
Note that BRW_PREDICATE_NONE is 0 and BRW_PREDICATE_NORMAL is 1, so that's a lot like the true/false we had in the FS before. Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2075 lines
56 KiB
C++
2075 lines
56 KiB
C++
/*
|
|
* Copyright © 2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
/** @file brw_fs.cpp
|
|
*
|
|
* This file drives the GLSL IR -> LIR translation, contains the
|
|
* optimizations on the LIR, and drives the generation of native code
|
|
* from the LIR.
|
|
*/
|
|
|
|
extern "C" {
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include "main/macros.h"
|
|
#include "main/shaderobj.h"
|
|
#include "main/uniforms.h"
|
|
#include "main/fbobject.h"
|
|
#include "program/prog_parameter.h"
|
|
#include "program/prog_print.h"
|
|
#include "program/register_allocate.h"
|
|
#include "program/sampler.h"
|
|
#include "program/hash_table.h"
|
|
#include "brw_context.h"
|
|
#include "brw_eu.h"
|
|
#include "brw_wm.h"
|
|
}
|
|
#include "brw_fs.h"
|
|
#include "glsl/glsl_types.h"
|
|
#include "glsl/ir_print_visitor.h"
|
|
|
|
void
|
|
fs_inst::init()
|
|
{
|
|
memset(this, 0, sizeof(*this));
|
|
this->opcode = BRW_OPCODE_NOP;
|
|
this->conditional_mod = BRW_CONDITIONAL_NONE;
|
|
|
|
this->dst = reg_undef;
|
|
this->src[0] = reg_undef;
|
|
this->src[1] = reg_undef;
|
|
this->src[2] = reg_undef;
|
|
}
|
|
|
|
fs_inst::fs_inst()
|
|
{
|
|
init();
|
|
}
|
|
|
|
fs_inst::fs_inst(enum opcode opcode)
|
|
{
|
|
init();
|
|
this->opcode = opcode;
|
|
}
|
|
|
|
fs_inst::fs_inst(enum opcode opcode, fs_reg dst)
|
|
{
|
|
init();
|
|
this->opcode = opcode;
|
|
this->dst = dst;
|
|
|
|
if (dst.file == GRF)
|
|
assert(dst.reg_offset >= 0);
|
|
}
|
|
|
|
fs_inst::fs_inst(enum opcode opcode, fs_reg dst, fs_reg src0)
|
|
{
|
|
init();
|
|
this->opcode = opcode;
|
|
this->dst = dst;
|
|
this->src[0] = src0;
|
|
|
|
if (dst.file == GRF)
|
|
assert(dst.reg_offset >= 0);
|
|
if (src[0].file == GRF)
|
|
assert(src[0].reg_offset >= 0);
|
|
}
|
|
|
|
fs_inst::fs_inst(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1)
|
|
{
|
|
init();
|
|
this->opcode = opcode;
|
|
this->dst = dst;
|
|
this->src[0] = src0;
|
|
this->src[1] = src1;
|
|
|
|
if (dst.file == GRF)
|
|
assert(dst.reg_offset >= 0);
|
|
if (src[0].file == GRF)
|
|
assert(src[0].reg_offset >= 0);
|
|
if (src[1].file == GRF)
|
|
assert(src[1].reg_offset >= 0);
|
|
}
|
|
|
|
fs_inst::fs_inst(enum opcode opcode, fs_reg dst,
|
|
fs_reg src0, fs_reg src1, fs_reg src2)
|
|
{
|
|
init();
|
|
this->opcode = opcode;
|
|
this->dst = dst;
|
|
this->src[0] = src0;
|
|
this->src[1] = src1;
|
|
this->src[2] = src2;
|
|
|
|
if (dst.file == GRF)
|
|
assert(dst.reg_offset >= 0);
|
|
if (src[0].file == GRF)
|
|
assert(src[0].reg_offset >= 0);
|
|
if (src[1].file == GRF)
|
|
assert(src[1].reg_offset >= 0);
|
|
if (src[2].file == GRF)
|
|
assert(src[2].reg_offset >= 0);
|
|
}
|
|
|
|
bool
|
|
fs_inst::equals(fs_inst *inst)
|
|
{
|
|
return (opcode == inst->opcode &&
|
|
dst.equals(inst->dst) &&
|
|
src[0].equals(inst->src[0]) &&
|
|
src[1].equals(inst->src[1]) &&
|
|
src[2].equals(inst->src[2]) &&
|
|
saturate == inst->saturate &&
|
|
predicate == inst->predicate &&
|
|
conditional_mod == inst->conditional_mod &&
|
|
mlen == inst->mlen &&
|
|
base_mrf == inst->base_mrf &&
|
|
sampler == inst->sampler &&
|
|
target == inst->target &&
|
|
eot == inst->eot &&
|
|
header_present == inst->header_present &&
|
|
shadow_compare == inst->shadow_compare &&
|
|
offset == inst->offset);
|
|
}
|
|
|
|
int
|
|
fs_inst::regs_written()
|
|
{
|
|
if (is_tex())
|
|
return 4;
|
|
|
|
/* The SINCOS and INT_DIV_QUOTIENT_AND_REMAINDER math functions return 2,
|
|
* but we don't currently use them...nor do we have an opcode for them.
