
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Matt Turner <mattst88@gmail.com>
1553 lines
42 KiB
C++
1553 lines
42 KiB
C++
/*
|
|
* Copyright © 2011 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "brw_vec4.h"
|
|
#include "brw_cfg.h"
|
|
#include "glsl/ir_print_visitor.h"
|
|
|
|
extern "C" {
|
|
#include "main/macros.h"
|
|
#include "main/shaderobj.h"
|
|
#include "program/prog_print.h"
|
|
#include "program/prog_parameter.h"
|
|
}
|
|
|
|
#define MAX_INSTRUCTION (1 << 30)
|
|
|
|
using namespace brw;
|
|
|
|
namespace brw {
|
|
|
|
/**
|
|
* Common helper for constructing swizzles. When only a subset of
|
|
* channels of a vec4 are used, we don't want to reference the other
|
|
* channels, as that will tell optimization passes that those other
|
|
* channels are used.
|
|
*/
|
|
unsigned
|
|
swizzle_for_size(int size)
|
|
{
|
|
static const unsigned size_swizzles[4] = {
|
|
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
|
|
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
|
|
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
|
|
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
|
|
};
|
|
|
|
assert((size >= 1) && (size <= 4));
|
|
return size_swizzles[size - 1];
|
|
}
|
|
|
|
void
|
|
src_reg::init()
|
|
{
|
|
memset(this, 0, sizeof(*this));
|
|
|
|
this->file = BAD_FILE;
|
|
}
|
|
|
|
src_reg::src_reg(register_file file, int reg, const glsl_type *type)
|
|
{
|
|
init();
|
|
|
|
this->file = file;
|
|
this->reg = reg;
|
|
if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
|
|
this->swizzle = swizzle_for_size(type->vector_elements);
|
|
else
|
|
this->swizzle = SWIZZLE_XYZW;
|
|
}
|
|
|
|
/** Generic unset register constructor. */
|
|
src_reg::src_reg()
|
|
{
|
|
init();
|
|
}
|
|
|
|
src_reg::src_reg(float f)
|
|
{
|
|
init();
|
|
|
|
this->file = IMM;
|
|
this->type = BRW_REGISTER_TYPE_F;
|
|
this->imm.f = f;
|
|
}
|
|
|
|
src_reg::src_reg(uint32_t u)
|
|
{
|
|
init();
|
|
|
|
this->file = IMM;
|
|
this->type = BRW_REGISTER_TYPE_UD;
|
|
this->imm.u = u;
|
|
}
|
|
|
|
src_reg::src_reg(int32_t i)
|
|
{
|
|
init();
|
|
|
|
this->file = IMM;
|
|
this->type = BRW_REGISTER_TYPE_D;
|
|
this->imm.i = i;
|
|
}
|
|
|
|
src_reg::src_reg(dst_reg reg)
|
|
{
|
|
init();
|
|
|
|
this->file = reg.file;
|
|
this->reg = reg.reg;
|
|
this->reg_offset = reg.reg_offset;
|
|
this->type = reg.type;
|
|
this->reladdr = reg.reladdr;
|
|
this->fixed_hw_reg = reg.fixed_hw_reg;
|
|
|
|
int swizzles[4];
|
|
int next_chan = 0;
|
|
int last = 0;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
if (!(reg.writemask & (1 << i)))
|
|
continue;
|
|
|
|
swizzles[next_chan++] = last = i;
|
|
}
|
|
|
|
for (; next_chan < 4; next_chan++) {
|
|
swizzles[next_chan] = last;
|
|
}
|
|
|
|
this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
|
|
swizzles[2], swizzles[3]);
|
|
}
|
|
|
|
void
|
|
dst_reg::init()
|
|
{
|
|
memset(this, 0, sizeof(*this));
|
|
this->file = BAD_FILE;
|
|
this->writemask = WRITEMASK_XYZW;
|
|
}
|
|
|
|
dst_reg::dst_reg()
|
|
{
|
|
init();
|
|
}
|
|
|
|
dst_reg::dst_reg(register_file file, int reg)
|
|
{
|
|
init();
|
|
|
|
this->file = file;
|
|
this->reg = reg;
|
|
}
|
|
|
|
dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
|
|
int writemask)
|
|
{
|
|
init();
|
|
|
|
this->file = file;
|
|
this->reg = reg;
|
|
this->type = brw_type_for_base_type(type);
|
|
this->writemask = writemask;
|
|
}
|
|
|
|
dst_reg::dst_reg(struct brw_reg reg)
|
|
{
|
|
init();
|
|
|
|
this->file = HW_REG;
|
|
this->fixed_hw_reg = reg;
|
|
}
|
|
|
|
dst_reg::dst_reg(src_reg reg)
|
|
{
|
|
init();
|
|
|
|
this->file = reg.file;
|
|
this->reg = reg.reg;
|
|
this->reg_offset = reg.reg_offset;
|
|
this->type = reg.type;
|
|
/* How should we do writemasking when converting from a src_reg? It seems
|
|
* pretty obvious that for src.xxxx the caller wants to write to src.x, but
|
|
* what about for src.wx? Just special-case src.xxxx for now.
|
|
*/
|
|
if (reg.swizzle == BRW_SWIZZLE_XXXX)
|
|
this->writemask = WRITEMASK_X;
|
|
else
|
|
this->writemask = WRITEMASK_XYZW;
|
|
this->reladdr = reg.reladdr;
|
|
this->fixed_hw_reg = reg.fixed_hw_reg;
|
|
}
|
|
|
|
bool
|
|
vec4_instruction::is_send_from_grf()
|
|
{
|
|
switch (opcode) {
|
|
case SHADER_OPCODE_SHADER_TIME_ADD:
|
|
case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool
|
|
vec4_visitor::can_do_source_mods(vec4_instruction *inst)
|
|
{
|
|
if (intel->gen == 6 && inst->is_math())
|
|
return false;
|
|
|
|
if (inst->is_send_from_grf())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Returns how many MRFs an opcode will write over.
|
|
*
|
|
* Note that this is not the 0 or 1 implied writes in an actual gen
|
|
* instruction -- the generate_* functions generate additional MOVs
|
|
* for setup.
