Files
third_party_mesa3d/src/gallium/drivers/radeonsi/si_compute_blit.c
Marek Olšák 66a82ec6f0 gallium: add writable_bitmask parameter into set_shader_buffers
to indicate write usage per buffer.
This is just a hint (it will be used by radeonsi).

Reviewed-by: Timothy Arceri <tarceri@itsqueeze.com>
2019-04-04 19:28:52 -04:00

597 lines
20 KiB
C

/*
* Copyright 2018 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "si_pipe.h"
#include "util/u_format.h"
#include "util/format_srgb.h"
/* Note: Compute shaders always use SI_COMPUTE_DST_CACHE_POLICY for dst
* and L2_STREAM for src.
*/
static enum si_cache_policy get_cache_policy(struct si_context *sctx,
enum si_coherency coher,
uint64_t size)
{
if ((sctx->chip_class >= GFX9 && (coher == SI_COHERENCY_CB_META ||
coher == SI_COHERENCY_CP)) ||
(sctx->chip_class >= CIK && coher == SI_COHERENCY_SHADER))
return size <= 256 * 1024 ? L2_LRU : L2_STREAM;
return L2_BYPASS;
}
unsigned si_get_flush_flags(struct si_context *sctx, enum si_coherency coher,
enum si_cache_policy cache_policy)
{
switch (coher) {
default:
case SI_COHERENCY_NONE:
case SI_COHERENCY_CP:
return 0;
case SI_COHERENCY_SHADER:
return SI_CONTEXT_INV_SMEM_L1 |
SI_CONTEXT_INV_VMEM_L1 |
(cache_policy == L2_BYPASS ? SI_CONTEXT_INV_GLOBAL_L2 : 0);
case SI_COHERENCY_CB_META:
return SI_CONTEXT_FLUSH_AND_INV_CB;
}
}
static void si_compute_internal_begin(struct si_context *sctx)
{
sctx->flags &= ~SI_CONTEXT_START_PIPELINE_STATS;
sctx->flags |= SI_CONTEXT_STOP_PIPELINE_STATS;
sctx->render_cond_force_off = true;
}
static void si_compute_internal_end(struct si_context *sctx)
{
sctx->flags &= ~SI_CONTEXT_STOP_PIPELINE_STATS;
sctx->flags |= SI_CONTEXT_START_PIPELINE_STATS;
sctx->render_cond_force_off = false;
}
static void si_compute_do_clear_or_copy(struct si_context *sctx,
struct pipe_resource *dst,
unsigned dst_offset,
struct pipe_resource *src,
unsigned src_offset,
unsigned size,
const uint32_t *clear_value,
unsigned clear_value_size,
enum si_coherency coher)
{
struct pipe_context *ctx = &sctx->b;
assert(src_offset % 4 == 0);
assert(dst_offset % 4 == 0);
assert(size % 4 == 0);
assert(dst->target != PIPE_BUFFER || dst_offset + size <= dst->width0);
assert(!src || src_offset + size <= src->width0);
si_compute_internal_begin(sctx);
sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
SI_CONTEXT_CS_PARTIAL_FLUSH |
si_get_flush_flags(sctx, coher, SI_COMPUTE_DST_CACHE_POLICY);
/* Save states. */
void *saved_cs = sctx->cs_shader_state.program;
struct pipe_shader_buffer saved_sb[2] = {};
si_get_shader_buffers(sctx, PIPE_SHADER_COMPUTE, 0, src ? 2 : 1, saved_sb);
/* The memory accesses are coalesced, meaning that the 1st instruction writes
* the 1st contiguous block of data for the whole wave, the 2nd instruction
* writes the 2nd contiguous block of data, etc.