|
|
*/
|
|
|
|
return 1;
|
|
}
|
|
|
|
bool
|
|
fs_inst::overwrites_reg(const fs_reg ®)
|
|
{
|
|
return (reg.file == dst.file &&
|
|
reg.reg == dst.reg &&
|
|
reg.reg_offset >= dst.reg_offset &&
|
|
reg.reg_offset < dst.reg_offset + regs_written());
|
|
}
|
|
|
|
bool
|
|
fs_inst::is_tex()
|
|
{
|
|
return (opcode == SHADER_OPCODE_TEX ||
|
|
opcode == FS_OPCODE_TXB ||
|
|
opcode == SHADER_OPCODE_TXD ||
|
|
opcode == SHADER_OPCODE_TXF ||
|
|
opcode == SHADER_OPCODE_TXL ||
|
|
opcode == SHADER_OPCODE_TXS);
|
|
}
|
|
|
|
bool
|
|
fs_inst::is_math()
|
|
{
|
|
return (opcode == SHADER_OPCODE_RCP ||
|
|
opcode == SHADER_OPCODE_RSQ ||
|
|
opcode == SHADER_OPCODE_SQRT ||
|
|
opcode == SHADER_OPCODE_EXP2 ||
|
|
opcode == SHADER_OPCODE_LOG2 ||
|
|
opcode == SHADER_OPCODE_SIN ||
|
|
opcode == SHADER_OPCODE_COS ||
|
|
opcode == SHADER_OPCODE_INT_QUOTIENT ||
|
|
opcode == SHADER_OPCODE_INT_REMAINDER ||
|
|
opcode == SHADER_OPCODE_POW);
|
|
}
|
|
|
|
void
|
|
fs_reg::init()
|
|
{
|
|
memset(this, 0, sizeof(*this));
|
|
this->smear = -1;
|
|
}
|
|
|
|
/** Generic unset register constructor. */
|
|
fs_reg::fs_reg()
|
|
{
|
|
init();
|
|
this->file = BAD_FILE;
|
|
}
|
|
|
|
/** Immediate value constructor. */
|
|
fs_reg::fs_reg(float f)
|
|
{
|
|
init();
|
|
this->file = IMM;
|
|
this->type = BRW_REGISTER_TYPE_F;
|
|
this->imm.f = f;
|
|
}
|
|
|
|
/** Immediate value constructor. */
|
|
fs_reg::fs_reg(int32_t i)
|
|
{
|
|
init();
|
|
this->file = IMM;
|
|
this->type = BRW_REGISTER_TYPE_D;
|
|
this->imm.i = i;
|
|
}
|
|
|
|
/** Immediate value constructor. */
|
|
fs_reg::fs_reg(uint32_t u)
|
|
{
|
|
init();
|
|
this->file = IMM;
|
|
this->type = BRW_REGISTER_TYPE_UD;
|
|
this->imm.u = u;
|
|
}
|
|
|
|
/** Fixed brw_reg Immediate value constructor. */
|
|
fs_reg::fs_reg(struct brw_reg fixed_hw_reg)
|
|
{
|
|
init();
|
|
this->file = FIXED_HW_REG;
|
|
this->fixed_hw_reg = fixed_hw_reg;
|
|
this->type = fixed_hw_reg.type;
|
|
}
|
|
|
|
bool
|
|
fs_reg::equals(const fs_reg &r) const
|
|
{
|
|
return (file == r.file &&
|
|
reg == r.reg &&
|
|
reg_offset == r.reg_offset &&
|
|
type == r.type &&
|
|
negate == r.negate &&
|
|
abs == r.abs &&
|
|
memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
|
|
sizeof(fixed_hw_reg)) == 0 &&
|
|
smear == r.smear &&
|
|
imm.u == r.imm.u);
|
|
}
|
|
|
|
int
|
|
fs_visitor::type_size(const struct glsl_type *type)
|
|
{
|
|
unsigned int size, i;
|
|
|
|
switch (type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
case GLSL_TYPE_INT:
|
|
case GLSL_TYPE_FLOAT:
|
|
case GLSL_TYPE_BOOL:
|
|
return type->components();
|
|
case GLSL_TYPE_ARRAY:
|
|
return type_size(type->fields.array) * type->length;
|
|
case GLSL_TYPE_STRUCT:
|
|
size = 0;
|
|
for (i = 0; i < type->length; i++) {
|
|
size += type_size(type->fields.structure[i].type);
|
|
}
|
|
return size;
|
|
case GLSL_TYPE_SAMPLER:
|
|
/* Samplers take up no register space, since they're baked in at
|
|
* link time.
|
|
*/
|
|
return 0;
|
|
default:
|
|
assert(!"not reached");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
fs_visitor::fail(const char *format, ...)
