Files
third_party_mesa3d/src/amd/vulkan/radv_pipeline.c
Georg Lehmann 5e6e3c7f89 nir: rename to nir_opt_16bit_tex_image
Not sure what I was thinking when I wrote this pass (probably not much),
but opt makes more sense and matches other nir passes.
Fold is usually used for constants, and this pass handles more than those.

Acked-By: Mike Blumenkrantz <michael.blumenkrantz@gmail.com>
Reviewed-by: Marek Olšák <marek.olsak@amd.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/28662>
2024-04-11 06:10:33 +00:00

1219 lines
44 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* SPDX-License-Identifier: MIT
*/
#include "meta/radv_meta.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "nir/nir_serialize.h"
#include "nir/radv_nir.h"
#include "spirv/nir_spirv.h"
#include "util/disk_cache.h"
#include "util/mesa-sha1.h"
#include "util/os_time.h"
#include "util/u_atomic.h"
#include "radv_cs.h"
#include "radv_debug.h"
#include "radv_pipeline_rt.h"
#include "radv_rmv.h"
#include "radv_shader.h"
#include "radv_shader_args.h"
#include "vk_pipeline.h"
#include "vk_render_pass.h"
#include "vk_util.h"
#include "util/u_debug.h"
#include "ac_binary.h"
#include "ac_nir.h"
#include "ac_shader_util.h"
#include "aco_interface.h"
#include "sid.h"
#include "vk_format.h"
#include "vk_nir_convert_ycbcr.h"
#include "vk_ycbcr_conversion.h"
bool
radv_shader_need_indirect_descriptor_sets(const struct radv_shader *shader)
{
const struct radv_userdata_info *loc = radv_get_user_sgpr(shader, AC_UD_INDIRECT_DESCRIPTOR_SETS);
return loc->sgpr_idx != -1;
}
bool
radv_pipeline_capture_shaders(const struct radv_device *device, VkPipelineCreateFlags2KHR flags)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
return (flags & VK_PIPELINE_CREATE_2_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR) ||
(instance->debug_flags & RADV_DEBUG_DUMP_SHADERS) || device->keep_shader_info;
}
bool
radv_pipeline_capture_shader_stats(const struct radv_device *device, VkPipelineCreateFlags2KHR flags)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
return (flags & VK_PIPELINE_CREATE_2_CAPTURE_STATISTICS_BIT_KHR) ||
(instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) || device->keep_shader_info;
}
void
radv_pipeline_init(struct radv_device *device, struct radv_pipeline *pipeline, enum radv_pipeline_type type)
{
vk_object_base_init(&device->vk, &pipeline->base, VK_OBJECT_TYPE_PIPELINE);
pipeline->type = type;
}
void
radv_pipeline_destroy(struct radv_device *device, struct radv_pipeline *pipeline,
const VkAllocationCallbacks *allocator)
{
if (pipeline->cache_object)
vk_pipeline_cache_object_unref(&device->vk, pipeline->cache_object);
switch (pipeline->type) {
case RADV_PIPELINE_GRAPHICS:
radv_destroy_graphics_pipeline(device, radv_pipeline_to_graphics(pipeline));
break;
case RADV_PIPELINE_GRAPHICS_LIB:
radv_destroy_graphics_lib_pipeline(device, radv_pipeline_to_graphics_lib(pipeline));
break;
case RADV_PIPELINE_COMPUTE:
radv_destroy_compute_pipeline(device, radv_pipeline_to_compute(pipeline));
break;
case RADV_PIPELINE_RAY_TRACING:
radv_destroy_ray_tracing_pipeline(device, radv_pipeline_to_ray_tracing(pipeline));
break;
default:
unreachable("invalid pipeline type");
}
if (pipeline->cs.buf)
free(pipeline->cs.buf);
radv_rmv_log_resource_destroy(device, (uint64_t)radv_pipeline_to_handle(pipeline));
vk_object_base_finish(&pipeline->base);
vk_free2(&device->vk.alloc, allocator, pipeline);
}
VKAPI_ATTR void VKAPI_CALL
radv_DestroyPipeline(VkDevice _device, VkPipeline _pipeline, const VkAllocationCallbacks *pAllocator)
{
VK_FROM_HANDLE(radv_device, device, _device);
VK_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
if (!_pipeline)
return;
radv_pipeline_destroy(device, pipeline, pAllocator);
}
static enum radv_buffer_robustness
radv_convert_buffer_robustness(const struct radv_device *device, VkPipelineRobustnessBufferBehaviorEXT behaviour)
{
switch (behaviour) {
case VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DEVICE_DEFAULT_EXT:
return device->buffer_robustness;
case VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT:
return RADV_BUFFER_ROBUSTNESS_DISABLED;
case VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT:
return RADV_BUFFER_ROBUSTNESS_1;
case VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT:
return RADV_BUFFER_ROBUSTNESS_2;
default:
unreachable("Invalid pipeline robustness behavior");
}
}
struct radv_shader_stage_key
radv_pipeline_get_shader_key(const struct radv_device *device, const VkPipelineShaderStageCreateInfo *stage,
VkPipelineCreateFlags2KHR flags, const void *pNext)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
gl_shader_stage s = vk_to_mesa_shader_stage(stage->stage);
struct radv_shader_stage_key key = {0};
key.keep_statistic_info = radv_pipeline_capture_shader_stats(device, flags);
if (flags & VK_PIPELINE_CREATE_2_DISABLE_OPTIMIZATION_BIT_KHR)
key.optimisations_disabled = 1;
if (stage->stage & RADV_GRAPHICS_STAGE_BITS) {
key.version = instance->drirc.override_graphics_shader_version;
} else if (stage->stage & RADV_RT_STAGE_BITS) {
key.version = instance->drirc.override_ray_tracing_shader_version;
} else {
assert(stage->stage == VK_SHADER_STAGE_COMPUTE_BIT);
key.version = instance->drirc.override_compute_shader_version;
}
const VkPipelineRobustnessCreateInfoEXT *pipeline_robust_info =
vk_find_struct_const(pNext, PIPELINE_ROBUSTNESS_CREATE_INFO_EXT);
const VkPipelineRobustnessCreateInfoEXT *stage_robust_info =
vk_find_struct_const(stage->pNext, PIPELINE_ROBUSTNESS_CREATE_INFO_EXT);
enum radv_buffer_robustness storage_robustness = device->buffer_robustness;
enum radv_buffer_robustness uniform_robustness = device->buffer_robustness;
enum radv_buffer_robustness vertex_robustness = device->buffer_robustness;