*/
unsigned dwords_per_thread = src ? SI_COMPUTE_COPY_DW_PER_THREAD :
SI_COMPUTE_CLEAR_DW_PER_THREAD;
unsigned instructions_per_thread = MAX2(1, dwords_per_thread / 4);
unsigned dwords_per_instruction = dwords_per_thread / instructions_per_thread;
unsigned dwords_per_wave = dwords_per_thread * 64;
unsigned num_dwords = size / 4;
unsigned num_instructions = DIV_ROUND_UP(num_dwords, dwords_per_instruction);
struct pipe_grid_info info = {};
info.block[0] = MIN2(64, num_instructions);
info.block[1] = 1;
info.block[2] = 1;
info.grid[0] = DIV_ROUND_UP(num_dwords, dwords_per_wave);
info.grid[1] = 1;
info.grid[2] = 1;
struct pipe_shader_buffer sb[2] = {};
sb[0].buffer = dst;
sb[0].buffer_offset = dst_offset;
sb[0].buffer_size = size;
bool shader_dst_stream_policy = SI_COMPUTE_DST_CACHE_POLICY != L2_LRU;
if (src) {
sb[1].buffer = src;
sb[1].buffer_offset = src_offset;
sb[1].buffer_size = size;
ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 2, sb, 0x1);
if (!sctx->cs_copy_buffer) {
sctx->cs_copy_buffer = si_create_dma_compute_shader(&sctx->b,
SI_COMPUTE_COPY_DW_PER_THREAD,
shader_dst_stream_policy, true);
}
ctx->bind_compute_state(ctx, sctx->cs_copy_buffer);
} else {
assert(clear_value_size >= 4 &&
clear_value_size <= 16 &&
util_is_power_of_two_or_zero(clear_value_size));
for (unsigned i = 0; i < 4; i++)
sctx->cs_user_data[i] = clear_value[i % (clear_value_size / 4)];
ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 1, sb, 0x1);
if (!sctx->cs_clear_buffer) {
sctx->cs_clear_buffer = si_create_dma_compute_shader(&sctx->b,
SI_COMPUTE_CLEAR_DW_PER_THREAD,
shader_dst_stream_policy, false);
}
ctx->bind_compute_state(ctx, sctx->cs_clear_buffer);
}
ctx->launch_grid(ctx, &info);
enum si_cache_policy cache_policy = get_cache_policy(sctx, coher, size);
sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH |
(cache_policy == L2_BYPASS ? SI_CONTEXT_WRITEBACK_GLOBAL_L2 : 0);
if (cache_policy != L2_BYPASS)
si_resource(dst)->TC_L2_dirty = true;
/* Restore states. */
ctx->bind_compute_state(ctx, saved_cs);
ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, src ? 2 : 1, saved_sb, ~0);
si_compute_internal_end(sctx);
}
void si_clear_buffer(struct si_context *sctx, struct pipe_resource *dst,
uint64_t offset, uint64_t size, uint32_t *clear_value,
uint32_t clear_value_size, enum si_coherency coher)
{
if (!size)
return;
unsigned clear_alignment = MIN2(clear_value_size, 4);
assert(clear_value_size != 3 && clear_value_size != 6); /* 12 is allowed. */
assert(offset % clear_alignment == 0);
assert(size % clear_alignment == 0);
assert(size < (UINT_MAX & ~0xf)); /* TODO: test 64-bit sizes in all codepaths */
/* Reduce a large clear value size if possible. */
if (clear_value_size > 4) {
bool clear_dword_duplicated = true;
/* See if we can lower large fills to dword fills. */
for (unsigned i = 1; i < clear_value_size / 4; i++) {
if (clear_value[0] != clear_value[i]) {
clear_dword_duplicated = false;
break;
}
}
if (clear_dword_duplicated)
clear_value_size = 4;
}
/* Expand a small clear value size. */
uint32_t tmp_clear_value;
if (clear_value_size <= 2) {
if (clear_value_size == 1) {
tmp_clear_value = *(uint8_t*)clear_value;
tmp_clear_value |= (tmp_clear_value << 8) |
(tmp_clear_value << 16) |
(tmp_clear_value << 24);
} else {
tmp_clear_value = *(uint16_t*)clear_value;
tmp_clear_value |= tmp_clear_value << 16;
}
clear_value = &tmp_clear_value;
clear_value_size = 4;
}
/* Use transform feedback for 12-byte clears. */
/* TODO: Use compute. */
if (clear_value_size == 12) {
union pipe_color_union streamout_clear_value;
memcpy(&streamout_clear_value, clear_value, clear_value_size);
si_blitter_begin(sctx, SI_DISABLE_RENDER_COND);
util_blitter_clear_buffer(sctx->blitter, dst, offset,
size, clear_value_size / 4,
&streamout_clear_value);
si_blitter_end(sctx);
return;
}
uint64_t aligned_size = size & ~3ull;
if (aligned_size >= 4) {
/* Before GFX9, CP DMA was very slow when clearing GTT, so never
* use CP DMA clears on those chips, because we can't be certain
* about buffer placements.