|
|
*/
|
|
int
|
|
vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
|
|
{
|
|
if (inst->mlen == 0)
|
|
return 0;
|
|
|
|
switch (inst->opcode) {
|
|
case SHADER_OPCODE_RCP:
|
|
case SHADER_OPCODE_RSQ:
|
|
case SHADER_OPCODE_SQRT:
|
|
case SHADER_OPCODE_EXP2:
|
|
case SHADER_OPCODE_LOG2:
|
|
case SHADER_OPCODE_SIN:
|
|
case SHADER_OPCODE_COS:
|
|
return 1;
|
|
case SHADER_OPCODE_POW:
|
|
return 2;
|
|
case VS_OPCODE_URB_WRITE:
|
|
return 1;
|
|
case VS_OPCODE_PULL_CONSTANT_LOAD:
|
|
return 2;
|
|
case VS_OPCODE_SCRATCH_READ:
|
|
return 2;
|
|
case VS_OPCODE_SCRATCH_WRITE:
|
|
return 3;
|
|
case SHADER_OPCODE_SHADER_TIME_ADD:
|
|
return 0;
|
|
default:
|
|
assert(!"not reached");
|
|
return inst->mlen;
|
|
}
|
|
}
|
|
|
|
bool
|
|
src_reg::equals(src_reg *r)
|
|
{
|
|
return (file == r->file &&
|
|
reg == r->reg &&
|
|
reg_offset == r->reg_offset &&
|
|
type == r->type &&
|
|
negate == r->negate &&
|
|
abs == r->abs &&
|
|
swizzle == r->swizzle &&
|
|
!reladdr && !r->reladdr &&
|
|
memcmp(&fixed_hw_reg, &r->fixed_hw_reg,
|
|
sizeof(fixed_hw_reg)) == 0 &&
|
|
imm.u == r->imm.u);
|
|
}
|
|
|
|
/**
|
|
* Must be called after calculate_live_intervales() to remove unused
|
|
* writes to registers -- register allocation will fail otherwise
|
|
* because something deffed but not used won't be considered to
|
|
* interfere with other regs.
|
|
*/
|
|
bool
|
|
vec4_visitor::dead_code_eliminate()
|
|
{
|
|
bool progress = false;
|
|
int pc = 0;
|
|
|
|
calculate_live_intervals();
|
|
|
|
foreach_list_safe(node, &this->instructions) {
|
|
vec4_instruction *inst = (vec4_instruction *)node;
|
|
|
|
if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) {
|
|
inst->remove();
|
|
progress = true;
|
|
}
|
|
|
|
pc++;
|
|
}
|
|
|
|
if (progress)
|
|
live_intervals_valid = false;
|
|
|
|
return progress;
|
|
}
|
|
|
|
void
|
|
vec4_visitor::split_uniform_registers()
|
|
{
|
|
/* Prior to this, uniforms have been in an array sized according to
|
|
* the number of vector uniforms present, sparsely filled (so an
|
|
* aggregate results in reg indices being skipped over). Now we're
|
|
* going to cut those aggregates up so each .reg index is one
|
|
* vector. The goal is to make elimination of unused uniform
|
|
* components easier later.
|
|
*/
|
|
foreach_list(node, &this->instructions) {
|
|
vec4_instruction *inst = (vec4_instruction *)node;
|
|
|
|
for (int i = 0 ; i < 3; i++) {
|
|
if (inst->src[i].file != UNIFORM)
|
|
continue;
|
|
|
|
assert(!inst->src[i].reladdr);
|
|
|
|
inst->src[i].reg += inst->src[i].reg_offset;
|
|
inst->src[i].reg_offset = 0;
|
|
}
|
|
}
|
|
|
|
/* Update that everything is now vector-sized. */
|
|
for (int i = 0; i < this->uniforms; i++) {
|
|
this->uniform_size[i] = 1;
|
|
}
|
|
}
|
|
|
|
void
|
|
vec4_visitor::pack_uniform_registers()
|
|
{
|
|
bool uniform_used[this->uniforms];
|
|
int new_loc[this->uniforms];
|
|
int new_chan[this->uniforms];
|
|
|
|
memset(uniform_used, 0, sizeof(uniform_used));
|
|
memset(new_loc, 0, sizeof(new_loc));
|
|
memset(new_chan, 0, sizeof(new_chan));
|
|
|
|
/* Find which uniform vectors are actually used by the program. We
|
|
* expect unused vector elements when we've moved array access out
|
|
* to pull constants, and from some GLSL code generators like wine.
|
|
*/
|
|
foreach_list(node, &this->instructions) {
|
|
vec4_instruction *inst = (vec4_instruction *)node;
|
|
|
|
for (int i = 0 ; i < 3; i++) {
|
|
if (inst->src[i].file != UNIFORM)
|
|
continue;
|
|
|
|
uniform_used[inst->src[i].reg] = true;
|
|
}
|
|
}
|
|
|
|
int new_uniform_count = 0;
|
|
|
|
/* Now, figure out a packing of the live uniform vectors into our
|
|
* push constants.
|
|
*/
|
|
for (int src = 0; src < uniforms; src++) {
|
|
int size = this->uniform_vector_size[src];
|
|
|
|
if (!uniform_used[src]) {
|
|
this->uniform_vector_size[src] = 0;
|
|
continue;
|
|
}
|
|
|
|
int dst;
|
|
/* Find the lowest place we can slot this uniform in. */
|
|
for (dst = 0; dst < src; dst++) {
|
|
if (this->uniform_vector_size[dst] + size <= 4)
|
|
break;
|
|
}
|
|
|
|
if (src == dst) {
|
|
new_loc[src] = dst;
|
|
new_chan[src] = 0;
|
|
} else {
|
|
new_loc[src] = dst;
|
|
new_chan[src] = this->uniform_vector_size[dst];
|
|
|
|
/* Move the references to the data */
|
|
for (int j = 0; j < size; j++) {
|
|
prog_data->param[dst * 4 + new_chan[src] + j] =
|
|
prog_data->param[src * 4 + j];
|
|
}
|
|
|
|
this->uniform_vector_size[dst] += size;
|
|
this->uniform_vector_size[src] = 0;
|
|
}
|
|
|
|
new_uniform_count = MAX2(new_uniform_count, dst + 1);
|
|
}
|
|
|
|
this->uniforms = new_uniform_count;
|
|
|
|
/* Now, update the instructions for our repacked uniforms. */
|
|
foreach_list(node, &this->instructions) {
|
|
vec4_instruction *inst = (vec4_instruction *)node;
|
|
|
|
for (int i = 0 ; i < 3; i++) {
|
|
int src = inst->src[i].reg;
|
|
|
|
if (inst->src[i].file != UNIFORM)
|
|
continue;
|
|
|
|
inst->src[i].reg = new_loc[src];
|
|
|
|
int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
|
|
int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
|
|
int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
|
|
int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
|
|
inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool
|
|
src_reg::is_zero() const
|
|
{
|
|
if (file != IMM)
|
|
return false;
|
|
|
|
if (type == BRW_REGISTER_TYPE_F) {
|
|
return imm.f == 0.0;
|
|
} else {
|
|
return imm.i == 0;
|
|
}
|
|
}
|
|
|
|
bool
|
|
src_reg::is_one() const
|
|
{
|
|
if (file != IMM)
|
|
return false;
|
|
|
|
if (type == BRW_REGISTER_TYPE_F) {
|
|
return imm.f == 1.0;
|
|
} else {
|
|
return imm.i == 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
|
|
*
|
|
* While GLSL IR also performs this optimization, we end up with it in
|
|
* our instruction stream for a couple of reasons. One is that we
|
|
* sometimes generate silly instructions, for example in array access
|
|
* where we'll generate "ADD offset, index, base" even if base is 0.