const VkPipelineRobustnessCreateInfoEXT *robust_info = stage_robust_info ? stage_robust_info : pipeline_robust_info;
if (robust_info) {
storage_robustness = radv_convert_buffer_robustness(device, robust_info->storageBuffers);
uniform_robustness = radv_convert_buffer_robustness(device, robust_info->uniformBuffers);
vertex_robustness = radv_convert_buffer_robustness(device, robust_info->vertexInputs);
}
if (storage_robustness >= RADV_BUFFER_ROBUSTNESS_2)
key.storage_robustness2 = 1;
if (uniform_robustness >= RADV_BUFFER_ROBUSTNESS_2)
key.uniform_robustness2 = 1;
if (s == MESA_SHADER_VERTEX && vertex_robustness >= RADV_BUFFER_ROBUSTNESS_1)
key.vertex_robustness1 = 1u;
const VkPipelineShaderStageRequiredSubgroupSizeCreateInfo *const subgroup_size =
vk_find_struct_const(stage->pNext, PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO);
if (subgroup_size) {
if (subgroup_size->requiredSubgroupSize == 32)
key.subgroup_required_size = RADV_REQUIRED_WAVE32;
else if (subgroup_size->requiredSubgroupSize == 64)
key.subgroup_required_size = RADV_REQUIRED_WAVE64;
else
unreachable("Unsupported required subgroup size.");
}
if (stage->flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT) {
key.subgroup_require_full = 1;
}
return key;
}
void
radv_pipeline_stage_init(const VkPipelineShaderStageCreateInfo *sinfo,
const struct radv_pipeline_layout *pipeline_layout,
const struct radv_shader_stage_key *stage_key, struct radv_shader_stage *out_stage)
{
const VkShaderModuleCreateInfo *minfo = vk_find_struct_const(sinfo->pNext, SHADER_MODULE_CREATE_INFO);
const VkPipelineShaderStageModuleIdentifierCreateInfoEXT *iinfo =
vk_find_struct_const(sinfo->pNext, PIPELINE_SHADER_STAGE_MODULE_IDENTIFIER_CREATE_INFO_EXT);
if (sinfo->module == VK_NULL_HANDLE && !minfo && !iinfo)
return;
memset(out_stage, 0, sizeof(*out_stage));
out_stage->stage = vk_to_mesa_shader_stage(sinfo->stage);
out_stage->next_stage = MESA_SHADER_NONE;
out_stage->entrypoint = sinfo->pName;
out_stage->spec_info = sinfo->pSpecializationInfo;
out_stage->feedback.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
out_stage->key = *stage_key;
if (sinfo->module != VK_NULL_HANDLE) {
struct vk_shader_module *module = vk_shader_module_from_handle(sinfo->module);
out_stage->spirv.data = module->data;
out_stage->spirv.size = module->size;
out_stage->spirv.object = &module->base;
if (module->nir)
out_stage->internal_nir = module->nir;
} else if (minfo) {
out_stage->spirv.data = (const char *)minfo->pCode;
out_stage->spirv.size = minfo->codeSize;
}
radv_shader_layout_init(pipeline_layout, out_stage->stage, &out_stage->layout);
vk_pipeline_hash_shader_stage(sinfo, NULL, out_stage->shader_sha1);
}
void
radv_shader_layout_init(const struct radv_pipeline_layout *pipeline_layout, gl_shader_stage stage,
struct radv_shader_layout *layout)
{
layout->num_sets = pipeline_layout->num_sets;
for (unsigned i = 0; i < pipeline_layout->num_sets; i++) {
layout->set[i].layout = pipeline_layout->set[i].layout;
layout->set[i].dynamic_offset_start = pipeline_layout->set[i].dynamic_offset_start;
}
layout->push_constant_size = pipeline_layout->push_constant_size;
layout->use_dynamic_descriptors = pipeline_layout->dynamic_offset_count &&
(pipeline_layout->dynamic_shader_stages & mesa_to_vk_shader_stage(stage));
}
static const struct vk_ycbcr_conversion_state *
ycbcr_conversion_lookup(const void *data, uint32_t set, uint32_t binding, uint32_t array_index)
{
const struct radv_shader_layout *layout = data;
const struct radv_descriptor_set_layout *set_layout = layout->set[set].layout;
const struct vk_ycbcr_conversion_state *ycbcr_samplers = radv_immutable_ycbcr_samplers(set_layout, binding);
if (!ycbcr_samplers)
return NULL;
return ycbcr_samplers + array_index;
}
bool
radv_mem_vectorize_callback(unsigned align_mul, unsigned align_offset, unsigned bit_size, unsigned num_components,
nir_intrinsic_instr *low, nir_intrinsic_instr *high, void *data)
{
if (num_components > 4)
return false;
bool is_scratch = false;
switch (low->intrinsic) {
case nir_intrinsic_load_stack:
case nir_intrinsic_load_scratch:
case nir_intrinsic_store_stack:
case nir_intrinsic_store_scratch:
is_scratch = true;
break;
default:
break;
}
/* >128 bit loads are split except with SMEM. On GFX6-8, >32 bit scratch loads are split. */
enum amd_gfx_level gfx_level = *(enum amd_gfx_level *)data;
if (bit_size * num_components > (is_scratch && gfx_level <= GFX8 ? 32 : 128))
return false;
uint32_t align;
if (align_offset)
align = 1 << (ffs(align_offset) - 1);
else
align = align_mul;
switch (low->intrinsic) {
case nir_intrinsic_load_global:
case nir_intrinsic_load_global_constant:
case nir_intrinsic_store_global:
case nir_intrinsic_store_ssbo:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_push_constant:
case nir_intrinsic_load_stack:
case nir_intrinsic_load_scratch:
case nir_intrinsic_store_stack:
case nir_intrinsic_store_scratch: {
unsigned max_components;
if (align % 4 == 0)
max_components = NIR_MAX_VEC_COMPONENTS;
else if (align % 2 == 0)
max_components = 16u / bit_size;
else
max_components = 8u / bit_size;
return (align % (bit_size / 8u)) == 0 && num_components <= max_components;
}
case nir_intrinsic_load_deref:
case nir_intrinsic_store_deref:
assert(nir_deref_mode_is(nir_src_as_deref(low->src[0]), nir_var_mem_shared));
FALLTHROUGH;
case nir_intrinsic_load_shared:
case nir_intrinsic_store_shared:
if (bit_size * num_components == 96) { /* 96 bit loads require 128 bit alignment and are split otherwise */
return align % 16 == 0;
} else if (bit_size == 16 && (align % 4)) {
/* AMD hardware can't do 2-byte aligned f16vec2 loads, but they are useful for ALU
* vectorization, because our vectorizer requires the scalar IR to already contain vectors.