*/
if (clear_value_size > 4 ||
(clear_value_size == 4 &&
offset % 4 == 0 &&
(size > 32*1024 || sctx->chip_class <= VI))) {
si_compute_do_clear_or_copy(sctx, dst, offset, NULL, 0,
aligned_size, clear_value,
clear_value_size, coher);
} else {
assert(clear_value_size == 4);
si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, dst, offset,
aligned_size, *clear_value, 0, coher,
get_cache_policy(sctx, coher, size));
}
offset += aligned_size;
size -= aligned_size;
}
/* Handle non-dword alignment. */
if (size) {
assert(dst);
assert(dst->target == PIPE_BUFFER);
assert(size < 4);
pipe_buffer_write(&sctx->b, dst, offset, size, clear_value);
}
}
static void si_pipe_clear_buffer(struct pipe_context *ctx,
struct pipe_resource *dst,
unsigned offset, unsigned size,
const void *clear_value,
int clear_value_size)
{
si_clear_buffer((struct si_context*)ctx, dst, offset, size, (uint32_t*)clear_value,
clear_value_size, SI_COHERENCY_SHADER);
}
void si_copy_buffer(struct si_context *sctx,
struct pipe_resource *dst, struct pipe_resource *src,
uint64_t dst_offset, uint64_t src_offset, unsigned size)
{
if (!size)
return;
enum si_coherency coher = SI_COHERENCY_SHADER;
enum si_cache_policy cache_policy = get_cache_policy(sctx, coher, size);
/* Only use compute for VRAM copies on dGPUs. */
if (sctx->screen->info.has_dedicated_vram &&
si_resource(dst)->domains & RADEON_DOMAIN_VRAM &&
si_resource(src)->domains & RADEON_DOMAIN_VRAM &&
size > 32 * 1024 &&
dst_offset % 4 == 0 && src_offset % 4 == 0 && size % 4 == 0) {
si_compute_do_clear_or_copy(sctx, dst, dst_offset, src, src_offset,
size, NULL, 0, coher);
} else {
si_cp_dma_copy_buffer(sctx, dst, src, dst_offset, src_offset, size,
0, coher, cache_policy);
}
}
void si_compute_copy_image(struct si_context *sctx,
struct pipe_resource *dst,
unsigned dst_level,
struct pipe_resource *src,
unsigned src_level,
unsigned dstx, unsigned dsty, unsigned dstz,
const struct pipe_box *src_box)
{
struct pipe_context *ctx = &sctx->b;
unsigned width = src_box->width;
unsigned height = src_box->height;
unsigned depth = src_box->depth;
unsigned data[] = {src_box->x, src_box->y, src_box->z, 0, dstx, dsty, dstz, 0};
if (width == 0 || height == 0)
return;
si_compute_internal_begin(sctx);
sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH |
si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM);
/* src and dst have the same number of samples. */
si_make_CB_shader_coherent(sctx, src->nr_samples, true,
/* Only src can have DCC.*/
((struct si_texture*)src)->surface.u.gfx9.dcc.pipe_aligned);
struct pipe_constant_buffer saved_cb = {};
si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
struct si_images *images = &sctx->images[PIPE_SHADER_COMPUTE];
struct pipe_image_view saved_image[2] = {0};
util_copy_image_view(&saved_image[0], &images->views[0]);
util_copy_image_view(&saved_image[1], &images->views[1]);
void *saved_cs = sctx->cs_shader_state.program;
struct pipe_constant_buffer cb = {};
cb.buffer_size = sizeof(data);
cb.user_buffer = data;
ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &cb);
struct pipe_image_view image[2] = {0};
image[0].resource = src;
image[0].shader_access = image[0].access = PIPE_IMAGE_ACCESS_READ;
image[0].format = util_format_linear(src->format);
image[0].u.tex.level = src_level;
image[0].u.tex.first_layer = 0;
image[0].u.tex.last_layer =
src->target == PIPE_TEXTURE_3D ? u_minify(src->depth0, src_level) - 1
: (unsigned)(src->array_size - 1);
image[1].resource = dst;
image[1].shader_access = image[1].access = PIPE_IMAGE_ACCESS_WRITE;
image[1].format = util_format_linear(dst->format);
image[1].u.tex.level = dst_level;
image[1].u.tex.first_layer = 0;
image[1].u.tex.last_layer =
dst->target == PIPE_TEXTURE_3D ? u_minify(dst->depth0, dst_level) - 1
: (unsigned)(dst->array_size - 1);
if (src->format == PIPE_FORMAT_R9G9B9E5_FLOAT)
image[0].format = image[1].format = PIPE_FORMAT_R32_UINT;
/* SNORM8 blitting has precision issues on some chips. Use the SINT
* equivalent instead, which doesn't force DCC decompression.