|
|
* The other is that GLSL IR's constant propagation doesn't track the
|
|
* components of aggregates, so some VS patterns (initialize matrix to
|
|
* 0, accumulate in vertex blending factors) end up breaking down to
|
|
* instructions involving 0.
|
|
*/
|
|
bool
|
|
vec4_visitor::opt_algebraic()
|
|
{
|
|
bool progress = false;
|
|
|
|
foreach_list(node, &this->instructions) {
|
|
vec4_instruction *inst = (vec4_instruction *)node;
|
|
|
|
switch (inst->opcode) {
|
|
case BRW_OPCODE_ADD:
|
|
if (inst->src[1].is_zero()) {
|
|
inst->opcode = BRW_OPCODE_MOV;
|
|
inst->src[1] = src_reg();
|
|
progress = true;
|
|
}
|
|
break;
|
|
|
|
case BRW_OPCODE_MUL:
|
|
if (inst->src[1].is_zero()) {
|
|
inst->opcode = BRW_OPCODE_MOV;
|
|
switch (inst->src[0].type) {
|
|
case BRW_REGISTER_TYPE_F:
|
|
inst->src[0] = src_reg(0.0f);
|
|
break;
|
|
case BRW_REGISTER_TYPE_D:
|
|
inst->src[0] = src_reg(0);
|
|
break;
|
|
case BRW_REGISTER_TYPE_UD:
|
|
inst->src[0] = src_reg(0u);
|
|
break;
|
|
default:
|
|
assert(!"not reached");
|
|
inst->src[0] = src_reg(0.0f);
|
|
break;
|
|
}
|
|
inst->src[1] = src_reg();
|
|
progress = true;
|
|
} else if (inst->src[1].is_one()) {
|
|
inst->opcode = BRW_OPCODE_MOV;
|
|
inst->src[1] = src_reg();
|
|
progress = true;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (progress)
|
|
this->live_intervals_valid = false;
|
|
|
|
return progress;
|
|
}
|
|
|
|
/**
|
|
* Only a limited number of hardware registers may be used for push
|
|
* constants, so this turns access to the overflowed constants into
|
|
* pull constants.
|
|
*/
|
|
void
|
|
vec4_visitor::move_push_constants_to_pull_constants()
|
|
{
|
|
int pull_constant_loc[this->uniforms];
|
|
|
|
/* Only allow 32 registers (256 uniform components) as push constants,
|
|
* which is the limit on gen6.
|
|
*/
|
|
int max_uniform_components = 32 * 8;
|
|
if (this->uniforms * 4 <= max_uniform_components)
|
|
return;
|
|
|
|
/* Make some sort of choice as to which uniforms get sent to pull
|
|
* constants. We could potentially do something clever here like
|
|
* look for the most infrequently used uniform vec4s, but leave
|
|
* that for later.
|
|
*/
|
|
for (int i = 0; i < this->uniforms * 4; i += 4) {
|
|
pull_constant_loc[i / 4] = -1;
|
|
|
|
if (i >= max_uniform_components) {
|
|
const float **values = &prog_data->param[i];
|
|
|
|
/* Try to find an existing copy of this uniform in the pull
|
|
* constants if it was part of an array access already.
|
|
*/
|
|
for (unsigned int j = 0; j < prog_data->nr_pull_params; j += 4) {
|
|
int matches;
|
|
|
|
for (matches = 0; matches < 4; matches++) {
|
|
if (prog_data->pull_param[j + matches] != values[matches])
|
|
break;
|
|
}
|
|
|
|
if (matches == 4) {
|
|
pull_constant_loc[i / 4] = j / 4;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pull_constant_loc[i / 4] == -1) {
|
|
assert(prog_data->nr_pull_params % 4 == 0);
|
|
pull_constant_loc[i / 4] = prog_data->nr_pull_params / 4;
|
|
|
|
for (int j = 0; j < 4; j++) {
|
|
prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now actually rewrite usage of the things we've moved to pull
|
|
* constants.
|
|
*/
|
|
foreach_list_safe(node, &this->instructions) {
|
|
vec4_instruction *inst = (vec4_instruction *)node;
|
|
|
|
for (int i = 0 ; i < 3; i++) {
|
|
if (inst->src[i].file != UNIFORM ||
|
|
pull_constant_loc[inst->src[i].reg] == -1)
|
|
continue;
|
|
|
|
int uniform = inst->src[i].reg;
|
|
|
|
dst_reg temp = dst_reg(this, glsl_type::vec4_type);
|
|
|
|
emit_pull_constant_load(inst, temp, inst->src[i],
|
|
pull_constant_loc[uniform]);
|
|
|
|
inst->src[i].file = temp.file;
|
|
inst->src[i].reg = temp.reg;
|
|
inst->src[i].reg_offset = temp.reg_offset;
|
|
inst->src[i].reladdr = NULL;
|
|
}
|
|
}
|
|
|
|
/* Repack push constants to remove the now-unused ones. */
|
|
pack_uniform_registers();
|
|
}
|
|
|
|
/**
|
|
* Sets the dependency control fields on instructions after register
|
|
* allocation and before the generator is run.
|
|
*
|
|
* When you have a sequence of instructions like:
|
|
*
|
|
* DP4 temp.x vertex uniform[0]
|
|
* DP4 temp.y vertex uniform[0]
|
|
* DP4 temp.z vertex uniform[0]
|
|
* DP4 temp.w vertex uniform[0]
|
|
*
|
|
* The hardware doesn't know that it can actually run the later instructions
|
|
* while the previous ones are in flight, producing stalls. However, we have
|
|
* manual fields we can set in the instructions that let it do so.
