Files
third_party_mesa3d/ir_reader.cpp
Kenneth Graunke 5794497542 ir_reader: Add support for reading array types.
Also, constify glsl_type pointers; this was necessary to use
glsl_type::get_array_instance.
2010-04-28 18:14:54 -07:00

514 lines
15 KiB
C++

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <cstdio>
#include <cstdarg>
#include "ir_reader.h"
#include "glsl_parser_extras.h"
#include "glsl_types.h"
#include "s_expression.h"
static void ir_read_error(s_expression *expr, const char *fmt, ...);
static const glsl_type *read_type(_mesa_glsl_parse_state *, s_expression *);
static ir_instruction *read_instruction(_mesa_glsl_parse_state *,
s_expression *);
static ir_variable *read_declaration(_mesa_glsl_parse_state *, s_list *);
static ir_return *read_return(_mesa_glsl_parse_state *, s_list *);
static ir_rvalue *read_rvalue(_mesa_glsl_parse_state *, s_expression *);
static ir_assignment *read_assignment(_mesa_glsl_parse_state *, s_list *);
static ir_expression *read_expression(_mesa_glsl_parse_state *, s_list *);
static ir_swizzle *read_swizzle(_mesa_glsl_parse_state *, s_list *);
static ir_constant *read_constant(_mesa_glsl_parse_state *, s_list *);
void
_mesa_glsl_read_ir(_mesa_glsl_parse_state *state, exec_list *instructions,
const char *src)
{
s_expression *expr = s_expression::read_expression(src);
if (expr == NULL) {
ir_read_error(NULL, "couldn't parse S-Expression.");
state->error = true;
return;
}
printf("S-Expression:\n");
expr->print();
printf("\n-------------\n");
_mesa_glsl_initialize_types(state);
_mesa_glsl_initialize_variables(instructions, state);
_mesa_glsl_initialize_constructors(instructions, state);
_mesa_glsl_initialize_functions(instructions, state);
// Read in a list of instructions
s_list *list = SX_AS_LIST(expr);
if (list == NULL) {
ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
state->error = true;
return;
}
foreach_iter(exec_list_iterator, it, list->subexpressions) {
s_expression *sub = (s_expression*) it.get();
ir_instruction *ir = read_instruction(state, sub);
if (ir == NULL) {
ir_read_error(sub, "Invalid instruction.\n");
state->error = true;
return;
}
instructions->push_tail(ir);
}
}
static void
ir_read_error(s_expression *expr, const char *fmt, ...)
{
char buf[1024];
int len;
va_list ap;
// FIXME: state->error = true;
len = snprintf(buf, sizeof(buf), "error: ");
va_start(ap, fmt);
vsnprintf(buf + len, sizeof(buf) - len, fmt, ap);
va_end(ap);
printf("%s\n", buf);
}
static const glsl_type *
read_type(_mesa_glsl_parse_state *st, s_expression *expr)
{
s_list *list = SX_AS_LIST(expr);
if (list != NULL) {
s_symbol *type_sym = SX_AS_SYMBOL(list->subexpressions.get_head());
if (type_sym == NULL) {
ir_read_error(expr, "expected type (array ...) or (struct ...)");
return NULL;
}
if (strcmp(type_sym->value(), "array") == 0) {
if (list->length() != 3) {
ir_read_error(expr, "expected type (array <type> <int>)");
return NULL;
}
// Read base type
s_expression *base_expr = (s_expression*) type_sym->next;
const glsl_type *base_type = read_type(st, base_expr);
if (base_type == NULL) {
ir_read_error(expr, "when reading base type of array");
return NULL;
}
// Read array size
s_int *size = SX_AS_INT(base_expr->next);
if (size == NULL) {
ir_read_error(expr, "found non-integer array size");
return NULL;
}
return glsl_type::get_array_instance(base_type, size->value());
} else if (strcmp(type_sym->value(), "struct") == 0) {
assert(false); // FINISHME
} else {
ir_read_error(expr, "expected (array ...) or (struct ...); found (%s ...)", type_sym->value());
return NULL;
}
}
s_symbol *type_sym = SX_AS_SYMBOL(expr);
if (type_sym == NULL) {
ir_read_error(expr, "expected <type> (symbol or list)");
return NULL;
}
const glsl_type *type = st->symbols->get_type(type_sym->value());
if (type == NULL)
ir_read_error(expr, "invalid type: %s", type_sym->value());
return type;
}
static ir_instruction *
read_instruction(_mesa_glsl_parse_state *st, s_expression *expr)
{
s_list *list = SX_AS_LIST(expr);
if (list == NULL || list->subexpressions.is_empty())
return NULL;
s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
if (tag == NULL) {
ir_read_error(expr, "expected instruction tag");
return NULL;
}
ir_instruction *inst = NULL;
if (strcmp(tag->value(), "declare") == 0)
inst = read_declaration(st, list);
else if (strcmp(tag->value(), "return") == 0)
inst = read_return(st, list);
else
ir_read_error(expr, "unrecognized instruction tag: %s", tag->value());
return inst;
}
static ir_variable *
read_declaration(_mesa_glsl_parse_state *st, s_list *list)
{
if (list->length() != 4) {
ir_read_error(list, "expected (declare (<qualifiers>) <type> <name>)");
return NULL;
}
s_list *quals = SX_AS_LIST(list->subexpressions.head->next);
if (quals == NULL) {
ir_read_error(list, "expected a list of variable qualifiers");
return NULL;
}
s_expression *type_expr = (s_expression*) quals->next;
const glsl_type *type = read_type(st, type_expr);
if (type == NULL)
return NULL;
s_symbol *var_name = SX_AS_SYMBOL(type_expr->next);
if (var_name == NULL) {
ir_read_error(list, "expected variable name, found non-symbol");
return NULL;
}
ir_variable *var = new ir_variable(type, var_name->value());
foreach_iter(exec_list_iterator, it, quals->subexpressions) {
s_symbol *qualifier = SX_AS_SYMBOL(it.get());
if (qualifier == NULL) {
ir_read_error(list, "qualifier list must contain only symbols");
delete var;
return NULL;
}
// FINISHME: Check for duplicate/conflicting qualifiers.