*/
return (align % 2 == 0) && num_components <= 2;
} else {
if (num_components == 3) {
/* AMD hardware can't do 3-component loads except for 96-bit loads, handled above. */
return false;
}
unsigned req = bit_size * num_components;
if (req == 64 || req == 128) /* 64-bit and 128-bit loads can use ds_read2_b{32,64} */
req /= 2u;
return align % (req / 8u) == 0;
}
default:
return false;
}
return false;
}
static unsigned
lower_bit_size_callback(const nir_instr *instr, void *_)
{
struct radv_device *device = _;
const struct radv_physical_device *pdev = radv_device_physical(device);
enum amd_gfx_level chip = pdev->info.gfx_level;
if (instr->type != nir_instr_type_alu)
return 0;
nir_alu_instr *alu = nir_instr_as_alu(instr);
/* If an instruction is not scalarized by this point,
* it can be emitted as packed instruction */
if (alu->def.num_components > 1)
return 0;
if (alu->def.bit_size & (8 | 16)) {
unsigned bit_size = alu->def.bit_size;
switch (alu->op) {
case nir_op_bitfield_select:
case nir_op_imul_high:
case nir_op_umul_high:
case nir_op_uadd_carry:
case nir_op_usub_borrow:
return 32;
case nir_op_iabs:
case nir_op_imax:
case nir_op_umax:
case nir_op_imin:
case nir_op_umin:
case nir_op_ishr:
case nir_op_ushr:
case nir_op_ishl:
case nir_op_isign:
case nir_op_uadd_sat:
case nir_op_usub_sat:
return (bit_size == 8 || !(chip >= GFX8 && alu->def.divergent)) ? 32 : 0;
case nir_op_iadd_sat:
case nir_op_isub_sat:
return bit_size == 8 || !alu->def.divergent ? 32 : 0;
default:
return 0;
}
}
if (nir_src_bit_size(alu->src[0].src) & (8 | 16)) {
unsigned bit_size = nir_src_bit_size(alu->src[0].src);
switch (alu->op) {
case nir_op_bit_count:
case nir_op_find_lsb:
case nir_op_ufind_msb:
return 32;
case nir_op_ilt:
case nir_op_ige:
case nir_op_ieq:
case nir_op_ine:
case nir_op_ult:
case nir_op_uge:
case nir_op_bitz:
case nir_op_bitnz:
return (bit_size == 8 || !(chip >= GFX8 && alu->def.divergent)) ? 32 : 0;
default:
return 0;
}
}
return 0;
}
static uint8_t
opt_vectorize_callback(const nir_instr *instr, const void *_)
{
if (instr->type != nir_instr_type_alu)
return 0;
const struct radv_device *device = _;
const struct radv_physical_device *pdev = radv_device_physical(device);
enum amd_gfx_level chip = pdev->info.gfx_level;
if (chip < GFX9)
return 1;
const nir_alu_instr *alu = nir_instr_as_alu(instr);
const unsigned bit_size = alu->def.bit_size;
if (bit_size != 16)
return 1;
return aco_nir_op_supports_packed_math_16bit(alu) ? 2 : 1;
}
static nir_component_mask_t
non_uniform_access_callback(const nir_src *src, void *_)
{
if (src->ssa->num_components == 1)
return 0x1;
return nir_chase_binding(*src).success ? 0x2 : 0x3;
}
void
radv_postprocess_nir(struct radv_device *device, const struct radv_graphics_state_key *gfx_state,
struct radv_shader_stage *stage)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
enum amd_gfx_level gfx_level = pdev->info.gfx_level;
bool progress;
/* Wave and workgroup size should already be filled. */
assert(stage->info.wave_size && stage->info.workgroup_size);
if (stage->stage == MESA_SHADER_FRAGMENT) {
if (!stage->key.optimisations_disabled) {
NIR_PASS(_, stage->nir, nir_opt_cse);
}
NIR_PASS(_, stage->nir, radv_nir_lower_fs_intrinsics, stage, gfx_state);
}
enum nir_lower_non_uniform_access_type lower_non_uniform_access_types =
nir_lower_non_uniform_ubo_access | nir_lower_non_uniform_ssbo_access | nir_lower_non_uniform_texture_access |
nir_lower_non_uniform_image_access;
/* In practice, most shaders do not have non-uniform-qualified
* accesses (see
* https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17558#note_1475069)
* thus a cheaper and likely to fail check is run first.