|
|
*/
|
|
void
|
|
vec4_visitor::opt_set_dependency_control()
|
|
{
|
|
vec4_instruction *last_grf_write[BRW_MAX_GRF];
|
|
uint8_t grf_channels_written[BRW_MAX_GRF];
|
|
vec4_instruction *last_mrf_write[BRW_MAX_GRF];
|
|
uint8_t mrf_channels_written[BRW_MAX_GRF];
|
|
|
|
cfg_t cfg(this);
|
|
|
|
assert(prog_data->total_grf ||
|
|
!"Must be called after register allocation");
|
|
|
|
for (int i = 0; i < cfg.num_blocks; i++) {
|
|
bblock_t *bblock = cfg.blocks[i];
|
|
vec4_instruction *inst;
|
|
|
|
memset(last_grf_write, 0, sizeof(last_grf_write));
|
|
memset(last_mrf_write, 0, sizeof(last_mrf_write));
|
|
|
|
for (inst = (vec4_instruction *)bblock->start;
|
|
inst != (vec4_instruction *)bblock->end->next;
|
|
inst = (vec4_instruction *)inst->next) {
|
|
/* If we read from a register that we were doing dependency control
|
|
* on, don't do dependency control across the read.
|
|
*/
|
|
for (int i = 0; i < 3; i++) {
|
|
int reg = inst->src[i].reg + inst->src[i].reg_offset;
|
|
if (inst->src[i].file == GRF) {
|
|
last_grf_write[reg] = NULL;
|
|
} else if (inst->src[i].file == HW_REG) {
|
|
memset(last_grf_write, 0, sizeof(last_grf_write));
|
|
break;
|
|
}
|
|
assert(inst->src[i].file != MRF);
|
|
}
|
|
|
|
/* In the presence of send messages, totally interrupt dependency
|
|
* control. They're long enough that the chance of dependency
|
|
* control around them just doesn't matter.
|
|
*/
|
|
if (inst->mlen) {
|
|
memset(last_grf_write, 0, sizeof(last_grf_write));
|
|
memset(last_mrf_write, 0, sizeof(last_mrf_write));
|
|
continue;
|
|
}
|
|
|
|
/* It looks like setting dependency control on a predicated
|
|
* instruction hangs the GPU.
|
|
*/
|
|
if (inst->predicate) {
|
|
memset(last_grf_write, 0, sizeof(last_grf_write));
|
|
memset(last_mrf_write, 0, sizeof(last_mrf_write));
|
|
continue;
|
|
}
|
|
|
|
/* Now, see if we can do dependency control for this instruction
|
|
* against a previous one writing to its destination.
|
|
*/
|
|
int reg = inst->dst.reg + inst->dst.reg_offset;
|
|
if (inst->dst.file == GRF) {
|
|
if (last_grf_write[reg] &&
|
|
!(inst->dst.writemask & grf_channels_written[reg])) {
|
|
last_grf_write[reg]->no_dd_clear = true;
|
|
inst->no_dd_check = true;
|
|
} else {
|
|
grf_channels_written[reg] = 0;
|
|
}
|
|
|
|
last_grf_write[reg] = inst;
|
|
grf_channels_written[reg] |= inst->dst.writemask;
|
|
} else if (inst->dst.file == MRF) {
|
|
if (last_mrf_write[reg] &&
|
|
!(inst->dst.writemask & mrf_channels_written[reg])) {
|
|
last_mrf_write[reg]->no_dd_clear = true;
|
|
inst->no_dd_check = true;
|
|
} else {
|
|
mrf_channels_written[reg] = 0;
|
|
}
|
|
|
|
last_mrf_write[reg] = inst;
|
|
mrf_channels_written[reg] |= inst->dst.writemask;
|
|
} else if (inst->dst.reg == HW_REG) {
|
|
if (inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)
|
|
memset(last_grf_write, 0, sizeof(last_grf_write));
|
|
if (inst->dst.fixed_hw_reg.file == BRW_MESSAGE_REGISTER_FILE)
|
|
memset(last_mrf_write, 0, sizeof(last_mrf_write));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool
|
|
vec4_instruction::can_reswizzle_dst(int dst_writemask,
|
|
int swizzle,
|
|
int swizzle_mask)
|
|
{
|
|
/* If this instruction sets anything not referenced by swizzle, then we'd
|
|
* totally break it when we reswizzle.
|
|
*/
|
|
if (dst.writemask & ~swizzle_mask)
|
|
return false;
|
|
|
|
switch (opcode) {
|
|
case BRW_OPCODE_DP4:
|
|
case BRW_OPCODE_DP3:
|
|
case BRW_OPCODE_DP2:
|
|
return true;
|
|
default:
|
|
/* Check if there happens to be no reswizzling required. */
|
|
for (int c = 0; c < 4; c++) {
|
|
int bit = 1 << BRW_GET_SWZ(swizzle, c);
|
|
/* Skip components of the swizzle not used by the dst. */
|
|
if (!(dst_writemask & (1 << c)))
|
|
continue;
|
|
|
|
/* We don't do the reswizzling yet, so just sanity check that we
|
|
* don't have to.
|
|
*/
|
|
if (bit != (1 << c))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* For any channels in the swizzle's source that were populated by this
|
|
* instruction, rewrite the instruction to put the appropriate result directly
|
|
* in those channels.
|
|
*
|
|
* e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
|
|
*/
|
|
void
|
|
vec4_instruction::reswizzle_dst(int dst_writemask, int swizzle)
|
|
{
|
|
int new_writemask = 0;
|
|
|
|
switch (opcode) {
|
|
case BRW_OPCODE_DP4:
|
|
case BRW_OPCODE_DP3:
|
|
case BRW_OPCODE_DP2:
|
|
for (int c = 0; c < 4; c++) {
|
|
int bit = 1 << BRW_GET_SWZ(swizzle, c);
|
|
/* Skip components of the swizzle not used by the dst. */
|
|
if (!(dst_writemask & (1 << c)))
|
|
continue;
|
|
/* If we were populating this component, then populate the
|
|
* corresponding channel of the new dst.
|
|
*/
|
|
if (dst.writemask & bit)
|
|
new_writemask |= (1 << c);
|
|
}
|
|
dst.writemask = new_writemask;
|
|
break;
|
|
default:
|
|
for (int c = 0; c < 4; c++) {
|
|
/* Skip components of the swizzle not used by the dst. */
|
|
if (!(dst_writemask & (1 << c)))
|
|
continue;
|
|
|
|
/* We don't do the reswizzling yet, so just sanity check that we
|
|
* don't have to.
|
|
*/
|
|
assert((1 << BRW_GET_SWZ(swizzle, c)) == (1 << c));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Tries to reduce extra MOV instructions by taking temporary GRFs that get
|
|
* just written and then MOVed into another reg and making the original write
|
|
* of the GRF write directly to the final destination instead.
