
Structurally the code is now similar to bind_inputs. The fixes tag is a
little bit misleading. I think the change in that commit just exposes a
previously existing bug.
Closes: https://gitlab.freedesktop.org/mesa/mesa/-/issues/2746
Fixes: f3cce7087a
("mesa: don't ever bind NullBufferObj for glBindBuffer targets")
Reviewed-by: Marek Olšák <marek.olsak@amd.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4512>
664 lines
20 KiB
C
664 lines
20 KiB
C
/*
|
|
* Mesa 3-D graphics library
|
|
*
|
|
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Keith Whitwell <keithw@vmware.com>
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
|
|
#include "main/glheader.h"
|
|
#include "main/arrayobj.h"
|
|
#include "main/bufferobj.h"
|
|
#include "main/condrender.h"
|
|
#include "main/context.h"
|
|
#include "util/imports.h"
|
|
#include "main/mtypes.h"
|
|
#include "main/macros.h"
|
|
#include "main/enums.h"
|
|
#include "main/varray.h"
|
|
#include "util/half_float.h"
|
|
|
|
#include "t_context.h"
|
|
#include "t_rebase.h"
|
|
#include "tnl.h"
|
|
|
|
|
|
|
|
static GLubyte *get_space(struct gl_context *ctx, GLuint bytes)
|
|
{
|
|
TNLcontext *tnl = TNL_CONTEXT(ctx);
|
|
GLubyte *space = malloc(bytes);
|
|
|
|
tnl->block[tnl->nr_blocks++] = space;
|
|
return space;
|
|
}
|
|
|
|
|
|
static void free_space(struct gl_context *ctx)
|
|
{
|
|
TNLcontext *tnl = TNL_CONTEXT(ctx);
|
|
GLuint i;
|
|
for (i = 0; i < tnl->nr_blocks; i++)
|
|
free(tnl->block[i]);
|
|
tnl->nr_blocks = 0;
|
|
}
|
|
|
|
|
|
/* Convert the incoming array to GLfloats. Understands the
|
|
* array->Normalized flag and selects the correct conversion method.
|
|
*/
|
|
#define CONVERT( TYPE, MACRO ) do { \
|
|
GLuint i, j; \
|
|
if (attrib->Format.Normalized) { \
|
|
for (i = 0; i < count; i++) { \
|
|
const TYPE *in = (TYPE *)ptr; \
|
|
for (j = 0; j < sz; j++) { \
|
|
*fptr++ = MACRO(*in); \
|
|
in++; \
|
|
} \
|
|
ptr += binding->Stride; \
|
|
} \
|
|
} else { \
|
|
for (i = 0; i < count; i++) { \
|
|
const TYPE *in = (TYPE *)ptr; \
|
|
for (j = 0; j < sz; j++) { \
|
|
*fptr++ = (GLfloat)(*in); \
|
|
in++; \
|
|
} \
|
|
ptr += binding->Stride; \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
/**
|
|
* Convert array of BGRA/GLubyte[4] values to RGBA/float[4]
|
|
* \param ptr input/ubyte array
|
|
* \param fptr output/float array
|
|
*/
|
|
static void
|
|
convert_bgra_to_float(const struct gl_vertex_buffer_binding *binding,
|
|
const struct gl_array_attributes *attrib,
|
|
const GLubyte *ptr, GLfloat *fptr,
|
|
GLuint count )
|
|
{
|
|
GLuint i;
|
|
assert(attrib->Format.Normalized);
|
|
assert(attrib->Format.Size == 4);
|
|
for (i = 0; i < count; i++) {
|
|
const GLubyte *in = (GLubyte *) ptr; /* in is in BGRA order */
|
|
*fptr++ = UBYTE_TO_FLOAT(in[2]); /* red */
|
|
*fptr++ = UBYTE_TO_FLOAT(in[1]); /* green */
|
|
*fptr++ = UBYTE_TO_FLOAT(in[0]); /* blue */
|
|
*fptr++ = UBYTE_TO_FLOAT(in[3]); /* alpha */
|
|
ptr += binding->Stride;
|
|
}
|
|
}
|
|
|
|
static void
|
|
convert_half_to_float(const struct gl_vertex_buffer_binding *binding,
|
|
const struct gl_array_attributes *attrib,
|
|
const GLubyte *ptr, GLfloat *fptr,
|
|
GLuint count, GLuint sz)
|
|
{
|
|
GLuint i, j;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
GLhalfARB *in = (GLhalfARB *)ptr;
|
|
|
|
for (j = 0; j < sz; j++) {
|
|
*fptr++ = _mesa_half_to_float(in[j]);
|
|
}
|
|
ptr += binding->Stride;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Convert fixed-point to floating-point.