|
|
{
|
|
va_list va;
|
|
char *msg;
|
|
|
|
if (failed)
|
|
return;
|
|
|
|
failed = true;
|
|
|
|
va_start(va, format);
|
|
msg = ralloc_vasprintf(mem_ctx, format, va);
|
|
va_end(va);
|
|
msg = ralloc_asprintf(mem_ctx, "FS compile failed: %s\n", msg);
|
|
|
|
this->fail_msg = msg;
|
|
|
|
if (INTEL_DEBUG & DEBUG_WM) {
|
|
fprintf(stderr, "%s", msg);
|
|
}
|
|
}
|
|
|
|
fs_inst *
|
|
fs_visitor::emit(enum opcode opcode)
|
|
{
|
|
return emit(fs_inst(opcode));
|
|
}
|
|
|
|
fs_inst *
|
|
fs_visitor::emit(enum opcode opcode, fs_reg dst)
|
|
{
|
|
return emit(fs_inst(opcode, dst));
|
|
}
|
|
|
|
fs_inst *
|
|
fs_visitor::emit(enum opcode opcode, fs_reg dst, fs_reg src0)
|
|
{
|
|
return emit(fs_inst(opcode, dst, src0));
|
|
}
|
|
|
|
fs_inst *
|
|
fs_visitor::emit(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1)
|
|
{
|
|
return emit(fs_inst(opcode, dst, src0, src1));
|
|
}
|
|
|
|
fs_inst *
|
|
fs_visitor::emit(enum opcode opcode, fs_reg dst,
|
|
fs_reg src0, fs_reg src1, fs_reg src2)
|
|
{
|
|
return emit(fs_inst(opcode, dst, src0, src1, src2));
|
|
}
|
|
|
|
void
|
|
fs_visitor::push_force_uncompressed()
|
|
{
|
|
force_uncompressed_stack++;
|
|
}
|
|
|
|
void
|
|
fs_visitor::pop_force_uncompressed()
|
|
{
|
|
force_uncompressed_stack--;
|
|
assert(force_uncompressed_stack >= 0);
|
|
}
|
|
|
|
void
|
|
fs_visitor::push_force_sechalf()
|
|
{
|
|
force_sechalf_stack++;
|
|
}
|
|
|
|
void
|
|
fs_visitor::pop_force_sechalf()
|
|
{
|
|
force_sechalf_stack--;
|
|
assert(force_sechalf_stack >= 0);
|
|
}
|
|
|
|
/**
|
|
* Returns how many MRFs an FS opcode will write over.
|
|
*
|
|
* Note that this is not the 0 or 1 implied writes in an actual gen
|
|
* instruction -- the FS opcodes often generate MOVs in addition.
|
|
*/
|
|
int
|
|
fs_visitor::implied_mrf_writes(fs_inst *inst)
|
|
{
|
|
if (inst->mlen == 0)
|
|
return 0;
|
|
|
|
switch (inst->opcode) {
|
|
case SHADER_OPCODE_RCP:
|
|
case SHADER_OPCODE_RSQ:
|
|
case SHADER_OPCODE_SQRT:
|
|
case SHADER_OPCODE_EXP2:
|
|
case SHADER_OPCODE_LOG2:
|
|
case SHADER_OPCODE_SIN:
|
|
case SHADER_OPCODE_COS:
|
|
return 1 * c->dispatch_width / 8;
|
|
case SHADER_OPCODE_POW:
|
|
case SHADER_OPCODE_INT_QUOTIENT:
|
|
case SHADER_OPCODE_INT_REMAINDER:
|
|
return 2 * c->dispatch_width / 8;
|
|
case SHADER_OPCODE_TEX:
|
|
case FS_OPCODE_TXB:
|
|
case SHADER_OPCODE_TXD:
|
|
case SHADER_OPCODE_TXF:
|
|
case SHADER_OPCODE_TXL:
|
|
case SHADER_OPCODE_TXS:
|
|
return 1;
|
|
case FS_OPCODE_FB_WRITE:
|
|
return 2;
|
|
case FS_OPCODE_PULL_CONSTANT_LOAD:
|
|
case FS_OPCODE_UNSPILL:
|
|
return 1;
|
|
case FS_OPCODE_SPILL:
|
|
return 2;
|
|
default:
|
|
assert(!"not reached");
|
|
return inst->mlen;
|
|
}
|
|
}
|
|
|
|
int
|
|
fs_visitor::virtual_grf_alloc(int size)
|
|
{
|
|
if (virtual_grf_array_size <= virtual_grf_count) {
|
|
if (virtual_grf_array_size == 0)
|
|
virtual_grf_array_size = 16;
|
|
else
|
|
virtual_grf_array_size *= 2;
|
|
virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
|
|
virtual_grf_array_size);
|
|
}
|
|
virtual_grf_sizes[virtual_grf_count] = size;
|
|
return virtual_grf_count++;
|
|
}
|
|
|
|
/** Fixed HW reg constructor. */
|
|
fs_reg::fs_reg(enum register_file file, int reg)
|
|
{
|
|
init();
|
|
this->file = file;
|
|
this->reg = reg;
|
|
this->type = BRW_REGISTER_TYPE_F;
|
|
}
|
|
|
|
/** Fixed HW reg constructor. */
|
|
fs_reg::fs_reg(enum register_file file, int reg, uint32_t type)
|
|
{
|
|
init();
|
|
this->file = file;
|
|
this->reg = reg;
|
|
this->type = type;
|
|
}
|
|
|
|
/** Automatic reg constructor. */
|
|
fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
|
|
{
|
|
init();
|
|
|
|
this->file = GRF;
|
|
this->reg = v->virtual_grf_alloc(v->type_size(type));
|
|
this->reg_offset = 0;
|
|
this->type = brw_type_for_base_type(type);
|
|
}
|
|
|
|
fs_reg *
|
|
fs_visitor::variable_storage(ir_variable *var)
|
|
{
|
|
return (fs_reg *)hash_table_find(this->variable_ht, var);
|
|
}
|
|
|
|
void
|
|
import_uniforms_callback(const void *key,
|
|
void *data,
|
|
void *closure)
|
|
{
|
|
struct hash_table *dst_ht = (struct hash_table *)closure;
|
|
const fs_reg *reg = (const fs_reg *)data;
|
|
|
|
if (reg->file != UNIFORM)
|
|
return;
|
|
|
|
hash_table_insert(dst_ht, data, key);
|
|
}
|
|
|
|
/* For 16-wide, we need to follow from the uniform setup of 8-wide dispatch.