|
|
*/
|
|
bool
|
|
vec4_visitor::opt_register_coalesce()
|
|
{
|
|
bool progress = false;
|
|
int next_ip = 0;
|
|
|
|
calculate_live_intervals();
|
|
|
|
foreach_list_safe(node, &this->instructions) {
|
|
vec4_instruction *inst = (vec4_instruction *)node;
|
|
|
|
int ip = next_ip;
|
|
next_ip++;
|
|
|
|
if (inst->opcode != BRW_OPCODE_MOV ||
|
|
(inst->dst.file != GRF && inst->dst.file != MRF) ||
|
|
inst->predicate ||
|
|
inst->src[0].file != GRF ||
|
|
inst->dst.type != inst->src[0].type ||
|
|
inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
|
|
continue;
|
|
|
|
bool to_mrf = (inst->dst.file == MRF);
|
|
|
|
/* Can't coalesce this GRF if someone else was going to
|
|
* read it later.
|
|
*/
|
|
if (this->virtual_grf_use[inst->src[0].reg] > ip)
|
|
continue;
|
|
|
|
/* We need to check interference with the final destination between this
|
|
* instruction and the earliest instruction involved in writing the GRF
|
|
* we're eliminating. To do that, keep track of which of our source
|
|
* channels we've seen initialized.
|
|
*/
|
|
bool chans_needed[4] = {false, false, false, false};
|
|
int chans_remaining = 0;
|
|
int swizzle_mask = 0;
|
|
for (int i = 0; i < 4; i++) {
|
|
int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
|
|
|
|
if (!(inst->dst.writemask & (1 << i)))
|
|
continue;
|
|
|
|
swizzle_mask |= (1 << chan);
|
|
|
|
if (!chans_needed[chan]) {
|
|
chans_needed[chan] = true;
|
|
chans_remaining++;
|
|
}
|
|
}
|
|
|
|
/* Now walk up the instruction stream trying to see if we can rewrite
|
|
* everything writing to the temporary to write into the destination
|
|
* instead.
|
|
*/
|
|
vec4_instruction *scan_inst;
|
|
for (scan_inst = (vec4_instruction *)inst->prev;
|
|
scan_inst->prev != NULL;
|
|
scan_inst = (vec4_instruction *)scan_inst->prev) {
|
|
if (scan_inst->dst.file == GRF &&
|
|
scan_inst->dst.reg == inst->src[0].reg &&
|
|
scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
|
|
/* Found something writing to the reg we want to coalesce away. */
|
|
if (to_mrf) {
|
|
/* SEND instructions can't have MRF as a destination. */
|
|
if (scan_inst->mlen)
|
|
break;
|
|
|
|
if (intel->gen == 6) {
|
|
/* gen6 math instructions must have the destination be
|
|
* GRF, so no compute-to-MRF for them.
|
|
*/
|
|
if (scan_inst->is_math()) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we can't handle the swizzle, bail. */
|
|
if (!scan_inst->can_reswizzle_dst(inst->dst.writemask,
|
|
inst->src[0].swizzle,
|
|
swizzle_mask)) {
|
|
break;
|
|
}
|
|
|
|
/* Mark which channels we found unconditional writes for. */
|
|
if (!scan_inst->predicate) {
|
|
for (int i = 0; i < 4; i++) {
|
|
if (scan_inst->dst.writemask & (1 << i) &&
|
|
chans_needed[i]) {
|
|
chans_needed[i] = false;
|
|
chans_remaining--;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (chans_remaining == 0)
|
|
break;
|
|
}
|
|
|
|
/* We don't handle flow control here. Most computation of values
|
|
* that could be coalesced happens just before their use.
|
|
*/
|
|
if (scan_inst->opcode == BRW_OPCODE_DO ||
|
|
scan_inst->opcode == BRW_OPCODE_WHILE ||
|
|
scan_inst->opcode == BRW_OPCODE_ELSE ||
|
|
scan_inst->opcode == BRW_OPCODE_ENDIF) {
|
|
break;
|
|
}
|
|
|
|
/* You can't read from an MRF, so if someone else reads our MRF's
|
|
* source GRF that we wanted to rewrite, that stops us. If it's a
|
|
* GRF we're trying to coalesce to, we don't actually handle
|
|
* rewriting sources so bail in that case as well.
|
|
*/
|
|
bool interfered = false;
|
|
for (int i = 0; i < 3; i++) {
|
|
if (scan_inst->src[i].file == GRF &&
|
|
scan_inst->src[i].reg == inst->src[0].reg &&
|
|
scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
|
|
interfered = true;
|
|
}
|
|
}
|
|
if (interfered)
|
|
break;
|
|
|
|
/* If somebody else writes our destination here, we can't coalesce
|
|
* before that.
|
|
*/
|
|
if (scan_inst->dst.file == inst->dst.file &&
|
|
scan_inst->dst.reg == inst->dst.reg) {
|
|
break;
|
|
}
|
|
|
|
/* Check for reads of the register we're trying to coalesce into. We
|
|
* can't go rewriting instructions above that to put some other value
|
|
* in the register instead.
|
|
*/
|
|
if (to_mrf && scan_inst->mlen > 0) {
|
|
if (inst->dst.reg >= scan_inst->base_mrf &&
|
|
inst->dst.reg < scan_inst->base_mrf + scan_inst->mlen) {
|
|
break;
|
|
}
|
|
} else {
|
|
for (int i = 0; i < 3; i++) {
|
|
if (scan_inst->src[i].file == inst->dst.file &&
|
|
scan_inst->src[i].reg == inst->dst.reg &&
|
|
scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
|
|
interfered = true;
|
|
}
|
|
}
|
|
if (interfered)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (chans_remaining == 0) {
|
|
/* If we've made it here, we have an MOV we want to coalesce out, and
|
|
* a scan_inst pointing to the earliest instruction involved in
|
|
* computing the value. Now go rewrite the instruction stream
|
|
* between the two.
|
|
*/
|
|
|
|
while (scan_inst != inst) {
|
|
if (scan_inst->dst.file == GRF &&
|
|
scan_inst->dst.reg == inst->src[0].reg &&
|
|
scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
|
|
scan_inst->reswizzle_dst(inst->dst.writemask,
|
|
inst->src[0].swizzle);
|
|
scan_inst->dst.file = inst->dst.file;
|
|
scan_inst->dst.reg = inst->dst.reg;
|
|
scan_inst->dst.reg_offset = inst->dst.reg_offset;
|
|
scan_inst->saturate |= inst->saturate;
|
|
}
|
|
scan_inst = (vec4_instruction *)scan_inst->next;
|
|
}
|
|
inst->remove();
|
|
progress = true;
|
|
}
|
|
}
|
|
|
|
if (progress)
|
|
live_intervals_valid = false;
|
|
|
|
return progress;
|
|
}
|
|
|
|
/**
|
|
* Splits virtual GRFs requesting more than one contiguous physical register.