* Note that some chips avoid this issue by using SDMA.
*/
if (util_format_is_snorm8(dst->format)) {
image[0].format = image[1].format =
util_format_snorm8_to_sint8(dst->format);
}
ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 2, image);
struct pipe_grid_info info = {0};
if (dst->target == PIPE_TEXTURE_1D_ARRAY && src->target == PIPE_TEXTURE_1D_ARRAY) {
if (!sctx->cs_copy_image_1d_array)
sctx->cs_copy_image_1d_array =
si_create_copy_image_compute_shader_1d_array(ctx);
ctx->bind_compute_state(ctx, sctx->cs_copy_image_1d_array);
info.block[0] = 64;
info.last_block[0] = width % 64;
info.block[1] = 1;
info.block[2] = 1;
info.grid[0] = DIV_ROUND_UP(width, 64);
info.grid[1] = depth;
info.grid[2] = 1;
} else {
if (!sctx->cs_copy_image)
sctx->cs_copy_image = si_create_copy_image_compute_shader(ctx);
ctx->bind_compute_state(ctx, sctx->cs_copy_image);
info.block[0] = 8;
info.last_block[0] = width % 8;
info.block[1] = 8;
info.last_block[1] = height % 8;
info.block[2] = 1;
info.grid[0] = DIV_ROUND_UP(width, 8);
info.grid[1] = DIV_ROUND_UP(height, 8);
info.grid[2] = depth;
}
ctx->launch_grid(ctx, &info);
sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH |
(sctx->chip_class <= VI ? SI_CONTEXT_WRITEBACK_GLOBAL_L2 : 0) |
si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM);
ctx->bind_compute_state(ctx, saved_cs);
ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 2, saved_image);
ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
si_compute_internal_end(sctx);
}
void si_retile_dcc(struct si_context *sctx, struct si_texture *tex)
{
struct pipe_context *ctx = &sctx->b;
sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
SI_CONTEXT_CS_PARTIAL_FLUSH |
si_get_flush_flags(sctx, SI_COHERENCY_CB_META, L2_LRU) |
si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_LRU);
si_emit_cache_flush(sctx);
/* Save states. */
void *saved_cs = sctx->cs_shader_state.program;
struct pipe_image_view saved_img[3] = {};
for (unsigned i = 0; i < 3; i++) {
util_copy_image_view(&saved_img[i],
&sctx->images[PIPE_SHADER_COMPUTE].views[i]);
}
/* Set images. */
bool use_uint16 = tex->surface.u.gfx9.dcc_retile_use_uint16;
unsigned num_elements = tex->surface.u.gfx9.dcc_retile_num_elements;
struct pipe_image_view img[3];
assert(tex->dcc_retile_map_offset && tex->dcc_retile_map_offset <= UINT_MAX);
assert(tex->dcc_offset && tex->dcc_offset <= UINT_MAX);
assert(tex->display_dcc_offset && tex->display_dcc_offset <= UINT_MAX);
for (unsigned i = 0; i < 3; i++) {
img[i].resource = &tex->buffer.b.b;
img[i].access = i == 2 ? PIPE_IMAGE_ACCESS_WRITE : PIPE_IMAGE_ACCESS_READ;
img[i].shader_access = SI_IMAGE_ACCESS_AS_BUFFER;
}
img[0].format = use_uint16 ? PIPE_FORMAT_R16G16B16A16_UINT :
PIPE_FORMAT_R32G32B32A32_UINT;
img[0].u.buf.offset = tex->dcc_retile_map_offset;
img[0].u.buf.size = num_elements * (use_uint16 ? 2 : 4);
img[1].format = PIPE_FORMAT_R8_UINT;
img[1].u.buf.offset = tex->dcc_offset;
img[1].u.buf.size = tex->surface.dcc_size;
img[2].format = PIPE_FORMAT_R8_UINT;
img[2].u.buf.offset = tex->display_dcc_offset;
img[2].u.buf.size = tex->surface.u.gfx9.display_dcc_size;
ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 3, img);
/* Bind the compute shader. */
if (!sctx->cs_dcc_retile)
sctx->cs_dcc_retile = si_create_dcc_retile_cs(ctx);
ctx->bind_compute_state(ctx, sctx->cs_dcc_retile);
/* Dispatch compute. */
/* img[0] has 4 channels per element containing 2 pairs of DCC offsets. */
unsigned num_threads = num_elements / 4;
struct pipe_grid_info info = {};
info.block[0] = 64;
info.block[1] = 1;
info.block[2] = 1;
info.grid[0] = DIV_ROUND_UP(num_threads, 64); /* includes the partial block */
info.grid[1] = 1;
info.grid[2] = 1;
info.last_block[0] = num_threads % 64;
ctx->launch_grid(ctx, &info);
/* Don't flush caches or wait. The driver will wait at the end of this IB,
* and L2 will be flushed by the kernel fence.