|
|
* This brings in those uniform definitions
|
|
*/
|
|
void
|
|
fs_visitor::import_uniforms(fs_visitor *v)
|
|
{
|
|
hash_table_call_foreach(v->variable_ht,
|
|
import_uniforms_callback,
|
|
variable_ht);
|
|
this->params_remap = v->params_remap;
|
|
}
|
|
|
|
/* Our support for uniforms is piggy-backed on the struct
|
|
* gl_fragment_program, because that's where the values actually
|
|
* get stored, rather than in some global gl_shader_program uniform
|
|
* store.
|
|
*/
|
|
int
|
|
fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
|
|
{
|
|
unsigned int offset = 0;
|
|
|
|
if (type->is_matrix()) {
|
|
const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
|
|
type->vector_elements,
|
|
1);
|
|
|
|
for (unsigned int i = 0; i < type->matrix_columns; i++) {
|
|
offset += setup_uniform_values(loc + offset, column);
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
switch (type->base_type) {
|
|
case GLSL_TYPE_FLOAT:
|
|
case GLSL_TYPE_UINT:
|
|
case GLSL_TYPE_INT:
|
|
case GLSL_TYPE_BOOL:
|
|
for (unsigned int i = 0; i < type->vector_elements; i++) {
|
|
unsigned int param = c->prog_data.nr_params++;
|
|
|
|
this->param_index[param] = loc;
|
|
this->param_offset[param] = i;
|
|
}
|
|
return 1;
|
|
|
|
case GLSL_TYPE_STRUCT:
|
|
for (unsigned int i = 0; i < type->length; i++) {
|
|
offset += setup_uniform_values(loc + offset,
|
|
type->fields.structure[i].type);
|
|
}
|
|
return offset;
|
|
|
|
case GLSL_TYPE_ARRAY:
|
|
for (unsigned int i = 0; i < type->length; i++) {
|
|
offset += setup_uniform_values(loc + offset, type->fields.array);
|
|
}
|
|
return offset;
|
|
|
|
case GLSL_TYPE_SAMPLER:
|
|
/* The sampler takes up a slot, but we don't use any values from it. */
|
|
return 1;
|
|
|
|
default:
|
|
assert(!"not reached");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* Our support for builtin uniforms is even scarier than non-builtin.
|
|
* It sits on top of the PROG_STATE_VAR parameters that are
|
|
* automatically updated from GL context state.
|
|
*/
|
|
void
|
|
fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
|
|
{
|
|
const ir_state_slot *const slots = ir->state_slots;
|
|
assert(ir->state_slots != NULL);
|
|
|
|
for (unsigned int i = 0; i < ir->num_state_slots; i++) {
|
|
/* This state reference has already been setup by ir_to_mesa, but we'll
|
|
* get the same index back here.
|
|
*/
|
|
int index = _mesa_add_state_reference(this->fp->Base.Parameters,
|
|
(gl_state_index *)slots[i].tokens);
|
|
|
|
/* Add each of the unique swizzles of the element as a parameter.
|
|
* This'll end up matching the expected layout of the
|
|
* array/matrix/structure we're trying to fill in.
|
|
*/
|
|
int last_swiz = -1;
|
|
for (unsigned int j = 0; j < 4; j++) {
|
|
int swiz = GET_SWZ(slots[i].swizzle, j);
|
|
if (swiz == last_swiz)
|
|
break;
|
|
last_swiz = swiz;
|
|
|
|
this->param_index[c->prog_data.nr_params] = index;
|
|
this->param_offset[c->prog_data.nr_params] = swiz;
|
|
c->prog_data.nr_params++;
|
|
}
|
|
}
|
|
}
|
|
|
|
fs_reg *
|
|
fs_visitor::emit_fragcoord_interpolation(ir_variable *ir)
|
|
{
|
|
fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
|
|
fs_reg wpos = *reg;
|
|
bool flip = !ir->origin_upper_left ^ c->key.render_to_fbo;
|
|
|
|
/* gl_FragCoord.x */
|
|
if (ir->pixel_center_integer) {
|
|
emit(BRW_OPCODE_MOV, wpos, this->pixel_x);
|
|
} else {
|
|
emit(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f));
|
|
}
|
|
wpos.reg_offset++;
|
|
|
|
/* gl_FragCoord.y */
|
|
if (!flip && ir->pixel_center_integer) {
|
|
emit(BRW_OPCODE_MOV, wpos, this->pixel_y);
|
|
} else {
|
|
fs_reg pixel_y = this->pixel_y;
|
|
float offset = (ir->pixel_center_integer ? 0.0 : 0.5);
|
|
|
|
if (flip) {
|
|
pixel_y.negate = true;
|
|
offset += c->key.drawable_height - 1.0;
|
|
}
|
|
|
|
emit(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset));
|
|
}
|
|
wpos.reg_offset++;
|
|
|
|
/* gl_FragCoord.z */
|
|
if (intel->gen >= 6) {
|
|
emit(BRW_OPCODE_MOV, wpos,
|
|
fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
|
|
} else {
|
|
emit(FS_OPCODE_LINTERP, wpos,
|
|
this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
|
|
this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
|
|
interp_reg(FRAG_ATTRIB_WPOS, 2));
|
|
}
|
|
wpos.reg_offset++;
|
|
|
|
/* gl_FragCoord.w: Already set up in emit_interpolation */
|
|
emit(BRW_OPCODE_MOV, wpos, this->wpos_w);
|
|
|
|
return reg;
|
|
}
|
|
|
|
fs_inst *
|
|
fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
|
|
glsl_interp_qualifier interpolation_mode,
|
|
bool is_centroid)
|
|
{
|
|
brw_wm_barycentric_interp_mode barycoord_mode;
|
|
if (is_centroid) {
|
|
if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
|
|
barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
|
|
else
|
|
barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
