit(n->inst);
int chosen_register_pressure_benefit =
get_register_pressure_benefit(chosen->inst);
if (register_pressure_benefit > 0 &&
register_pressure_benefit > chosen_register_pressure_benefit) {
chosen = n;
continue;
} else if (chosen_register_pressure_benefit > 0 &&
(register_pressure_benefit <
chosen_register_pressure_benefit)) {
continue;
}
if (mode == SCHEDULE_PRE_LIFO) {
/* Prefer instructions that recently became available for
* scheduling. These are the things that are most likely to
* (eventually) make a variable dead and reduce register pressure.
* Typical register pressure estimates don't work for us because
* most of our pressure comes from texturing, where no single
* instruction to schedule will make a vec4 value dead.
*/
if (n->cand_generation > chosen->cand_generation) {
chosen = n;
continue;
} else if (n->cand_generation < chosen->cand_generation) {
continue;
}
/* On MRF-using chips, prefer non-SEND instructions. If we don't
* do this, then because we prefer instructions that just became
* candidates, we'll end up in a pattern of scheduling a SEND,
* then the MRFs for the next SEND, then the next SEND, then the
* MRFs, etc., without ever consuming the results of a send.
*/
if (v->devinfo->gen < 7) {
fs_inst *chosen_inst = (fs_inst *)chosen->inst;
/* We use size_written > 4 * exec_size as our test for the kind
* of send instruction to avoid -- only sends generate many
* regs, and a single-result send is probably actually reducing
* register pressure.
*/
if (inst->size_written <= 4 * inst->exec_size &&
chosen_inst->size_written > 4 * chosen_inst->exec_size) {
chosen = n;
continue;
} else if (inst->size_written > chosen_inst->size_written) {
continue;
}
}
}
/* For instructions pushed on the cands list at the same time, prefer
* the one with the highest delay to the end of the program. This is
* most likely to have its values able to be consumed first (such as
* for a large tree of lowered ubo loads, which appear reversed in
* the instruction stream with respect to when they can be consumed).
*/
if (n->delay > chosen->delay) {
chosen = n;
continue;
} else if (n->delay < chosen->delay) {
continue;
}
/* Prefer the node most likely to unblock an early program exit.
*/
if (exit_unblocked_time(n) < exit_unblocked_time(chosen)) {
chosen = n;
continue;
} else if (exit_unblocked_time(n) > exit_unblocked_time(chosen)) {
continue;
}
/* If all other metrics are equal, we prefer the first instruction in
* the list (program execution).
*/
}
}
return chosen;
}
schedule_node *
vec4_instruction_scheduler::choose_instruction_to_schedule()
{
schedule_node *chosen = NULL;
int chosen_time = 0;
/* Of the instructions ready to execute or the closest to being ready,
* choose the oldest one.
*/
foreach_in_list(schedule_node, n, &instructions) {
if (!chosen || n->unblocked_time < chosen_time) {
chosen = n;
chosen_time = n->unblocked_time;
}
}
return chosen;
}
int
fs_instruction_scheduler::issue_time(backend_instruction *inst0)
{
const fs_inst *inst = static_cast<fs_inst *>(inst0);
const unsigned overhead = v->grf_used && has_bank_conflict(v->devinfo, inst) ?
DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE) : 0;
if (is_compressed(inst))
return 4 + overhead;
else
return 2 + overhead;
}
int
vec4_instruction_scheduler::issue_time(backend_instruction *)
{
/* We always execute as two vec4s in parallel. */
return 2;
}
void
instruction_scheduler::schedule_instructions(bblock_t *block)
{
const struct gen_device_info *devinfo = bs->devinfo;
int time = 0;
int instructions_to_schedule = block->end_ip - block->start_ip + 1;
if (!post_reg_alloc)
reg_pressure = reg_pressure_in[block->num];
block_idx = block->num;
/* Remove non-DAG heads from the list. */
foreach_in_list_safe(schedule_node, n, &instructions) {
if (n->parent_count != 0)
n->remove();
}
unsigned cand_generation = 1;
while (!instructions.is_empty()) {
schedule_node *chosen = choose_instruction_to_schedule();
/* Schedule this instruction. */
assert(chosen);
chosen->remove();
chosen->inst->exec_node::remove();
block->instructions.push_tail(chosen->inst);
instructions_to_schedule--;
if (!post_reg_alloc) {
reg_pressure -= get_register_pressure_benefit(chosen->inst);
update_register_pressure(chosen->inst);
}
/* If we expected a delay for scheduling, then bump the clock to reflect
* that. In reality, the hardware will switch to another hyperthread
* and may not return to dispatching our thread for a while even after
* we're unblocked. After this, we have the time when the chosen
* instruction will start executing.
*/
time = MAX2(time, chosen->unblocked_time);
/* Update the clock for how soon an instruction could start after the
* chosen one.
*/
time += issue_time(chosen->inst);
if (debug) {
fprintf(stderr, "clock %4d, scheduled: ", time);
bs->dump_instruction(chosen->inst);
if (!post_reg_alloc)
fprintf(stderr, "(register pressure %d)\n", reg_pressure);
}
/* Now that we've scheduled a new instruction, some of its
* children can be promoted to the list of instructions ready to
* be scheduled. Update the children's unblocked time for this
* DAG edge as we do so.
*/
for (int i = chosen->child_count - 1; i >= 0; i--) {
schedule_node *child = chosen->children[i];
child->unblocked_time = MAX2(child->unblocked_time,
time + chosen->child_latency[i]);
if (debug) {
fprintf(stderr, "\tchild %d, %d parents: ", i, child->parent_count);
bs->dump_instruction(child->inst);
}
child->cand_generation = cand_generation;
child->parent_count--;
if (child->parent_count == 0) {
if (debug) {
fprintf(stderr, "\t\tnow available\n");
}
instructions.push_head(child);
}
}
cand_generation++;
/* Shared resource: the mathbox. There's one mathbox per EU on Gen6+
* but it's more limited pre-gen6, so if we send something off to it then
* the next math instruction isn't going to make progress until the first
* is done.
*/
if (devinfo->gen < 6 && chosen->inst->is_math()) {
foreach_in_list(schedule_node, n, &instructions) {
if (n->inst->is_math())
n->unblocked_time = MAX2(n->unblocked_time,
time + chosen->latency);
}
}
}
assert(instructions_to_schedule == 0);
}
void
instruction_scheduler::run(cfg_t *cfg)
{
if (debug && !post_reg_alloc) {
fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
post_reg_alloc);
bs->dump_instructions();
}
if (!post_reg_alloc)
setup_liveness(cfg);
foreach_block(block, cfg) {
if (reads_remaining) {
memset(reads_remaining, 0,
grf_count * sizeof(*reads_remaining));
memset(hw_reads_remaining, 0,
hw_reg_count * sizeof(*hw_reads_remaining));
memset(written, 0, grf_count * sizeof(*written));
foreach_inst_in_block(fs_inst, inst, block)
count_reads_remaining(inst);
}
add_insts_from_block(block);
calculate_deps();
compute_delays();
compute_exits();
schedule_instructions(block);
}
if (debug && !post_reg_alloc) {
fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
post_reg_alloc);
bs->dump_instructions();
}
}
void
fs_visitor::schedule_instructions(instruction_scheduler_mode mode)
{
int grf_count;
if (mode == SCHEDULE_POST)
grf_count = grf_used;
else
grf_count = alloc.count;
fs_instruction_scheduler sched(this, grf_count, first_non_payload_grf,
cfg->num_blocks, mode);
sched.run(cfg);
invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
}
void
vec4_visitor::opt_schedule_instructions()
{
vec4_instruction_scheduler sched(this, prog_data->total_grf);
sched.run(cfg);
invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
}