|
|
*
|
|
* In OpenGL, a fixed-point number is a "signed 2's complement 16.16 scaled
|
|
* integer" (Table 2.2 of the OpenGL ES 2.0 spec).
|
|
*
|
|
* If the buffer has the \c normalized flag set, the formula
|
|
* \code normalize(x) := (2*x + 1) / (2^16 - 1) \endcode
|
|
* is used to map the fixed-point numbers into the range [-1, 1].
|
|
*/
|
|
static void
|
|
convert_fixed_to_float(const struct gl_vertex_buffer_binding *binding,
|
|
const struct gl_array_attributes *attrib,
|
|
const GLubyte *ptr, GLfloat *fptr,
|
|
GLuint count)
|
|
{
|
|
GLuint i;
|
|
GLint j;
|
|
const GLint size = attrib->Format.Size;
|
|
|
|
if (attrib->Format.Normalized) {
|
|
for (i = 0; i < count; ++i) {
|
|
const GLfixed *in = (GLfixed *) ptr;
|
|
for (j = 0; j < size; ++j) {
|
|
*fptr++ = (GLfloat) (2 * in[j] + 1) / (GLfloat) ((1 << 16) - 1);
|
|
}
|
|
ptr += binding->Stride;
|
|
}
|
|
} else {
|
|
for (i = 0; i < count; ++i) {
|
|
const GLfixed *in = (GLfixed *) ptr;
|
|
for (j = 0; j < size; ++j) {
|
|
*fptr++ = in[j] / (GLfloat) (1 << 16);
|
|
}
|
|
ptr += binding->Stride;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Adjust pointer to point at first requested element, convert to
|
|
* floating point, populate VB->AttribPtr[].
|
|
*/
|
|
static void _tnl_import_array( struct gl_context *ctx,
|
|
GLuint attr,
|
|
GLuint count,
|
|
const struct gl_vertex_buffer_binding *binding,
|
|
const struct gl_array_attributes *attrib,
|
|
const GLubyte *ptr )
|
|
{
|
|
TNLcontext *tnl = TNL_CONTEXT(ctx);
|
|
struct vertex_buffer *VB = &tnl->vb;
|
|
GLuint stride = binding->Stride;
|
|
|
|
if (attrib->Format.Type != GL_FLOAT) {
|
|
const GLuint sz = attrib->Format.Size;
|
|
GLubyte *buf = get_space(ctx, count * sz * sizeof(GLfloat));
|
|
GLfloat *fptr = (GLfloat *)buf;
|
|
|
|
switch (attrib->Format.Type) {
|
|
case GL_BYTE:
|
|
CONVERT(GLbyte, BYTE_TO_FLOAT);
|
|
break;
|
|
case GL_UNSIGNED_BYTE:
|
|
if (attrib->Format.Format == GL_BGRA) {
|
|
/* See GL_EXT_vertex_array_bgra */
|
|
convert_bgra_to_float(binding, attrib, ptr, fptr, count);
|
|
}
|
|
else {
|
|
CONVERT(GLubyte, UBYTE_TO_FLOAT);
|
|
}
|
|
break;
|
|
case GL_SHORT:
|
|
CONVERT(GLshort, SHORT_TO_FLOAT);
|
|
break;
|
|
case GL_UNSIGNED_SHORT:
|
|
CONVERT(GLushort, USHORT_TO_FLOAT);
|
|
break;
|
|
case GL_INT:
|
|
CONVERT(GLint, INT_TO_FLOAT);
|
|
break;
|
|
case GL_UNSIGNED_INT:
|
|
CONVERT(GLuint, UINT_TO_FLOAT);
|
|
break;
|
|
case GL_DOUBLE:
|
|
CONVERT(GLdouble, (GLfloat));
|
|
break;
|
|
case GL_HALF_FLOAT:
|
|
convert_half_to_float(binding, attrib, ptr, fptr, count, sz);
|
|
break;
|
|
case GL_FIXED:
|
|
convert_fixed_to_float(binding, attrib, ptr, fptr, count);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
ptr = buf;
|
|
stride = sz * sizeof(GLfloat);
|
|
}
|
|
|
|
VB->AttribPtr[attr] = &tnl->tmp_inputs[attr];
|
|
VB->AttribPtr[attr]->data = (GLfloat (*)[4])ptr;
|
|
VB->AttribPtr[attr]->start = (GLfloat *)ptr;
|
|
VB->AttribPtr[attr]->count = count;
|
|
VB->AttribPtr[attr]->stride = stride;
|
|