|
|
} else {
|
|
if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
|
|
barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
|
|
else
|
|
barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
|
|
}
|
|
return emit(FS_OPCODE_LINTERP, attr,
|
|
this->delta_x[barycoord_mode],
|
|
this->delta_y[barycoord_mode], interp);
|
|
}
|
|
|
|
fs_reg *
|
|
fs_visitor::emit_general_interpolation(ir_variable *ir)
|
|
{
|
|
fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
|
|
reg->type = brw_type_for_base_type(ir->type->get_scalar_type());
|
|
fs_reg attr = *reg;
|
|
|
|
unsigned int array_elements;
|
|
const glsl_type *type;
|
|
|
|
if (ir->type->is_array()) {
|
|
array_elements = ir->type->length;
|
|
if (array_elements == 0) {
|
|
fail("dereferenced array '%s' has length 0\n", ir->name);
|
|
}
|
|
type = ir->type->fields.array;
|
|
} else {
|
|
array_elements = 1;
|
|
type = ir->type;
|
|
}
|
|
|
|
glsl_interp_qualifier interpolation_mode =
|
|
ir->determine_interpolation_mode(c->key.flat_shade);
|
|
|
|
int location = ir->location;
|
|
for (unsigned int i = 0; i < array_elements; i++) {
|
|
for (unsigned int j = 0; j < type->matrix_columns; j++) {
|
|
if (urb_setup[location] == -1) {
|
|
/* If there's no incoming setup data for this slot, don't
|
|
* emit interpolation for it.
|
|
*/
|
|
attr.reg_offset += type->vector_elements;
|
|
location++;
|
|
continue;
|
|
}
|
|
|
|
if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
|
|
/* Constant interpolation (flat shading) case. The SF has
|
|
* handed us defined values in only the constant offset
|
|
* field of the setup reg.
|
|
*/
|
|
for (unsigned int k = 0; k < type->vector_elements; k++) {
|
|
struct brw_reg interp = interp_reg(location, k);
|
|
interp = suboffset(interp, 3);
|
|
interp.type = reg->type;
|
|
emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
|
|
attr.reg_offset++;
|
|
}
|
|
} else {
|
|
/* Smooth/noperspective interpolation case. */
|
|
for (unsigned int k = 0; k < type->vector_elements; k++) {
|
|
/* FINISHME: At some point we probably want to push
|
|
* this farther by giving similar treatment to the
|
|
* other potentially constant components of the
|
|
* attribute, as well as making brw_vs_constval.c
|
|
* handle varyings other than gl_TexCoord.
|
|
*/
|
|
if (location >= FRAG_ATTRIB_TEX0 &&
|
|
location <= FRAG_ATTRIB_TEX7 &&
|
|
k == 3 && !(c->key.proj_attrib_mask & (1 << location))) {
|
|
emit(BRW_OPCODE_MOV, attr, fs_reg(1.0f));
|
|
} else {
|
|
struct brw_reg interp = interp_reg(location, k);
|
|
emit_linterp(attr, fs_reg(interp), interpolation_mode,
|
|
ir->centroid);
|
|
if (brw->needs_unlit_centroid_workaround && ir->centroid) {
|
|
/* Get the pixel/sample mask into f0 so that we know
|
|
* which pixels are lit. Then, for each channel that is
|
|
* unlit, replace the centroid data with non-centroid
|
|
* data.
|
|
*/
|
|
emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS, attr);
|
|
fs_inst *inst = emit_linterp(attr, fs_reg(interp),
|
|
interpolation_mode, false);
|
|
inst->predicate = BRW_PREDICATE_NORMAL;
|
|
inst->predicate_inverse = true;
|
|
}
|
|
if (intel->gen < 6) {
|
|
emit(BRW_OPCODE_MUL, attr, attr, this->pixel_w);
|
|
}
|
|
}
|
|
attr.reg_offset++;
|
|
}
|
|
|
|
}
|
|
location++;
|
|
}
|
|
}
|
|
|
|
return reg;
|
|
}
|
|
|
|
fs_reg *
|
|
fs_visitor::emit_frontfacing_interpolation(ir_variable *ir)
|
|
{
|
|
fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
|
|
|
|
/* The frontfacing comes in as a bit in the thread payload. */
|
|
if (intel->gen >= 6) {
|
|
emit(BRW_OPCODE_ASR, *reg,
|
|
fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
|
|
fs_reg(15));
|
|
emit(BRW_OPCODE_NOT, *reg, *reg);
|
|
emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1));
|
|
} else {
|
|
struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
|
|
/* bit 31 is "primitive is back face", so checking < (1 << 31) gives
|
|
* us front face
|
|
*/
|
|
fs_inst *inst = emit(BRW_OPCODE_CMP, *reg,
|
|
fs_reg(r1_6ud),
|
|
fs_reg(1u << 31));
|
|
inst->conditional_mod = BRW_CONDITIONAL_L;
|
|
emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u));
|
|
}
|
|
|
|
return reg;
|
|
}
|
|
|
|
fs_inst *
|
|
fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src)
|
|
{
|
|
switch (opcode) {
|
|
case SHADER_OPCODE_RCP:
|
|
case SHADER_OPCODE_RSQ:
|
|
case SHADER_OPCODE_SQRT:
|
|
case SHADER_OPCODE_EXP2:
|
|
case SHADER_OPCODE_LOG2:
|
|
case SHADER_OPCODE_SIN:
|
|
case SHADER_OPCODE_COS:
|
|
break;
|
|
default:
|
|
assert(!"not reached: bad math opcode");
|
|
return NULL;
|
|
}
|
|
|
|
/* Can't do hstride == 0 args to gen6 math, so expand it out. We
|
|
* might be able to do better by doing execsize = 1 math and then
|
|
* expanding that result out, but we would need to be careful with
|
|
* masking.