*/
if (nir_has_non_uniform_access(stage->nir, lower_non_uniform_access_types)) {
if (!stage->key.optimisations_disabled) {
NIR_PASS(_, stage->nir, nir_opt_non_uniform_access);
}
if (!radv_use_llvm_for_stage(pdev, stage->stage)) {
nir_lower_non_uniform_access_options options = {
.types = lower_non_uniform_access_types,
.callback = &non_uniform_access_callback,
.callback_data = NULL,
};
NIR_PASS(_, stage->nir, nir_lower_non_uniform_access, &options);
}
}
NIR_PASS(_, stage->nir, nir_lower_memory_model);
nir_load_store_vectorize_options vectorize_opts = {
.modes = nir_var_mem_ssbo | nir_var_mem_ubo | nir_var_mem_push_const | nir_var_mem_shared | nir_var_mem_global |
nir_var_shader_temp,
.callback = radv_mem_vectorize_callback,
.cb_data = &gfx_level,
.robust_modes = 0,
/* On GFX6, read2/write2 is out-of-bounds if the offset register is negative, even if
* the final offset is not.
*/
.has_shared2_amd = gfx_level >= GFX7,
};
if (stage->key.uniform_robustness2)
vectorize_opts.robust_modes |= nir_var_mem_ubo;
if (stage->key.storage_robustness2)
vectorize_opts.robust_modes |= nir_var_mem_ssbo;
if (!stage->key.optimisations_disabled) {
progress = false;
NIR_PASS(progress, stage->nir, nir_opt_load_store_vectorize, &vectorize_opts);
if (progress) {
NIR_PASS(_, stage->nir, nir_copy_prop);
NIR_PASS(_, stage->nir, nir_opt_shrink_stores, !instance->drirc.disable_shrink_image_store);
/* Gather info again, to update whether 8/16-bit are used. */
nir_shader_gather_info(stage->nir, nir_shader_get_entrypoint(stage->nir));
}
}
NIR_PASS(_, stage->nir, ac_nir_lower_subdword_loads,
(ac_nir_lower_subdword_options){.modes_1_comp = nir_var_mem_ubo,
.modes_N_comps = nir_var_mem_ubo | nir_var_mem_ssbo});
progress = false;
NIR_PASS(progress, stage->nir, nir_vk_lower_ycbcr_tex, ycbcr_conversion_lookup, &stage->layout);
/* Gather info in the case that nir_vk_lower_ycbcr_tex might have emitted resinfo instructions. */
if (progress)
nir_shader_gather_info(stage->nir, nir_shader_get_entrypoint(stage->nir));
bool fix_derivs_in_divergent_cf =
stage->stage == MESA_SHADER_FRAGMENT && !radv_use_llvm_for_stage(pdev, stage->stage);
if (fix_derivs_in_divergent_cf) {
NIR_PASS(_, stage->nir, nir_convert_to_lcssa, true, true);
nir_divergence_analysis(stage->nir);
}
NIR_PASS(_, stage->nir, ac_nir_lower_tex,
&(ac_nir_lower_tex_options){
.gfx_level = gfx_level,
.lower_array_layer_round_even = !pdev->info.conformant_trunc_coord || device->disable_trunc_coord,
.fix_derivs_in_divergent_cf = fix_derivs_in_divergent_cf,
.max_wqm_vgprs = 64, // TODO: improve spiller and RA support for linear VGPRs
});
if (fix_derivs_in_divergent_cf)
NIR_PASS(_, stage->nir, nir_opt_remove_phis); /* cleanup LCSSA phis */
if (stage->nir->info.uses_resource_info_query)
NIR_PASS(_, stage->nir, ac_nir_lower_resinfo, gfx_level);
NIR_PASS_V(stage->nir, radv_nir_apply_pipeline_layout, device, stage);
if (!stage->key.optimisations_disabled) {
NIR_PASS(_, stage->nir, nir_opt_shrink_vectors, true);
}
NIR_PASS(_, stage->nir, nir_lower_alu_width, opt_vectorize_callback, device);
nir_move_options sink_opts = nir_move_const_undef | nir_move_copies;
if (!stage->key.optimisations_disabled) {
if (stage->stage != MESA_SHADER_FRAGMENT || !pdev->cache_key.disable_sinking_load_input_fs)
sink_opts |= nir_move_load_input;
NIR_PASS(_, stage->nir, nir_opt_sink, sink_opts);
NIR_PASS(_, stage->nir, nir_opt_move, nir_move_load_input | nir_move_const_undef | nir_move_copies);
}
/* Lower VS inputs. We need to do this after nir_opt_sink, because
* load_input can be reordered, but buffer loads can't.