|
|
*
|
|
* We initially create large virtual GRFs for temporary structures, arrays,
|
|
* and matrices, so that the dereference visitor functions can add reg_offsets
|
|
* to work their way down to the actual member being accessed. But when it
|
|
* comes to optimization, we'd like to treat each register as individual
|
|
* storage if possible.
|
|
*
|
|
* So far, the only thing that might prevent splitting is a send message from
|
|
* a GRF on IVB.
|
|
*/
|
|
void
|
|
vec4_visitor::split_virtual_grfs()
|
|
{
|
|
int num_vars = this->virtual_grf_count;
|
|
int new_virtual_grf[num_vars];
|
|
bool split_grf[num_vars];
|
|
|
|
memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
|
|
|
|
/* Try to split anything > 0 sized. */
|
|
for (int i = 0; i < num_vars; i++) {
|
|
split_grf[i] = this->virtual_grf_sizes[i] != 1;
|
|
}
|
|
|
|
/* Check that the instructions are compatible with the registers we're trying
|
|
* to split.
|
|
*/
|
|
foreach_list(node, &this->instructions) {
|
|
vec4_instruction *inst = (vec4_instruction *)node;
|
|
|
|
/* If there's a SEND message loading from a GRF on gen7+, it needs to be
|
|
* contiguous. Assume that the GRF for the SEND is always in src[0].
|
|
*/
|
|
if (inst->is_send_from_grf()) {
|
|
split_grf[inst->src[0].reg] = false;
|
|
}
|
|
}
|
|
|
|
/* Allocate new space for split regs. Note that the virtual
|
|
* numbers will be contiguous.
|
|
*/
|
|
for (int i = 0; i < num_vars; i++) {
|
|
if (!split_grf[i])
|
|
continue;
|
|
|
|
new_virtual_grf[i] = virtual_grf_alloc(1);
|
|
for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
|
|
int reg = virtual_grf_alloc(1);
|
|
assert(reg == new_virtual_grf[i] + j - 1);
|
|
(void) reg;
|
|
}
|
|
this->virtual_grf_sizes[i] = 1;
|
|
}
|
|
|
|
foreach_list(node, &this->instructions) {
|
|
vec4_instruction *inst = (vec4_instruction *)node;
|
|
|
|
if (inst->dst.file == GRF && split_grf[inst->dst.reg] &&
|
|
inst->dst.reg_offset != 0) {
|
|
inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
|
|
inst->dst.reg_offset - 1);
|
|
inst->dst.reg_offset = 0;
|
|
}
|
|
for (int i = 0; i < 3; i++) {
|
|
if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] &&
|
|
inst->src[i].reg_offset != 0) {
|
|
inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
|
|
inst->src[i].reg_offset - 1);
|
|
inst->src[i].reg_offset = 0;
|
|
}
|
|
}
|
|
}
|
|
this->live_intervals_valid = false;
|
|
}
|
|
|
|
void
|
|
vec4_visitor::dump_instruction(backend_instruction *be_inst)
|
|
{
|
|
vec4_instruction *inst = (vec4_instruction *)be_inst;
|
|
|
|
printf("%s ", brw_instruction_name(inst->opcode));
|
|
|
|
switch (inst->dst.file) {
|
|
case GRF:
|
|
printf("vgrf%d.%d", inst->dst.reg, inst->dst.reg_offset);
|
|
break;
|
|
case MRF:
|
|
printf("m%d", inst->dst.reg);
|
|
break;
|
|
case BAD_FILE:
|
|
printf("(null)");
|
|
break;
|
|
default:
|
|
printf("???");
|
|
break;
|
|
}
|
|
if (inst->dst.writemask != WRITEMASK_XYZW) {
|
|
printf(".");
|
|
if (inst->dst.writemask & 1)
|
|
printf("x");
|
|
if (inst->dst.writemask & 2)
|
|
printf("y");
|
|
if (inst->dst.writemask & 4)
|
|
printf("z");
|
|
if (inst->dst.writemask & 8)
|
|
printf("w");
|
|
}
|
|
printf(", ");
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
switch (inst->src[i].file) {
|
|
case GRF:
|
|
printf("vgrf%d", inst->src[i].reg);
|
|
break;
|
|
case ATTR:
|
|
printf("attr%d", inst->src[i].reg);
|
|
break;
|
|
case UNIFORM:
|
|
printf("u%d", inst->src[i].reg);
|
|
break;
|
|
case IMM:
|
|
switch (inst->src[i].type) {
|
|
case BRW_REGISTER_TYPE_F:
|
|
printf("%fF", inst->src[i].imm.f);
|
|
break;
|
|
case BRW_REGISTER_TYPE_D:
|
|
printf("%dD", inst->src[i].imm.i);
|
|
break;
|
|
case BRW_REGISTER_TYPE_UD:
|
|
printf("%uU", inst->src[i].imm.u);
|
|
break;
|
|
default:
|
|
printf("???");
|
|
break;
|
|
}
|
|
break;
|
|
case BAD_FILE:
|
|
printf("(null)");
|
|
break;
|
|
default:
|
|
printf("???");
|
|
break;
|
|
}
|
|
|
|
if (inst->src[i].reg_offset)
|
|
printf(".%d", inst->src[i].reg_offset);
|
|
|
|
static const char *chans[4] = {"x", "y", "z", "w"};
|
|
printf(".");
|
|
for (int c = 0; c < 4; c++) {
|
|
printf("%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
|
|
}
|
|
|
|
if (i < 3)
|
|
printf(", ");
|
|
}
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
/**
|
|
* Replace each register of type ATTR in this->instructions with a reference
|
|
* to a fixed HW register.