|
|
*
|
|
* Gen 6 hardware ignores source modifiers (negate and abs) on math
|
|
* instructions, so we also move to a temp to set those up.
|
|
*/
|
|
if (intel->gen == 6 && (src.file == UNIFORM ||
|
|
src.abs ||
|
|
src.negate)) {
|
|
fs_reg expanded = fs_reg(this, glsl_type::float_type);
|
|
emit(BRW_OPCODE_MOV, expanded, src);
|
|
src = expanded;
|
|
}
|
|
|
|
fs_inst *inst = emit(opcode, dst, src);
|
|
|
|
if (intel->gen < 6) {
|
|
inst->base_mrf = 2;
|
|
inst->mlen = c->dispatch_width / 8;
|
|
}
|
|
|
|
return inst;
|
|
}
|
|
|
|
fs_inst *
|
|
fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1)
|
|
{
|
|
int base_mrf = 2;
|
|
fs_inst *inst;
|
|
|
|
switch (opcode) {
|
|
case SHADER_OPCODE_POW:
|
|
case SHADER_OPCODE_INT_QUOTIENT:
|
|
case SHADER_OPCODE_INT_REMAINDER:
|
|
break;
|
|
default:
|
|
assert(!"not reached: unsupported binary math opcode.");
|
|
return NULL;
|
|
}
|
|
|
|
if (intel->gen >= 7) {
|
|
inst = emit(opcode, dst, src0, src1);
|
|
} else if (intel->gen == 6) {
|
|
/* Can't do hstride == 0 args to gen6 math, so expand it out.
|
|
*
|
|
* The hardware ignores source modifiers (negate and abs) on math
|
|
* instructions, so we also move to a temp to set those up.
|
|
*/
|
|
if (src0.file == UNIFORM || src0.abs || src0.negate) {
|
|
fs_reg expanded = fs_reg(this, glsl_type::float_type);
|
|
expanded.type = src0.type;
|
|
emit(BRW_OPCODE_MOV, expanded, src0);
|
|
src0 = expanded;
|
|
}
|
|
|
|
if (src1.file == UNIFORM || src1.abs || src1.negate) {
|
|
fs_reg expanded = fs_reg(this, glsl_type::float_type);
|
|
expanded.type = src1.type;
|
|
emit(BRW_OPCODE_MOV, expanded, src1);
|
|
src1 = expanded;
|
|
}
|
|
|
|
inst = emit(opcode, dst, src0, src1);
|
|
} else {
|
|
/* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
|
|
* "Message Payload":
|
|
*
|
|
* "Operand0[7]. For the INT DIV functions, this operand is the
|
|
* denominator."
|
|
* ...
|
|
* "Operand1[7]. For the INT DIV functions, this operand is the
|
|
* numerator."
|
|
*/
|
|
bool is_int_div = opcode != SHADER_OPCODE_POW;
|
|
fs_reg &op0 = is_int_div ? src1 : src0;
|
|
fs_reg &op1 = is_int_div ? src0 : src1;
|
|
|
|
emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + 1, op1.type), op1);
|
|
inst = emit(opcode, dst, op0, reg_null_f);
|
|
|
|
inst->base_mrf = base_mrf;
|
|
inst->mlen = 2 * c->dispatch_width / 8;
|
|
}
|
|
return inst;
|
|
}
|
|
|
|
/**
|
|
* To be called after the last _mesa_add_state_reference() call, to
|
|
* set up prog_data.param[] for assign_curb_setup() and
|
|
* setup_pull_constants().