*/
if (stage->stage == MESA_SHADER_VERTEX) {
NIR_PASS(_, stage->nir, radv_nir_lower_vs_inputs, stage, gfx_state, &pdev->info);
}
/* Lower I/O intrinsics to memory instructions. */
bool is_last_vgt_stage = radv_is_last_vgt_stage(stage);
bool io_to_mem = radv_nir_lower_io_to_mem(device, stage);
bool lowered_ngg = stage->info.is_ngg && is_last_vgt_stage;
if (lowered_ngg) {
radv_lower_ngg(device, stage, gfx_state);
} else if (is_last_vgt_stage) {
if (stage->stage != MESA_SHADER_GEOMETRY) {
NIR_PASS_V(stage->nir, ac_nir_lower_legacy_vs, gfx_level,
stage->info.outinfo.clip_dist_mask | stage->info.outinfo.cull_dist_mask,
stage->info.outinfo.vs_output_param_offset, stage->info.outinfo.param_exports,
stage->info.outinfo.export_prim_id, false, false, false, stage->info.force_vrs_per_vertex);
} else {
bool emulate_ngg_gs_query_pipeline_stat = pdev->emulate_ngg_gs_query_pipeline_stat;
ac_nir_gs_output_info gs_out_info = {
.streams = stage->info.gs.output_streams,
.usage_mask = stage->info.gs.output_usage_mask,
};
NIR_PASS_V(stage->nir, ac_nir_lower_legacy_gs, false, emulate_ngg_gs_query_pipeline_stat, &gs_out_info);
}
} else if (stage->stage == MESA_SHADER_FRAGMENT) {
ac_nir_lower_ps_options options = {
.gfx_level = gfx_level,
.family = pdev->info.family,
.use_aco = !radv_use_llvm_for_stage(pdev, stage->stage),
.uses_discard = true,
.alpha_func = COMPARE_FUNC_ALWAYS,
.no_color_export = stage->info.has_epilog,
.no_depth_export = stage->info.ps.exports_mrtz_via_epilog,
.bc_optimize_for_persp = G_0286CC_PERSP_CENTER_ENA(stage->info.ps.spi_ps_input) &&
G_0286CC_PERSP_CENTROID_ENA(stage->info.ps.spi_ps_input),
.bc_optimize_for_linear = G_0286CC_LINEAR_CENTER_ENA(stage->info.ps.spi_ps_input) &&
G_0286CC_LINEAR_CENTROID_ENA(stage->info.ps.spi_ps_input),
};
if (!options.no_color_export) {
options.dual_src_blend_swizzle = gfx_state->ps.epilog.mrt0_is_dual_src && gfx_level >= GFX11;
options.color_is_int8 = gfx_state->ps.epilog.color_is_int8;
options.color_is_int10 = gfx_state->ps.epilog.color_is_int10;
options.enable_mrt_output_nan_fixup =
gfx_state->ps.epilog.enable_mrt_output_nan_fixup && !stage->nir->info.internal;
/* Need to filter out unwritten color slots. */
options.spi_shader_col_format = gfx_state->ps.epilog.spi_shader_col_format & stage->info.ps.colors_written;
options.alpha_to_one = gfx_state->ps.epilog.alpha_to_one;
}
if (!options.no_depth_export) {
/* Compared to gfx_state.ps.alpha_to_coverage_via_mrtz,
* radv_shader_info.ps.writes_mrt0_alpha need any depth/stencil/sample_mask exist.
* ac_nir_lower_ps() require this field to reflect whether alpha via mrtz is really
* present.
*/
options.alpha_to_coverage_via_mrtz = stage->info.ps.writes_mrt0_alpha;
}
NIR_PASS_V(stage->nir, ac_nir_lower_ps, &options);
}
if (radv_shader_should_clear_lds(device, stage->nir)) {
const unsigned chunk_size = 16; /* max single store size */
const unsigned shared_size = ALIGN(stage->nir->info.shared_size, chunk_size);
NIR_PASS(_, stage->nir, nir_clear_shared_memory, shared_size, chunk_size);
}
NIR_PASS(_, stage->nir, nir_lower_int64);
NIR_PASS(_, stage->nir, nir_opt_idiv_const, 8);
NIR_PASS(_, stage->nir, nir_lower_idiv,
&(nir_lower_idiv_options){
.allow_fp16 = gfx_level >= GFX9,
});
if (radv_use_llvm_for_stage(pdev, stage->stage))
NIR_PASS_V(stage->nir, nir_lower_io_to_scalar, nir_var_mem_global, NULL, NULL);
NIR_PASS(_, stage->nir, ac_nir_lower_global_access);
NIR_PASS_V(stage->nir, ac_nir_lower_intrinsics_to_args, gfx_level, radv_select_hw_stage(&stage->info, gfx_level),
&stage->args.ac);
NIR_PASS_V(stage->nir, radv_nir_lower_abi, gfx_level, stage, gfx_state, pdev->info.address32_hi);
radv_optimize_nir_algebraic(
stage->nir, io_to_mem || lowered_ngg || stage->stage == MESA_SHADER_COMPUTE || stage->stage == MESA_SHADER_TASK,
gfx_level >= GFX7);
NIR_PASS(_, stage->nir, nir_lower_fp16_casts, nir_lower_fp16_split_fp64);
if (stage->nir->info.bit_sizes_int & (8 | 16)) {
if (gfx_level >= GFX8) {
NIR_PASS(_, stage->nir, nir_convert_to_lcssa, true, true);
nir_divergence_analysis(stage->nir);
}
if (nir_lower_bit_size(stage->nir, lower_bit_size_callback, device)) {
NIR_PASS(_, stage->nir, nir_opt_constant_folding);
}
if (gfx_level >= GFX8)
NIR_PASS(_, stage->nir, nir_opt_remove_phis); /* cleanup LCSSA phis */
}
if (((stage->nir->info.bit_sizes_int | stage->nir->info.bit_sizes_float) & 16) && gfx_level >= GFX9) {
bool separate_g16 = gfx_level >= GFX10;
struct nir_opt_tex_srcs_options opt_srcs_options[] = {
{
.sampler_dims = ~(BITFIELD_BIT(GLSL_SAMPLER_DIM_CUBE) | BITFIELD_BIT(GLSL_SAMPLER_DIM_BUF)),
.src_types = (1 << nir_tex_src_coord) | (1 << nir_tex_src_lod) | (1 << nir_tex_src_bias) |
(1 << nir_tex_src_min_lod) | (1 << nir_tex_src_ms_index) |
(separate_g16 ? 0 : (1 << nir_tex_src_ddx) | (1 << nir_tex_src_ddy)),
},
{
.sampler_dims = ~BITFIELD_BIT(GLSL_SAMPLER_DIM_CUBE),
.src_types = (1 << nir_tex_src_ddx) | (1 << nir_tex_src_ddy),
},
};
struct nir_opt_16bit_tex_image_options opt_16bit_options = {
.rounding_mode = nir_rounding_mode_rtz,
.opt_tex_dest_types = nir_type_float,