|
|
*/
|
|
void
|
|
vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map)
|
|
{
|
|
foreach_list(node, &this->instructions) {
|
|
vec4_instruction *inst = (vec4_instruction *)node;
|
|
|
|
/* We have to support ATTR as a destination for GL_FIXED fixup. */
|
|
if (inst->dst.file == ATTR) {
|
|
int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset];
|
|
|
|
/* All attributes used in the shader need to have been assigned a
|
|
* hardware register by the caller
|
|
*/
|
|
assert(grf != 0);
|
|
|
|
struct brw_reg reg = brw_vec8_grf(grf, 0);
|
|
reg.type = inst->dst.type;
|
|
reg.dw1.bits.writemask = inst->dst.writemask;
|
|
|
|
inst->dst.file = HW_REG;
|
|
inst->dst.fixed_hw_reg = reg;
|
|
}
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
if (inst->src[i].file != ATTR)
|
|
continue;
|
|
|
|
int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset];
|
|
|
|
/* All attributes used in the shader need to have been assigned a
|
|
* hardware register by the caller
|
|
*/
|
|
assert(grf != 0);
|
|
|
|
struct brw_reg reg = brw_vec8_grf(grf, 0);
|
|
reg.dw1.bits.swizzle = inst->src[i].swizzle;
|
|
reg.type = inst->src[i].type;
|
|
if (inst->src[i].abs)
|
|
reg = brw_abs(reg);
|
|
if (inst->src[i].negate)
|
|
reg = negate(reg);
|
|
|
|
inst->src[i].file = HW_REG;
|
|
inst->src[i].fixed_hw_reg = reg;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
vec4_vs_visitor::setup_attributes(int payload_reg)
|
|
{
|
|
int nr_attributes;
|
|
int attribute_map[VERT_ATTRIB_MAX + 1];
|
|
memset(attribute_map, 0, sizeof(attribute_map));
|
|
|
|
nr_attributes = 0;
|
|
for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
|
|
if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
|
|
attribute_map[i] = payload_reg + nr_attributes;
|
|
nr_attributes++;
|
|
}
|
|
}
|
|
|
|
/* VertexID is stored by the VF as the last vertex element, but we
|
|
* don't represent it with a flag in inputs_read, so we call it
|
|
* VERT_ATTRIB_MAX.
|
|
*/
|
|
if (vs_prog_data->uses_vertexid) {
|
|
attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
|
|
nr_attributes++;
|
|
}
|
|
|
|
lower_attributes_to_hw_regs(attribute_map);
|
|
|
|
/* The BSpec says we always have to read at least one thing from
|
|
* the VF, and it appears that the hardware wedges otherwise.
|
|
*/
|
|
if (nr_attributes == 0)
|
|
nr_attributes = 1;
|
|
|
|
prog_data->urb_read_length = (nr_attributes + 1) / 2;
|
|
|
|
unsigned vue_entries =
|
|
MAX2(nr_attributes, prog_data->vue_map.num_slots);
|
|
|
|
if (intel->gen == 6)
|
|
prog_data->urb_entry_size = ALIGN(vue_entries, 8) / 8;
|
|
else
|
|
prog_data->urb_entry_size = ALIGN(vue_entries, 4) / 4;
|
|
|
|
return payload_reg + nr_attributes;
|
|
}
|
|
|
|
int
|
|
vec4_visitor::setup_uniforms(int reg)
|
|
{
|
|
/* The pre-gen6 VS requires that some push constants get loaded no
|
|
* matter what, or the GPU would hang.
|
|
*/
|
|
if (intel->gen < 6 && this->uniforms == 0) {
|
|
this->uniform_vector_size[this->uniforms] = 1;
|
|
|
|
for (unsigned int i = 0; i < 4; i++) {
|
|
unsigned int slot = this->uniforms * 4 + i;
|
|
static float zero = 0.0;
|
|
prog_data->param[slot] = &zero;
|
|
}
|
|
|
|
this->uniforms++;
|
|
reg++;
|
|
} else {
|
|
reg += ALIGN(uniforms, 2) / 2;
|
|
}
|
|
|
|
prog_data->nr_params = this->uniforms * 4;
|
|
|
|
prog_data->curb_read_length = reg - 1;
|
|
|
|
return reg;
|
|
}
|
|
|
|
void
|
|
vec4_visitor::setup_payload(void)
|
|
{
|
|
int reg = 0;
|
|
|
|
/* The payload always contains important data in g0, which contains
|
|
* the URB handles that are passed on to the URB write at the end
|
|
* of the thread. So, we always start push constants at g1.
|
|
*/
|
|
reg++;
|
|
|
|
reg = setup_uniforms(reg);
|
|
|
|
reg = setup_attributes(reg);
|
|
|
|
this->first_non_payload_grf = reg;
|
|
}
|
|
|
|
src_reg
|
|
vec4_visitor::get_timestamp()
|
|
{
|
|
assert(intel->gen >= 7);
|
|
|
|
src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
|
|
BRW_ARF_TIMESTAMP,
|
|
0,
|
|
BRW_REGISTER_TYPE_UD,
|
|
BRW_VERTICAL_STRIDE_0,
|
|
BRW_WIDTH_4,
|
|
BRW_HORIZONTAL_STRIDE_4,
|
|
BRW_SWIZZLE_XYZW,
|
|
WRITEMASK_XYZW));
|
|
|
|
dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
|
|
|
|
vec4_instruction *mov = emit(MOV(dst, ts));
|
|
/* We want to read the 3 fields we care about (mostly field 0, but also 2)
|
|
* even if it's not enabled in the dispatch.
|
|
*/
|
|
mov->force_writemask_all = true;
|
|
|
|
return src_reg(dst);
|
|
}
|
|
|
|
void
|
|
vec4_visitor::emit_shader_time_begin()
|
|
{
|
|
current_annotation = "shader time start";
|
|
shader_start_time = get_timestamp();
|
|
}
|
|
|
|
void
|
|
vec4_visitor::emit_shader_time_end()
|
|
{
|
|
current_annotation = "shader time end";
|
|
src_reg shader_end_time = get_timestamp();
|
|
|
|
|
|
/* Check that there weren't any timestamp reset events (assuming these
|
|
* were the only two timestamp reads that happened).
|
|
*/
|
|
src_reg reset_end = shader_end_time;
|
|
reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
|
|
vec4_instruction *test = emit(AND(dst_null_d(), reset_end, src_reg(1u)));
|
|
test->conditional_mod = BRW_CONDITIONAL_Z;
|
|
|
|
emit(IF(BRW_PREDICATE_NORMAL));
|
|
|
|
/* Take the current timestamp and get the delta. */
|
|
shader_start_time.negate = true;
|
|
dst_reg diff = dst_reg(this, glsl_type::uint_type);
|
|
emit(ADD(diff, shader_start_time, shader_end_time));
|
|
|
|
/* If there were no instructions between the two timestamp gets, the diff
|
|
* is 2 cycles. Remove that overhead, so I can forget about that when
|
|
* trying to determine the time taken for single instructions.