|
|
*/
|
|
void
|
|
fs_visitor::setup_paramvalues_refs()
|
|
{
|
|
if (c->dispatch_width != 8)
|
|
return;
|
|
|
|
/* Set up the pointers to ParamValues now that that array is finalized. */
|
|
for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
|
|
c->prog_data.param[i] =
|
|
(const float *)fp->Base.Parameters->ParameterValues[this->param_index[i]] +
|
|
this->param_offset[i];
|
|
}
|
|
}
|
|
|
|
void
|
|
fs_visitor::assign_curb_setup()
|
|
{
|
|
c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
|
|
if (c->dispatch_width == 8) {
|
|
c->prog_data.first_curbe_grf = c->nr_payload_regs;
|
|
} else {
|
|
c->prog_data.first_curbe_grf_16 = c->nr_payload_regs;
|
|
}
|
|
|
|
/* Map the offsets in the UNIFORM file to fixed HW regs. */
|
|
foreach_list(node, &this->instructions) {
|
|
fs_inst *inst = (fs_inst *)node;
|
|
|
|
for (unsigned int i = 0; i < 3; i++) {
|
|
if (inst->src[i].file == UNIFORM) {
|
|
int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
|
|
struct brw_reg brw_reg = brw_vec1_grf(c->nr_payload_regs +
|
|
constant_nr / 8,
|
|
constant_nr % 8);
|
|
|
|
inst->src[i].file = FIXED_HW_REG;
|
|
inst->src[i].fixed_hw_reg = retype(brw_reg, inst->src[i].type);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
fs_visitor::calculate_urb_setup()
|
|
{
|
|
for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
|
|
urb_setup[i] = -1;
|
|
}
|
|
|
|
int urb_next = 0;
|
|
/* Figure out where each of the incoming setup attributes lands. */
|
|
if (intel->gen >= 6) {
|
|
for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
|
|
if (fp->Base.InputsRead & BITFIELD64_BIT(i)) {
|
|
urb_setup[i] = urb_next++;
|
|
}
|
|
}
|
|
} else {
|
|
/* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
|
|
for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) {
|
|
/* Point size is packed into the header, not as a general attribute */
|
|
if (i == VERT_RESULT_PSIZ)
|
|
continue;
|
|
|
|
if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
|
|
int fp_index = _mesa_vert_result_to_frag_attrib((gl_vert_result) i);
|
|
|
|
/* The back color slot is skipped when the front color is
|
|
* also written to. In addition, some slots can be
|
|
* written in the vertex shader and not read in the
|
|
* fragment shader. So the register number must always be
|
|
* incremented, mapped or not.
|
|
*/
|
|
if (fp_index >= 0)
|
|
urb_setup[fp_index] = urb_next;
|
|
urb_next++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* It's a FS only attribute, and we did interpolation for this attribute
|
|
* in SF thread. So, count it here, too.
|
|
*
|
|
* See compile_sf_prog() for more info.
|
|
*/
|
|
if (fp->Base.InputsRead & BITFIELD64_BIT(FRAG_ATTRIB_PNTC))
|
|
urb_setup[FRAG_ATTRIB_PNTC] = urb_next++;
|
|
}
|
|
|
|
/* Each attribute is 4 setup channels, each of which is half a reg. */
|
|
c->prog_data.urb_read_length = urb_next * 2;
|
|
}
|
|
|
|
void
|
|
fs_visitor::assign_urb_setup()
|
|
{
|
|
int urb_start = c->nr_payload_regs + c->prog_data.curb_read_length;
|
|
|
|
/* Offset all the urb_setup[] index by the actual position of the
|
|
* setup regs, now that the location of the constants has been chosen.
|
|
*/
|
|
foreach_list(node, &this->instructions) {
|
|
fs_inst *inst = (fs_inst *)node;
|
|
|
|
if (inst->opcode == FS_OPCODE_LINTERP) {
|
|
assert(inst->src[2].file == FIXED_HW_REG);
|
|
inst->src[2].fixed_hw_reg.nr += urb_start;
|
|
}
|
|
|
|
if (inst->opcode == FS_OPCODE_CINTERP) {
|
|
assert(inst->src[0].file == FIXED_HW_REG);
|
|
inst->src[0].fixed_hw_reg.nr += urb_start;
|
|
}
|
|
}
|
|
|
|
this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
|
|
}
|
|
|
|
/**
|
|
* Split large virtual GRFs into separate components if we can.
|
|
*
|
|
* This is mostly duplicated with what brw_fs_vector_splitting does,
|
|
* but that's really conservative because it's afraid of doing
|
|
* splitting that doesn't result in real progress after the rest of
|
|
* the optimization phases, which would cause infinite looping in
|
|
* optimization. We can do it once here, safely. This also has the
|
|
* opportunity to split interpolated values, or maybe even uniforms,
|
|
* which we don't have at the IR level.
|
|
*
|
|
* We want to split, because virtual GRFs are what we register
|
|
* allocate and spill (due to contiguousness requirements for some
|
|
* instructions), and they're what we naturally generate in the
|
|
* codegen process, but most virtual GRFs don't actually need to be
|
|
* contiguous sets of GRFs. If we split, we'll end up with reduced
|
|
* live intervals and better dead code elimination and coalescing.
|
|
*/
|
|
void
|
|
fs_visitor::split_virtual_grfs()
|
|
{
|
|
int num_vars = this->virtual_grf_count;
|
|
bool split_grf[num_vars];
|
|
int new_virtual_grf[num_vars];
|
|
|
|
/* Try to split anything > 0 sized. */
|
|
for (int i = 0; i < num_vars; i++) {
|
|
if (this->virtual_grf_sizes[i] != 1)
|
|
split_grf[i] = true;
|
|
else
|
|
split_grf[i] = false;
|
|
}
|
|
|
|
if (brw->has_pln &&
|
|
this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].file == GRF) {
|
|
/* PLN opcodes rely on the delta_xy being contiguous. We only have to
|
|
* check this for BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC, because prior to
|
|
* Gen6, that was the only supported interpolation mode, and since Gen6,
|
|
* delta_x and delta_y are in fixed hardware registers.
|
|
*/
|
|
split_grf[this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg] =
|
|
false;
|
|
}
|
|
|
|
foreach_list(node, &this->instructions) {
|
|
fs_inst *inst = (fs_inst *)node;
|
|
|
|
/* If there's a SEND message that requires contiguous destination
|
|
* registers, no splitting is allowed.
|
|
*/
|
|
if (inst->regs_written() > 1) {
|
|
split_grf[inst->dst.reg] = false;
|
|
}
|
|
}
|
|
|
|
/* Allocate new space for split regs. Note that the virtual
|
|
* numbers will be contiguous.