VB->AttribPtr[attr]->size = attrib->Format.Size;
|
|
|
|
/* This should die, but so should the whole GLvector4f concept:
|
|
*/
|
|
VB->AttribPtr[attr]->flags = (((1<<attrib->Format.Size)-1) |
|
|
VEC_NOT_WRITEABLE |
|
|
(stride == 4*sizeof(GLfloat) ? 0 : VEC_BAD_STRIDE));
|
|
|
|
VB->AttribPtr[attr]->storage = NULL;
|
|
}
|
|
|
|
#define CLIPVERTS ((6 + MAX_CLIP_PLANES) * 2)
|
|
|
|
|
|
static GLboolean *_tnl_import_edgeflag( struct gl_context *ctx,
|
|
const GLvector4f *input,
|
|
GLuint count)
|
|
{
|
|
const GLubyte *ptr = (const GLubyte *)input->data;
|
|
const GLuint stride = input->stride;
|
|
GLboolean *space = (GLboolean *)get_space(ctx, count + CLIPVERTS);
|
|
GLboolean *bptr = space;
|
|
GLuint i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
*bptr++ = ((GLfloat *)ptr)[0] == 1.0F;
|
|
ptr += stride;
|
|
}
|
|
|
|
return space;
|
|
}
|
|
|
|
|
|
static void bind_inputs( struct gl_context *ctx,
|
|
const struct tnl_vertex_array *inputs,
|
|
GLint count,
|
|
struct gl_buffer_object **bo,
|
|
GLuint *nr_bo )
|
|
{
|
|
TNLcontext *tnl = TNL_CONTEXT(ctx);
|
|
struct vertex_buffer *VB = &tnl->vb;
|
|
GLuint i;
|
|
|
|
/* Map all the VBOs
|
|
*/
|
|
for (i = 0; i < VERT_ATTRIB_MAX; i++) {
|
|
const struct tnl_vertex_array *array = &inputs[i];
|
|
const struct gl_vertex_buffer_binding *binding = array->BufferBinding;
|
|
const struct gl_array_attributes *attrib = array->VertexAttrib;
|
|
const void *ptr;
|
|
|
|
if (binding->BufferObj) {
|
|
if (!binding->BufferObj->Mappings[MAP_INTERNAL].Pointer) {
|
|
bo[*nr_bo] = binding->BufferObj;
|
|
(*nr_bo)++;
|
|
ctx->Driver.MapBufferRange(ctx, 0, binding->BufferObj->Size,
|
|
GL_MAP_READ_BIT,
|
|
binding->BufferObj,
|
|
MAP_INTERNAL);
|
|
|
|
assert(binding->BufferObj->Mappings[MAP_INTERNAL].Pointer);
|
|
}
|
|
|
|
ptr = ADD_POINTERS(binding->BufferObj->Mappings[MAP_INTERNAL].Pointer,
|
|
binding->Offset + attrib->RelativeOffset);
|
|
}
|
|
else
|
|
ptr = attrib->Ptr;
|
|
|
|
/* Just make sure the array is floating point, otherwise convert to
|
|
* temporary storage.
|
|
*
|
|
* XXX: remove the GLvector4f type at some stage and just use
|
|
* client arrays.
|
|
*/
|
|
_tnl_import_array(ctx, i, count, binding, attrib, ptr);
|
|
}
|
|
|
|
/* We process only the vertices between min & max index:
|
|
*/
|
|
VB->Count = count;
|
|
|
|
/* These should perhaps be part of _TNL_ATTRIB_* */
|
|
VB->BackfaceColorPtr = NULL;
|
|
VB->BackfaceIndexPtr = NULL;
|
|
VB->BackfaceSecondaryColorPtr = NULL;
|
|
|
|
/* Clipping and drawing code still requires this to be a packed
|
|
* array of ubytes which can be written into. TODO: Fix and
|
|
* remove.
|
|
*/
|
|
if (ctx->Polygon.FrontMode != GL_FILL ||
|
|
ctx->Polygon.BackMode != GL_FILL)
|
|
{
|
|
VB->EdgeFlag = _tnl_import_edgeflag( ctx,
|
|
VB->AttribPtr[_TNL_ATTRIB_EDGEFLAG],
|
|
VB->Count );
|
|
}
|
|
else {
|
|
/* the data previously pointed to by EdgeFlag may have been freed */
|
|
VB->EdgeFlag = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/* Translate indices to GLuints and store in VB->Elts.