.opt_image_dest_types = nir_type_float,
.opt_image_store_data = true,
.opt_image_srcs = !radv_use_llvm_for_stage(pdev, stage->stage),
.opt_srcs_options_count = separate_g16 ? 2 : 1,
.opt_srcs_options = opt_srcs_options,
};
NIR_PASS(_, stage->nir, nir_opt_16bit_tex_image, &opt_16bit_options);
if (!stage->key.optimisations_disabled) {
NIR_PASS(_, stage->nir, nir_opt_vectorize, opt_vectorize_callback, device);
}
}
/* cleanup passes */
NIR_PASS(_, stage->nir, nir_lower_alu_width, opt_vectorize_callback, device);
NIR_PASS(_, stage->nir, nir_lower_load_const_to_scalar);
NIR_PASS(_, stage->nir, nir_copy_prop);
NIR_PASS(_, stage->nir, nir_opt_dce);
if (!stage->key.optimisations_disabled) {
sink_opts |= nir_move_comparisons | nir_move_load_ubo | nir_move_load_ssbo | nir_move_alu;
NIR_PASS(_, stage->nir, nir_opt_sink, sink_opts);
nir_move_options move_opts = nir_move_const_undef | nir_move_load_ubo | nir_move_load_input |
nir_move_comparisons | nir_move_copies | nir_move_alu;
NIR_PASS(_, stage->nir, nir_opt_move, move_opts);
/* Run nir_opt_move again to make sure that comparision are as close as possible to the first use to prevent SCC
* spilling.
*/
NIR_PASS(_, stage->nir, nir_opt_move, nir_move_comparisons);
}
}
bool
radv_shader_should_clear_lds(const struct radv_device *device, const nir_shader *shader)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
return (shader->info.stage == MESA_SHADER_COMPUTE || shader->info.stage == MESA_SHADER_MESH ||
shader->info.stage == MESA_SHADER_TASK) &&
shader->info.shared_size > 0 && instance->drirc.clear_lds;
}
static uint32_t
radv_get_executable_count(struct radv_pipeline *pipeline)
{
uint32_t ret = 0;
if (pipeline->type == RADV_PIPELINE_RAY_TRACING) {
struct radv_ray_tracing_pipeline *rt_pipeline = radv_pipeline_to_ray_tracing(pipeline);
for (uint32_t i = 0; i < rt_pipeline->stage_count; i++)
ret += rt_pipeline->stages[i].shader ? 1 : 0;
}
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (!pipeline->shaders[i])
continue;
if (i == MESA_SHADER_GEOMETRY && !radv_pipeline_has_ngg(radv_pipeline_to_graphics(pipeline))) {
ret += 2u;
} else {
ret += 1u;
}
}
return ret;
}
static struct radv_shader *
radv_get_shader_from_executable_index(struct radv_pipeline *pipeline, int index, gl_shader_stage *stage)
{
if (pipeline->type == RADV_PIPELINE_RAY_TRACING) {
struct radv_ray_tracing_pipeline *rt_pipeline = radv_pipeline_to_ray_tracing(pipeline);
for (uint32_t i = 0; i < rt_pipeline->stage_count; i++) {
struct radv_ray_tracing_stage *rt_stage = &rt_pipeline->stages[i];
if (!rt_stage->shader)
continue;
if (!index) {
*stage = rt_stage->stage;
return rt_stage->shader;
}
index--;
}
}
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (!pipeline->shaders[i])
continue;
if (!index) {
*stage = i;
return pipeline->shaders[i];
}
--index;
if (i == MESA_SHADER_GEOMETRY && !radv_pipeline_has_ngg(radv_pipeline_to_graphics(pipeline))) {
if (!index) {
*stage = i;
return pipeline->gs_copy_shader;
}
--index;
}
}
*stage = -1;
return NULL;
}
/* Basically strlcpy (which does not exist on linux) specialized for
* descriptions. */
static void
desc_copy(char *desc, const char *src)
{
int len = strlen(src);
assert(len < VK_MAX_DESCRIPTION_SIZE);
memcpy(desc, src, len);
memset(desc + len, 0, VK_MAX_DESCRIPTION_SIZE - len);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPipelineExecutablePropertiesKHR(VkDevice _device, const VkPipelineInfoKHR *pPipelineInfo,
uint32_t *pExecutableCount, VkPipelineExecutablePropertiesKHR *pProperties)
{
VK_FROM_HANDLE(radv_pipeline, pipeline, pPipelineInfo->pipeline);
const uint32_t total_count = radv_get_executable_count(pipeline);
if (!pProperties) {
*pExecutableCount = total_count;
return VK_SUCCESS;
}
const uint32_t count = MIN2(total_count, *pExecutableCount);
for (uint32_t executable_idx = 0; executable_idx < count; executable_idx++) {
gl_shader_stage stage;
struct radv_shader *shader = radv_get_shader_from_executable_index(pipeline, executable_idx, &stage);
pProperties[executable_idx].stages = mesa_to_vk_shader_stage(stage);
const char *name = _mesa_shader_stage_to_string(stage);
const char *description = NULL;
switch (stage) {
case MESA_SHADER_VERTEX:
description = "Vulkan Vertex Shader";
break;
case MESA_SHADER_TESS_CTRL:
if (!pipeline->shaders[MESA_SHADER_VERTEX]) {
pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
name = "vertex + tessellation control";
description = "Combined Vulkan Vertex and Tessellation Control Shaders";
} else {
description = "Vulkan Tessellation Control Shader";
}
break;
case MESA_SHADER_TESS_EVAL:
description = "Vulkan Tessellation Evaluation Shader";
break;
case MESA_SHADER_GEOMETRY:
if (shader->info.type == RADV_SHADER_TYPE_GS_COPY) {
name = "geometry copy";
description = "Extra shader stage that loads the GS output ringbuffer into the rasterizer";
break;
}
if (pipeline->shaders[MESA_SHADER_TESS_CTRL] && !pipeline->shaders[MESA_SHADER_TESS_EVAL]) {
pProperties[executable_idx].stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