if (strcmp(qualifier->value(), "centroid") == 0) {
var->centroid = 1;
} else if (strcmp(qualifier->value(), "invariant") == 0) {
var->invariant = 1;
} else if (strcmp(qualifier->value(), "uniform") == 0) {
var->mode = ir_var_uniform;
} else if (strcmp(qualifier->value(), "auto") == 0) {
var->mode = ir_var_auto;
} else if (strcmp(qualifier->value(), "in") == 0) {
var->mode = ir_var_in;
} else if (strcmp(qualifier->value(), "out") == 0) {
var->mode = ir_var_out;
} else if (strcmp(qualifier->value(), "inout") == 0) {
var->mode = ir_var_inout;
} else if (strcmp(qualifier->value(), "smooth") == 0) {
var->interpolation = ir_var_smooth;
} else if (strcmp(qualifier->value(), "flat") == 0) {
var->interpolation = ir_var_flat;
} else if (strcmp(qualifier->value(), "noperspective") == 0) {
var->interpolation = ir_var_noperspective;
} else {
ir_read_error(list, "unknown qualifier: %s", qualifier->value());
delete var;
return NULL;
}
}
// Add the variable to the symbol table
st->symbols->add_variable(var_name->value(), var);
return var;
}
static ir_return *
read_return(_mesa_glsl_parse_state *st, s_list *list)
{
if (list->length() != 2) {
ir_read_error(list, "expected (return <rvalue>)");
return NULL;
}
s_expression *expr = (s_expression*) list->subexpressions.head->next;
ir_rvalue *retval = read_rvalue(st, expr);
if (retval == NULL) {
ir_read_error(list, "when reading return value");
return NULL;
}
return new ir_return(retval);
}
static ir_rvalue *
read_rvalue(_mesa_glsl_parse_state *st, s_expression *expr)
{
s_list *list = SX_AS_LIST(expr);
if (list == NULL || list->subexpressions.is_empty())
return NULL;
s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
if (tag == NULL) {
ir_read_error(expr, "expected rvalue tag");
return NULL;
}
ir_rvalue *rvalue = NULL;
if (strcmp(tag->value(), "swiz") == 0)
rvalue = read_swizzle(st, list);
else if (strcmp(tag->value(), "assign") == 0)
rvalue = read_assignment(st, list);
else if (strcmp(tag->value(), "expression") == 0)
rvalue = read_expression(st, list);
// FINISHME: ir_call
// FINISHME: dereference
else if (strcmp(tag->value(), "constant") == 0)
rvalue = read_constant(st, list);
else
ir_read_error(expr, "unrecognized rvalue tag: %s", tag->value());
return rvalue;
}
static ir_assignment *
read_assignment(_mesa_glsl_parse_state *st, s_list *list)
{
if (list->length() != 4) {
ir_read_error(list, "expected (assign <condition> <lhs> <rhs>)");
return NULL;
}
s_expression *cond_expr = (s_expression*) list->subexpressions.head->next;
s_expression *lhs_expr = (s_expression*) cond_expr->next;
s_expression *rhs_expr = (s_expression*) lhs_expr->next;
// FINISHME: Deal with "true" condition
ir_rvalue *condition = read_rvalue(st, cond_expr);
if (condition == NULL) {
ir_read_error(list, "when reading condition of assignment");
return NULL;
}
ir_rvalue *lhs = read_rvalue(st, lhs_expr);
if (lhs == NULL) {
ir_read_error(list, "when reading left-hand side of assignment");
return NULL;
}
ir_rvalue *rhs = read_rvalue(st, rhs_expr);
if (rhs == NULL) {
ir_read_error(list, "when reading right-hand side of assignment");
return NULL;
}
return new ir_assignment(lhs, rhs, condition);
}
static ir_expression *
read_expression(_mesa_glsl_parse_state *st, s_list *list)
{
const unsigned list_length = list->length();
if (list_length < 4) {
ir_read_error(list, "expected (expression <type> <operator> <operand> "
"[<operand>])");
return NULL;
}
s_expression *type_expr = (s_expression*) list->subexpressions.head->next;
const glsl_type *type = read_type(st, type_expr);
if (type == NULL)
return NULL;
/* Read the operator */
s_symbol *op_sym = SX_AS_SYMBOL(type_expr->next);
if (op_sym == NULL) {