|
|
*/
|
|
static void bind_indices( struct gl_context *ctx,
|
|
const struct _mesa_index_buffer *ib,
|
|
struct gl_buffer_object **bo,
|
|
GLuint *nr_bo)
|
|
{
|
|
TNLcontext *tnl = TNL_CONTEXT(ctx);
|
|
struct vertex_buffer *VB = &tnl->vb;
|
|
GLuint i;
|
|
const void *ptr;
|
|
|
|
if (!ib) {
|
|
VB->Elts = NULL;
|
|
return;
|
|
}
|
|
|
|
if (ib->obj) {
|
|
if (!_mesa_bufferobj_mapped(ib->obj, MAP_INTERNAL)) {
|
|
/* if the buffer object isn't mapped yet, map it now */
|
|
bo[*nr_bo] = ib->obj;
|
|
(*nr_bo)++;
|
|
ptr = ctx->Driver.MapBufferRange(ctx, (GLsizeiptr) ib->ptr,
|
|
ib->count << ib->index_size_shift,
|
|
GL_MAP_READ_BIT, ib->obj,
|
|
MAP_INTERNAL);
|
|
assert(ib->obj->Mappings[MAP_INTERNAL].Pointer);
|
|
} else {
|
|
/* user-space elements, or buffer already mapped */
|
|
ptr = ADD_POINTERS(ib->obj->Mappings[MAP_INTERNAL].Pointer, ib->ptr);
|
|
}
|
|
} else
|
|
ptr = ib->ptr;
|
|
|
|
if (ib->index_size_shift == 2 && VB->Primitive[0].basevertex == 0) {
|
|
VB->Elts = (GLuint *) ptr;
|
|
}
|
|
else {
|
|
GLuint *elts = (GLuint *)get_space(ctx, ib->count * sizeof(GLuint));
|
|
VB->Elts = elts;
|
|
|
|
if (ib->index_size_shift == 2) {
|
|
const GLuint *in = (GLuint *)ptr;
|
|
for (i = 0; i < ib->count; i++)
|
|
*elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex;
|
|
}
|
|
else if (ib->index_size_shift == 1) {
|
|
const GLushort *in = (GLushort *)ptr;
|
|
for (i = 0; i < ib->count; i++)
|
|
*elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex;
|
|
}
|
|
else {
|
|
const GLubyte *in = (GLubyte *)ptr;
|
|
for (i = 0; i < ib->count; i++)
|
|
*elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bind_prims( struct gl_context *ctx,
|
|
const struct _mesa_prim *prim,
|
|
GLuint nr_prims )
|
|
{
|
|
TNLcontext *tnl = TNL_CONTEXT(ctx);
|
|
struct vertex_buffer *VB = &tnl->vb;
|
|
|
|
VB->Primitive = prim;
|
|
VB->PrimitiveCount = nr_prims;
|
|
}
|
|
|
|
static void unmap_vbos( struct gl_context *ctx,
|
|
struct gl_buffer_object **bo,
|
|
GLuint nr_bo )
|
|
{
|
|
GLuint i;
|
|
for (i = 0; i < nr_bo; i++) {
|
|
ctx->Driver.UnmapBuffer(ctx, bo[i], MAP_INTERNAL);
|
|
}
|
|
}
|
|
|
|
|
|
/* This is the main workhorse doing all the rendering work.