name = "tessellation evaluation + geometry";
description = "Combined Vulkan Tessellation Evaluation and Geometry Shaders";
} else if (!pipeline->shaders[MESA_SHADER_TESS_CTRL] && !pipeline->shaders[MESA_SHADER_VERTEX]) {
pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
name = "vertex + geometry";
description = "Combined Vulkan Vertex and Geometry Shaders";
} else {
description = "Vulkan Geometry Shader";
}
break;
case MESA_SHADER_FRAGMENT:
description = "Vulkan Fragment Shader";
break;
case MESA_SHADER_COMPUTE:
description = "Vulkan Compute Shader";
break;
case MESA_SHADER_MESH:
description = "Vulkan Mesh Shader";
break;
case MESA_SHADER_TASK:
description = "Vulkan Task Shader";
break;
case MESA_SHADER_RAYGEN:
description = "Vulkan Ray Generation Shader";
break;
case MESA_SHADER_ANY_HIT:
description = "Vulkan Any-Hit Shader";
break;
case MESA_SHADER_CLOSEST_HIT:
description = "Vulkan Closest-Hit Shader";
break;
case MESA_SHADER_MISS:
description = "Vulkan Miss Shader";
break;
case MESA_SHADER_INTERSECTION:
description = "Shader responsible for traversing the acceleration structure";
break;
case MESA_SHADER_CALLABLE:
description = "Vulkan Callable Shader";
break;
default:
unreachable("Unsupported shader stage");
}
pProperties[executable_idx].subgroupSize = shader->info.wave_size;
desc_copy(pProperties[executable_idx].name, name);
desc_copy(pProperties[executable_idx].description, description);
}
VkResult result = *pExecutableCount < total_count ? VK_INCOMPLETE : VK_SUCCESS;
*pExecutableCount = count;
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPipelineExecutableStatisticsKHR(VkDevice _device, const VkPipelineExecutableInfoKHR *pExecutableInfo,
uint32_t *pStatisticCount, VkPipelineExecutableStatisticKHR *pStatistics)
{
VK_FROM_HANDLE(radv_device, device, _device);
VK_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
gl_shader_stage stage;
struct radv_shader *shader =
radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
const struct radv_physical_device *pdev = radv_device_physical(device);
unsigned lds_increment =
pdev->info.gfx_level >= GFX11 && stage == MESA_SHADER_FRAGMENT ? 1024 : pdev->info.lds_encode_granularity;
VkPipelineExecutableStatisticKHR *s = pStatistics;
VkPipelineExecutableStatisticKHR *end = s + (pStatistics ? *pStatisticCount : 0);
VkResult result = VK_SUCCESS;
if (s < end) {
desc_copy(s->name, "Driver pipeline hash");
desc_copy(s->description, "Driver pipeline hash used by RGP");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = pipeline->pipeline_hash;
}
++s;
if (s < end) {
desc_copy(s->name, "SGPRs");
desc_copy(s->description, "Number of SGPR registers allocated per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.num_sgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "VGPRs");
desc_copy(s->description, "Number of VGPR registers allocated per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.num_vgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "Spilled SGPRs");
desc_copy(s->description, "Number of SGPR registers spilled per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.spilled_sgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "Spilled VGPRs");
desc_copy(s->description, "Number of VGPR registers spilled per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.spilled_vgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "Code size");
desc_copy(s->description, "Code size in bytes");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->exec_size;
}
++s;
if (s < end) {
desc_copy(s->name, "LDS size");
desc_copy(s->description, "LDS size in bytes per workgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.lds_size * lds_increment;
}
++s;
if (s < end) {
desc_copy(s->name, "Scratch size");
desc_copy(s->description, "Private memory in bytes per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.scratch_bytes_per_wave;
}
++s;
if (s < end) {
desc_copy(s->name, "Subgroups per SIMD");
desc_copy(s->description, "The maximum number of subgroups in flight on a SIMD unit");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->max_waves;
}
++s;
if (shader->statistics) {
for (unsigned i = 0; i < aco_num_statistics; i++) {
const struct aco_compiler_statistic_info *info = &aco_statistic_infos[i];
if (s < end) {
desc_copy(s->name, info->name);
desc_copy(s->description, info->desc);
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->statistics[i];
}
++s;
}
}
if (!pStatistics)
*pStatisticCount = s - pStatistics;
else if (s > end) {
*pStatisticCount = end - pStatistics;
result = VK_INCOMPLETE;
} else {
*pStatisticCount = s - pStatistics;
}
return result;
}
static VkResult
radv_copy_representation(void *data, size_t *data_size, const char *src)
{
size_t total_size = strlen(src) + 1;
if (!data) {
*data_size = total_size;
return VK_SUCCESS;
}
size_t size = MIN2(total_size, *data_size);
memcpy(data, src, size);
if (size)
*((char *)data + size - 1) = 0;
return size < total_size ? VK_INCOMPLETE : VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPipelineExecutableInternalRepresentationsKHR(