|
|
*/
|
|
emit(ADD(diff, src_reg(diff), src_reg(-2u)));
|
|
|
|
emit_shader_time_write(ST_VS, src_reg(diff));
|
|
emit_shader_time_write(ST_VS_WRITTEN, src_reg(1u));
|
|
emit(BRW_OPCODE_ELSE);
|
|
emit_shader_time_write(ST_VS_RESET, src_reg(1u));
|
|
emit(BRW_OPCODE_ENDIF);
|
|
}
|
|
|
|
void
|
|
vec4_visitor::emit_shader_time_write(enum shader_time_shader_type type,
|
|
src_reg value)
|
|
{
|
|
int shader_time_index =
|
|
brw_get_shader_time_index(brw, shader_prog, prog, type);
|
|
|
|
dst_reg dst =
|
|
dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
|
|
|
|
dst_reg offset = dst;
|
|
dst_reg time = dst;
|
|
time.reg_offset++;
|
|
|
|
offset.type = BRW_REGISTER_TYPE_UD;
|
|
emit(MOV(offset, src_reg(shader_time_index * SHADER_TIME_STRIDE)));
|
|
|
|
time.type = BRW_REGISTER_TYPE_UD;
|
|
emit(MOV(time, src_reg(value)));
|
|
|
|
emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
|
|
}
|
|
|
|
bool
|
|
vec4_visitor::run()
|
|
{
|
|
sanity_param_count = prog->Parameters->NumParameters;
|
|
|
|
if (INTEL_DEBUG & DEBUG_SHADER_TIME)
|
|
emit_shader_time_begin();
|
|
|
|
emit_prolog();
|
|
|
|
/* Generate VS IR for main(). (the visitor only descends into
|
|
* functions called "main").
|
|
*/
|
|
if (shader) {
|
|
visit_instructions(shader->ir);
|
|
} else {
|
|
emit_program_code();
|
|
}
|
|
base_ir = NULL;
|
|
|
|
if (key->userclip_active && !key->uses_clip_distance)
|
|
setup_uniform_clipplane_values();
|
|
|
|
emit_thread_end();
|
|
|
|
/* Before any optimization, push array accesses out to scratch
|
|
* space where we need them to be. This pass may allocate new
|
|
* virtual GRFs, so we want to do it early. It also makes sure
|
|
* that we have reladdr computations available for CSE, since we'll
|
|
* often do repeated subexpressions for those.
|
|
*/
|
|
if (shader) {
|
|
move_grf_array_access_to_scratch();
|
|
move_uniform_array_access_to_pull_constants();
|
|
} else {
|
|
/* The ARB_vertex_program frontend emits pull constant loads directly
|
|
* rather than using reladdr, so we don't need to walk through all the
|
|
* instructions looking for things to move. There isn't anything.
|
|
*
|
|
* We do still need to split things to vec4 size.
|
|
*/
|
|
split_uniform_registers();
|
|
}
|
|
pack_uniform_registers();
|
|
move_push_constants_to_pull_constants();
|
|
split_virtual_grfs();
|
|
|
|
bool progress;
|
|
do {
|
|
progress = false;
|
|
progress = dead_code_eliminate() || progress;
|
|
progress = opt_copy_propagation() || progress;
|
|
progress = opt_algebraic() || progress;
|
|
progress = opt_register_coalesce() || progress;
|
|
} while (progress);
|
|
|
|
|
|
if (failed)
|
|
return false;
|
|
|
|
setup_payload();
|
|
|
|
if (false) {
|
|
/* Debug of register spilling: Go spill everything. */
|
|
const int grf_count = virtual_grf_count;
|
|
float spill_costs[virtual_grf_count];
|
|
bool no_spill[virtual_grf_count];
|
|
evaluate_spill_costs(spill_costs, no_spill);
|
|
for (int i = 0; i < grf_count; i++) {
|
|
if (no_spill[i])
|
|
continue;
|
|
spill_reg(i);
|
|
}
|
|
}
|
|
|
|
while (!reg_allocate()) {
|
|
if (failed)
|
|
break;
|
|
}
|
|
|
|
opt_set_dependency_control();
|
|
|
|
/* If any state parameters were appended, then ParameterValues could have
|
|
* been realloced, in which case the driver uniform storage set up by
|
|
* _mesa_associate_uniform_storage() would point to freed memory. Make
|
|
* sure that didn't happen.
|
|
*/
|
|
assert(sanity_param_count == prog->Parameters->NumParameters);
|
|
|
|
return !failed;
|
|
}
|
|
|
|
} /* namespace brw */
|
|
|
|
extern "C" {
|
|
|
|
/**
|
|
* Compile a vertex shader.
|
|
*
|
|
* Returns the final assembly and the program's size.
|
|
*/
|
|
const unsigned *
|
|
brw_vs_emit(struct brw_context *brw,
|
|
struct gl_shader_program *prog,
|
|
struct brw_vs_compile *c,
|
|
struct brw_vs_prog_data *prog_data,
|
|
void *mem_ctx,
|
|
unsigned *final_assembly_size)
|
|
{
|
|
struct intel_context *intel = &brw->intel;
|
|
bool start_busy = false;
|
|
float start_time = 0;
|
|
|
|
if (unlikely(intel->perf_debug)) {
|
|
start_busy = (intel->batch.last_bo &&
|
|
drm_intel_bo_busy(intel->batch.last_bo));
|
|
start_time = get_time();
|
|
}
|
|
|
|
struct brw_shader *shader = NULL;
|
|
if (prog)
|
|
shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX];
|
|
|
|
if (unlikely(INTEL_DEBUG & DEBUG_VS)) {
|
|
if (prog) {
|
|
printf("GLSL IR for native vertex shader %d:\n", prog->Name);
|
|
_mesa_print_ir(shader->ir, NULL);
|
|
printf("\n\n");
|
|
} else {
|
|
printf("ARB_vertex_program %d for native vertex shader\n",
|
|
c->vp->program.Base.Id);
|
|
_mesa_print_program(&c->vp->program.Base);
|
|
}
|
|
}
|
|
|
|
vec4_vs_visitor v(brw, c, prog_data, prog, shader, mem_ctx);
|
|
if (!v.run()) {
|
|
if (prog) {
|
|
prog->LinkStatus = false;
|
|
ralloc_strcat(&prog->InfoLog, v.fail_msg);
|
|
}
|
|
|
|
_mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
|
|
v.fail_msg);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
vec4_generator g(brw, prog, &c->vp->program.Base, mem_ctx,
|
|
INTEL_DEBUG & DEBUG_VS);
|
|
const unsigned *generated =g.generate_assembly(&v.instructions,
|
|
final_assembly_size);
|
|
|
|
if (unlikely(intel->perf_debug) && shader) {
|
|
if (shader->compiled_once) {
|
|
brw_vs_debug_recompile(brw, prog, &c->key);
|
|
}
|
|
if (start_busy && !drm_intel_bo_busy(intel->batch.last_bo)) {
|
|
perf_debug("VS compile took %.03f ms and stalled the GPU\n",
|
|
(get_time() - start_time) * 1000);
|
|
}
|
|
shader->compiled_once = true;
|
|
}
|
|
|
|
return generated;
|
|
}
|
|
|
|
} /* extern "C" */
|