|
|
*/
|
|
void _tnl_draw_prims(struct gl_context *ctx,
|
|
const struct tnl_vertex_array *arrays,
|
|
const struct _mesa_prim *prim,
|
|
GLuint nr_prims,
|
|
const struct _mesa_index_buffer *ib,
|
|
GLboolean index_bounds_valid,
|
|
GLuint min_index,
|
|
GLuint max_index,
|
|
GLuint num_instances,
|
|
GLuint base_instance,
|
|
struct gl_transform_feedback_object *tfb_vertcount,
|
|
unsigned stream)
|
|
{
|
|
TNLcontext *tnl = TNL_CONTEXT(ctx);
|
|
const GLuint TEST_SPLIT = 0;
|
|
const GLint max = TEST_SPLIT ? 8 : tnl->vb.Size - MAX_CLIPPED_VERTICES;
|
|
GLint max_basevertex = prim->basevertex;
|
|
GLuint i;
|
|
|
|
if (!index_bounds_valid)
|
|
vbo_get_minmax_indices(ctx, prim, ib, &min_index, &max_index, nr_prims);
|
|
|
|
/* Mesa core state should have been validated already */
|
|
assert(ctx->NewState == 0x0);
|
|
|
|
if (!_mesa_check_conditional_render(ctx))
|
|
return; /* don't draw */
|
|
|
|
for (i = 1; i < nr_prims; i++)
|
|
max_basevertex = MAX2(max_basevertex, prim[i].basevertex);
|
|
|
|
if (0)
|
|
{
|
|
printf("%s %d..%d\n", __func__, min_index, max_index);
|
|
for (i = 0; i < nr_prims; i++)
|
|
printf("prim %d: %s start %d count %d\n", i,
|
|
_mesa_enum_to_string(prim[i].mode),
|
|
prim[i].start,
|
|
prim[i].count);
|
|
}
|
|
|
|
if (min_index) {
|
|
/* We always translate away calls with min_index != 0.
|
|
*/
|
|
t_rebase_prims( ctx, arrays, prim, nr_prims, ib,
|
|
min_index, max_index, num_instances, base_instance,
|
|
_tnl_draw_prims );
|
|
return;
|
|
}
|
|
else if ((GLint)max_index + max_basevertex > max) {
|
|
/* The software TNL pipeline has a fixed amount of storage for
|
|
* vertices and it is necessary to split incoming drawing commands
|
|
* if they exceed that limit.
|
|
*/
|
|
struct split_limits limits;
|
|
limits.max_verts = max;
|
|
limits.max_vb_size = ~0;
|
|
limits.max_indices = ~0;
|
|
|
|
/* This will split the buffers one way or another and
|
|
* recursively call back into this function.
|
|
*/
|
|
_tnl_split_prims( ctx, arrays, prim, nr_prims, ib,
|
|
0, max_index + prim->basevertex,
|
|
num_instances, base_instance,
|
|
_tnl_draw_prims,
|
|
&limits );
|
|
}
|
|
else {
|
|
/* May need to map a vertex buffer object for every attribute plus
|
|
* one for the index buffer.
|
|
*/
|
|
struct gl_buffer_object *bo[VERT_ATTRIB_MAX + 1];
|
|
GLuint nr_bo = 0;
|
|
GLuint inst;
|
|
|
|
assert(num_instances > 0);
|
|
|
|
for (i = 0; i < nr_prims;) {
|
|
GLuint this_nr_prims;
|
|
|
|
/* Our SW TNL pipeline doesn't handle basevertex yet, so bind_indices
|
|
* will rebase the elements to the basevertex, and we'll only
|
|
* emit strings of prims with the same basevertex in one draw call.
|
|
*/
|
|
for (this_nr_prims = 1; i + this_nr_prims < nr_prims;
|
|
this_nr_prims++) {
|
|
if (prim[i].basevertex != prim[i + this_nr_prims].basevertex)
|
|
break;
|
|
}
|
|
|
|
/* Binding inputs may imply mapping some vertex buffer objects.
|
|
* They will need to be unmapped below.
|
|
*/
|
|
for (inst = 0; inst < num_instances; inst++) {
|
|
|
|
bind_prims(ctx, &prim[i], this_nr_prims);
|
|
bind_inputs(ctx, arrays, max_index + prim[i].basevertex + 1,
|
|
bo, &nr_bo);
|
|
bind_indices(ctx, ib, bo, &nr_bo);
|
|
|
|
tnl->CurInstance = inst;
|
|
TNL_CONTEXT(ctx)->Driver.RunPipeline(ctx);
|
|
|
|
unmap_vbos(ctx, bo, nr_bo);
|
|
free_space(ctx);
|
|
}
|
|
|
|
i += this_nr_prims;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
_tnl_init_inputs(struct tnl_inputs *inputs)
|
|
{
|
|
inputs->current = 0;
|
|
inputs->vertex_processing_mode = VP_MODE_FF;
|
|
}
|
|
|
|
|
|
/**
|
|
* Update the tnl_inputs's arrays to point to the vao->_VertexArray arrays
|
|
* according to the 'enable' bitmask.
|
|
* \param enable bitfield of VERT_BIT_x flags.