ir_read_error(list, "expected operator, found non-symbol");
return NULL;
}
ir_expression_operation op = ir_expression::get_operator(op_sym->value());
if (op == (ir_expression_operation) -1) {
ir_read_error(list, "invalid operator: %s", op_sym->value());
return NULL;
}
/* Now that we know the operator, check for the right number of operands */
if (ir_expression::get_num_operands(op) == 2) {
if (list_length != 5) {
ir_read_error(list, "expected (expression %s <operand1> <operand2>)",
op_sym->value());
return NULL;
}
} else {
if (list_length != 4) {
ir_read_error(list, "expected (expression %s <operand>)",
op_sym->value());
return NULL;
}
}
s_expression *exp1 = (s_expression*) (op_sym->next);
ir_rvalue *arg1 = read_rvalue(st, exp1);
if (arg1 == NULL) {
ir_read_error(list, "when reading first operand of %s", op_sym->value());
return NULL;
}
ir_rvalue *arg2 = NULL;
if (ir_expression::get_num_operands(op) == 2) {
s_expression *exp2 = (s_expression*) (exp1->next);
arg2 = read_rvalue(st, exp2);
if (arg2 == NULL) {
ir_read_error(list, "when reading second operand of %s",
op_sym->value());
return NULL;
}
}
return new ir_expression(op, type, arg1, arg2);
}
static ir_swizzle *
read_swizzle(_mesa_glsl_parse_state *st, s_list *list)
{
if (list->length() != 3) {
ir_read_error(list, "expected (swiz <swizzle> <rvalue>)");
return NULL;
}
s_symbol *swiz = SX_AS_SYMBOL(list->subexpressions.head->next);
if (swiz == NULL) {
ir_read_error(list, "expected a valid swizzle; found non-symbol");
return NULL;
}
unsigned num_components = strlen(swiz->value());
if (num_components > 4) {
ir_read_error(list, "expected a valid swizzle; found %s", swiz->value());
return NULL;
}
s_expression *sub = (s_expression*) swiz->next;
if (sub == NULL) {
ir_read_error(list, "expected rvalue: (swizzle %s <rvalue>)", swiz->value());
return NULL;
}
ir_rvalue *rvalue = read_rvalue(st, sub);
if (rvalue == NULL)
return NULL;
return ir_swizzle::create(rvalue, swiz->value(), num_components);
}
static ir_constant *
read_constant(_mesa_glsl_parse_state *st, s_list *list)
{
if (list->length() != 3) {
ir_read_error(list, "expected (constant <type> (<num> ... <num>))");
return NULL;
}
s_expression *type_expr = (s_expression*) list->subexpressions.head->next;
const glsl_type *type = read_type(st, type_expr);
if (type == NULL)
return NULL;
s_list *values = SX_AS_LIST(type_expr->next);
if (values == NULL) {
ir_read_error(list, "expected (constant <type> (<num> ... <num>))");
return NULL;
}
const glsl_type *const base_type = type->get_base_type();
unsigned u[16];
int i[16];
float f[16];
bool b[16];
// Read in list of values (at most 16).
int k = 0;
foreach_iter(exec_list_iterator, it, values->subexpressions) {
if (k >= 16) {
ir_read_error(values, "expected at most 16 numbers");
return NULL;
}
s_expression *expr = (s_expression*) it.get();
if (base_type->base_type == GLSL_TYPE_FLOAT) {
s_number *value = SX_AS_NUMBER(expr);
if (value == NULL) {
ir_read_error(values, "expected numbers");
return NULL;
}
f[k] = value->fvalue();
} else {
s_int *value = SX_AS_INT(expr);
if (value == NULL) {
ir_read_error(values, "expected integers");
return NULL;
}
switch (base_type->base_type) {
case GLSL_TYPE_UINT: {
u[k] = value->value();
break;
}
case GLSL_TYPE_INT: {
i[k] = value->value();
break;
}
case GLSL_TYPE_BOOL: {
b[k] = value->value();
break;
}
default:
ir_read_error(values, "unsupported constant type");
return NULL;
}
}
++k;
}
switch (base_type->base_type) {
case GLSL_TYPE_UINT:
return new ir_constant(type, u);
case GLSL_TYPE_INT:
return new ir_constant(type, i);
case GLSL_TYPE_BOOL:
return new ir_constant(type, b);
case GLSL_TYPE_FLOAT:
return new ir_constant(type, f);
}
return NULL; // should not be reached
}