*/
/* Restore states. */
ctx->bind_compute_state(ctx, saved_cs);
ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 3, saved_img);
}
void si_init_compute_blit_functions(struct si_context *sctx)
{
sctx->b.clear_buffer = si_pipe_clear_buffer;
}
/* Clear a region of a color surface to a constant value. */
void si_compute_clear_render_target(struct pipe_context *ctx,
struct pipe_surface *dstsurf,
const union pipe_color_union *color,
unsigned dstx, unsigned dsty,
unsigned width, unsigned height,
bool render_condition_enabled)
{
struct si_context *sctx = (struct si_context *)ctx;
unsigned num_layers = dstsurf->u.tex.last_layer - dstsurf->u.tex.first_layer + 1;
unsigned data[4 + sizeof(color->ui)] = {dstx, dsty, dstsurf->u.tex.first_layer, 0};
if (width == 0 || height == 0)
return;
if (util_format_is_srgb(dstsurf->format)) {
union pipe_color_union color_srgb;
for (int i = 0; i < 3; i++)
color_srgb.f[i] = util_format_linear_to_srgb_float(color->f[i]);
color_srgb.f[3] = color->f[3];
memcpy(data + 4, color_srgb.ui, sizeof(color->ui));
} else {
memcpy(data + 4, color->ui, sizeof(color->ui));
}
si_compute_internal_begin(sctx);
sctx->render_cond_force_off = !render_condition_enabled;
sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH |
si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM);
si_make_CB_shader_coherent(sctx, dstsurf->texture->nr_samples, true,
true /* DCC is not possible with image stores */);
struct pipe_constant_buffer saved_cb = {};
si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
struct si_images *images = &sctx->images[PIPE_SHADER_COMPUTE];
struct pipe_image_view saved_image = {0};
util_copy_image_view(&saved_image, &images->views[0]);
void *saved_cs = sctx->cs_shader_state.program;
struct pipe_constant_buffer cb = {};
cb.buffer_size = sizeof(data);
cb.user_buffer = data;
ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &cb);
struct pipe_image_view image = {0};
image.resource = dstsurf->texture;
image.shader_access = image.access = PIPE_IMAGE_ACCESS_WRITE;
image.format = util_format_linear(dstsurf->format);
image.u.tex.level = dstsurf->u.tex.level;
image.u.tex.first_layer = 0; /* 3D images ignore first_layer (BASE_ARRAY) */
image.u.tex.last_layer = dstsurf->u.tex.last_layer;
ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &image);
struct pipe_grid_info info = {0};
if (dstsurf->texture->target != PIPE_TEXTURE_1D_ARRAY) {
if (!sctx->cs_clear_render_target)
sctx->cs_clear_render_target = si_clear_render_target_shader(ctx);
ctx->bind_compute_state(ctx, sctx->cs_clear_render_target);
info.block[0] = 8;
info.last_block[0] = width % 8;
info.block[1] = 8;
info.last_block[1] = height % 8;
info.block[2] = 1;
info.grid[0] = DIV_ROUND_UP(width, 8);
info.grid[1] = DIV_ROUND_UP(height, 8);
info.grid[2] = num_layers;
} else {
if (!sctx->cs_clear_render_target_1d_array)
sctx->cs_clear_render_target_1d_array =
si_clear_render_target_shader_1d_array(ctx);
ctx->bind_compute_state(ctx, sctx->cs_clear_render_target_1d_array);
info.block[0] = 64;
info.last_block[0] = width % 64;
info.block[1] = 1;
info.block[2] = 1;
info.grid[0] = DIV_ROUND_UP(width, 64);
info.grid[1] = num_layers;
info.grid[2] = 1;
}
ctx->launch_grid(ctx, &info);
sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH |
(sctx->chip_class <= VI ? SI_CONTEXT_WRITEBACK_GLOBAL_L2 : 0) |
si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM);
ctx->bind_compute_state(ctx, saved_cs);
ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_image);
ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
si_compute_internal_end(sctx);
}