|
|
*/
|
|
static inline void
|
|
update_vao_inputs(struct gl_context *ctx,
|
|
struct tnl_inputs *inputs, GLbitfield enable)
|
|
{
|
|
const struct gl_vertex_array_object *vao = ctx->Array._DrawVAO;
|
|
|
|
/* Make sure we process only arrays enabled in the VAO */
|
|
assert((enable & ~_mesa_get_vao_vp_inputs(vao)) == 0);
|
|
|
|
/* Fill in the client arrays from the VAO */
|
|
const struct gl_vertex_buffer_binding *bindings = &vao->BufferBinding[0];
|
|
while (enable) {
|
|
const int attr = u_bit_scan(&enable);
|
|
struct tnl_vertex_array *input = &inputs->inputs[attr];
|
|
const struct gl_array_attributes *attrib;
|
|
attrib = _mesa_draw_array_attrib(vao, attr);
|
|
input->VertexAttrib = attrib;
|
|
input->BufferBinding = &bindings[attrib->BufferBindingIndex];
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Update the tnl_inputs's arrays to point to the vbo->currval arrays
|
|
* according to the 'current' bitmask.
|
|
* \param current bitfield of VERT_BIT_x flags.
|
|
*/
|
|
static inline void
|
|
update_current_inputs(struct gl_context *ctx,
|
|
struct tnl_inputs *inputs, GLbitfield current)
|
|
{
|
|
gl_vertex_processing_mode mode = ctx->VertexProgram._VPMode;
|
|
|
|
/* All previously non current array pointers need update. */
|
|
GLbitfield mask = current & ~inputs->current;
|
|
/* On mode change, the slots aliasing with materials need update too */
|
|
if (mode != inputs->vertex_processing_mode)
|
|
mask |= current & VERT_BIT_MAT_ALL;
|
|
|
|
while (mask) {
|
|
const int attr = u_bit_scan(&mask);
|
|
struct tnl_vertex_array *input = &inputs->inputs[attr];
|
|
input->VertexAttrib = _vbo_current_attrib(ctx, attr);
|
|
input->BufferBinding = _vbo_current_binding(ctx);
|
|
}
|
|
|
|
inputs->current = current;
|
|
inputs->vertex_processing_mode = mode;
|
|
}
|
|
|
|
|
|
/**
|
|
* Update the tnl_inputs's arrays to point to the vao->_VertexArray and
|
|
* vbo->currval arrays according to Array._DrawVAO and
|
|
* Array._DrawVAOEnableAttribs.
|
|
*/
|
|
void
|
|
_tnl_update_inputs(struct gl_context *ctx, struct tnl_inputs *inputs)
|
|
{
|
|
const GLbitfield enable = ctx->Array._DrawVAOEnabledAttribs;
|
|
|
|
/* Update array input pointers */
|
|
update_vao_inputs(ctx, inputs, enable);
|
|
|
|
/* The rest must be current inputs. */
|
|
update_current_inputs(ctx, inputs, ~enable & VERT_BIT_ALL);
|
|
}
|
|
|
|
|
|
const struct tnl_vertex_array*
|
|
_tnl_bind_inputs( struct gl_context *ctx )
|
|
{
|
|
TNLcontext *tnl = TNL_CONTEXT(ctx);
|
|
_tnl_update_inputs(ctx, &tnl->draw_arrays);
|
|
return tnl->draw_arrays.inputs;
|
|
}
|
|
|
|
|
|
/* This is the main entrypoint into the slimmed-down software tnl
|
|
* module. In a regular swtnl driver, this can be plugged straight
|
|
* into the ctx->Driver.Draw() callback.
|
|
*/
|
|
void
|
|
_tnl_draw(struct gl_context *ctx,
|
|
const struct _mesa_prim *prim, GLuint nr_prims,
|
|
const struct _mesa_index_buffer *ib,
|
|
GLboolean index_bounds_valid, GLuint min_index, GLuint max_index,
|
|
GLuint num_instances, GLuint base_instance,
|
|
struct gl_transform_feedback_object *tfb_vertcount,
|
|
unsigned stream)
|
|
{
|
|
/* Update TNLcontext::draw_arrays and return that pointer.
|
|
*/
|
|
const struct tnl_vertex_array* arrays = _tnl_bind_inputs(ctx);
|
|
|
|
_tnl_draw_prims(ctx, arrays, prim, nr_prims, ib,
|
|
index_bounds_valid, min_index, max_index,
|
|
num_instances, base_instance, tfb_vertcount, stream);
|
|
}
|
|
|
|
|
|
void
|
|
_tnl_init_driver_draw_function(struct dd_function_table *functions)
|
|
{
|
|
functions->Draw = _tnl_draw;
|
|
}
|