VkDevice _device, const VkPipelineExecutableInfoKHR *pExecutableInfo, uint32_t *pInternalRepresentationCount,
VkPipelineExecutableInternalRepresentationKHR *pInternalRepresentations)
{
VK_FROM_HANDLE(radv_device, device, _device);
VK_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
const struct radv_physical_device *pdev = radv_device_physical(device);
gl_shader_stage stage;
struct radv_shader *shader =
radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
VkPipelineExecutableInternalRepresentationKHR *p = pInternalRepresentations;
VkPipelineExecutableInternalRepresentationKHR *end =
p + (pInternalRepresentations ? *pInternalRepresentationCount : 0);
VkResult result = VK_SUCCESS;
/* optimized NIR */
if (p < end) {
p->isText = true;
desc_copy(p->name, "NIR Shader(s)");
desc_copy(p->description, "The optimized NIR shader(s)");
if (radv_copy_representation(p->pData, &p->dataSize, shader->nir_string) != VK_SUCCESS)
result = VK_INCOMPLETE;
}
++p;
/* backend IR */
if (p < end) {
p->isText = true;
if (radv_use_llvm_for_stage(pdev, stage)) {
desc_copy(p->name, "LLVM IR");
desc_copy(p->description, "The LLVM IR after some optimizations");
} else {
desc_copy(p->name, "ACO IR");
desc_copy(p->description, "The ACO IR after some optimizations");
}
if (radv_copy_representation(p->pData, &p->dataSize, shader->ir_string) != VK_SUCCESS)
result = VK_INCOMPLETE;
}
++p;
/* Disassembler */
if (p < end && shader->disasm_string) {
p->isText = true;
desc_copy(p->name, "Assembly");
desc_copy(p->description, "Final Assembly");
if (radv_copy_representation(p->pData, &p->dataSize, shader->disasm_string) != VK_SUCCESS)
result = VK_INCOMPLETE;
}
++p;
if (!pInternalRepresentations)
*pInternalRepresentationCount = p - pInternalRepresentations;
else if (p > end) {
result = VK_INCOMPLETE;
*pInternalRepresentationCount = end - pInternalRepresentations;
} else {
*pInternalRepresentationCount = p - pInternalRepresentations;
}
return result;
}
static void
vk_shader_module_finish(void *_module)
{
struct vk_shader_module *module = _module;
vk_object_base_finish(&module->base);
}
VkPipelineShaderStageCreateInfo *
radv_copy_shader_stage_create_info(struct radv_device *device, uint32_t stageCount,
const VkPipelineShaderStageCreateInfo *pStages, void *mem_ctx)
{
VkPipelineShaderStageCreateInfo *new_stages;
size_t size = sizeof(VkPipelineShaderStageCreateInfo) * stageCount;
new_stages = ralloc_size(mem_ctx, size);
if (!new_stages)
return NULL;
if (size)
memcpy(new_stages, pStages, size);
for (uint32_t i = 0; i < stageCount; i++) {
VK_FROM_HANDLE(vk_shader_module, module, new_stages[i].module);
const VkShaderModuleCreateInfo *minfo = vk_find_struct_const(pStages[i].pNext, SHADER_MODULE_CREATE_INFO);
if (module) {
struct vk_shader_module *new_module = ralloc_size(mem_ctx, sizeof(struct vk_shader_module) + module->size);
if (!new_module)
return NULL;
ralloc_set_destructor(new_module, vk_shader_module_finish);
vk_object_base_init(&device->vk, &new_module->base, VK_OBJECT_TYPE_SHADER_MODULE);
new_module->nir = NULL;
memcpy(new_module->hash, module->hash, sizeof(module->hash));
new_module->size = module->size;
memcpy(new_module->data, module->data, module->size);
module = new_module;
} else if (minfo) {
module = ralloc_size(mem_ctx, sizeof(struct vk_shader_module) + minfo->codeSize);
if (!module)
return NULL;
vk_shader_module_init(&device->vk, module, minfo);
}
if (module) {
const VkSpecializationInfo *spec = new_stages[i].pSpecializationInfo;
if (spec) {
VkSpecializationInfo *new_spec = ralloc(mem_ctx, VkSpecializationInfo);
if (!new_spec)
return NULL;
new_spec->mapEntryCount = spec->mapEntryCount;
uint32_t map_entries_size = sizeof(VkSpecializationMapEntry) * spec->mapEntryCount;
new_spec->pMapEntries = ralloc_size(mem_ctx, map_entries_size);
if (!new_spec->pMapEntries)
return NULL;
memcpy((void *)new_spec->pMapEntries, spec->pMapEntries, map_entries_size);
new_spec->dataSize = spec->dataSize;
new_spec->pData = ralloc_size(mem_ctx, spec->dataSize);
if (!new_spec->pData)
return NULL;
memcpy((void *)new_spec->pData, spec->pData, spec->dataSize);
new_stages[i].pSpecializationInfo = new_spec;
}
new_stages[i].module = vk_shader_module_to_handle(module);
new_stages[i].pName = ralloc_strdup(mem_ctx, new_stages[i].pName);
if (!new_stages[i].pName)
return NULL;
new_stages[i].pNext = NULL;
}
}
return new_stages;
}
void
radv_pipeline_hash(const struct radv_device *device, const struct radv_pipeline_layout *pipeline_layout,
struct mesa_sha1 *ctx)
{
_mesa_sha1_update(ctx, device->cache_hash, sizeof(device->cache_hash));
if (pipeline_layout)
_mesa_sha1_update(ctx, pipeline_layout->sha1, sizeof(pipeline_layout->sha1));
}
void
radv_pipeline_hash_shader_stage(const VkPipelineShaderStageCreateInfo *sinfo,
const struct radv_shader_stage_key *stage_key, struct mesa_sha1 *ctx)
{
unsigned char shader_sha1[SHA1_DIGEST_LENGTH];
vk_pipeline_hash_shader_stage(sinfo, NULL, shader_sha1);
_mesa_sha1_update(ctx, shader_sha1, sizeof(shader_sha1));
_mesa_sha1_update(ctx, stage_key, sizeof(*stage_key));
}