|
|
*/
|
|
for (int i = 0; i < num_vars; i++) {
|
|
if (split_grf[i]) {
|
|
new_virtual_grf[i] = virtual_grf_alloc(1);
|
|
for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
|
|
int reg = virtual_grf_alloc(1);
|
|
assert(reg == new_virtual_grf[i] + j - 1);
|
|
(void) reg;
|
|
}
|
|
this->virtual_grf_sizes[i] = 1;
|
|
}
|
|
}
|
|
|
|
foreach_list(node, &this->instructions) {
|
|
fs_inst *inst = (fs_inst *)node;
|
|
|
|
if (inst->dst.file == GRF &&
|
|
split_grf[inst->dst.reg] &&
|
|
inst->dst.reg_offset != 0) {
|
|
inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
|
|
inst->dst.reg_offset - 1);
|
|
inst->dst.reg_offset = 0;
|
|
}
|
|
for (int i = 0; i < 3; i++) {
|
|
if (inst->src[i].file == GRF &&
|
|
split_grf[inst->src[i].reg] &&
|
|
inst->src[i].reg_offset != 0) {
|
|
inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
|
|
inst->src[i].reg_offset - 1);
|
|
inst->src[i].reg_offset = 0;
|
|
}
|
|
}
|
|
}
|
|
this->live_intervals_valid = false;
|
|
}
|
|
|
|
bool
|
|
fs_visitor::remove_dead_constants()
|
|
{
|
|
if (c->dispatch_width == 8) {
|
|
this->params_remap = ralloc_array(mem_ctx, int, c->prog_data.nr_params);
|
|
|
|
for (unsigned int i = 0; i < c->prog_data.nr_params; i++)
|
|
this->params_remap[i] = -1;
|
|
|
|
/* Find which params are still in use. */
|
|
foreach_list(node, &this->instructions) {
|
|
fs_inst *inst = (fs_inst *)node;
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
|
|
|
|
if (inst->src[i].file != UNIFORM)
|
|
continue;
|
|
|
|
assert(constant_nr < (int)c->prog_data.nr_params);
|
|
|
|
/* For now, set this to non-negative. We'll give it the
|
|
* actual new number in a moment, in order to keep the
|
|
* register numbers nicely ordered.
|
|
*/
|
|
this->params_remap[constant_nr] = 0;
|
|
}
|
|
}
|
|
|
|
/* Figure out what the new numbers for the params will be. At some
|
|
* point when we're doing uniform array access, we're going to want
|
|
* to keep the distinction between .reg and .reg_offset, but for
|
|
* now we don't care.
|
|
*/
|
|
unsigned int new_nr_params = 0;
|
|
for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
|
|
if (this->params_remap[i] != -1) {
|
|
this->params_remap[i] = new_nr_params++;
|
|
}
|
|
}
|
|
|
|
/* Update the list of params to be uploaded to match our new numbering. */
|
|
for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
|
|
int remapped = this->params_remap[i];
|
|
|
|
if (remapped == -1)
|
|
continue;
|
|
|
|
/* We've already done setup_paramvalues_refs() so no need to worry
|
|
* about param_index and param_offset.
|
|
*/
|
|
c->prog_data.param[remapped] = c->prog_data.param[i];
|
|
}
|
|
|
|
c->prog_data.nr_params = new_nr_params;
|
|
} else {
|
|
/* This should have been generated in the 8-wide pass already. */
|
|
assert(this->params_remap);
|
|
}
|
|
|
|
/* Now do the renumbering of the shader to remove unused params. */
|
|
foreach_list(node, &this->instructions) {
|
|
fs_inst *inst = (fs_inst *)node;
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
|
|
|
|
if (inst->src[i].file != UNIFORM)
|
|
continue;
|
|
|
|
assert(this->params_remap[constant_nr] != -1);
|
|
inst->src[i].reg = this->params_remap[constant_nr];
|
|
inst->src[i].reg_offset = 0;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Choose accesses from the UNIFORM file to demote to using the pull
|
|
* constant buffer.
|
|
*
|
|
* We allow a fragment shader to have more than the specified minimum
|
|
* maximum number of fragment shader uniform components (64). If
|
|
* there are too many of these, they'd fill up all of register space.
|
|
* So, this will push some of them out to the pull constant buffer and
|
|
* update the program to load them.
|
|
*/
|
|
void
|
|
fs_visitor::setup_pull_constants()
|
|
{
|
|
/* Only allow 16 registers (128 uniform components) as push constants. */
|
|
unsigned int max_uniform_components = 16 * 8;
|
|
if (c->prog_data.nr_params <= max_uniform_components)
|
|
return;
|
|
|
|
if (c->dispatch_width == 16) {
|
|
fail("Pull constants not supported in 16-wide\n");
|
|
return;
|
|
}
|
|
|
|
/* Just demote the end of the list. We could probably do better
|
|
* here, demoting things that are rarely used in the program first.
|
|
*/
|
|
int pull_uniform_base = max_uniform_components;
|
|
int pull_uniform_count = c->prog_data.nr_params - pull_uniform_base;
|
|
|
|
foreach_list(node, &this->instructions) {
|
|
fs_inst *inst = (fs_inst *)node;
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
if (inst->src[i].file != UNIFORM)
|
|
continue;
|
|
|
|
int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset;
|
|
if (uniform_nr < pull_uniform_base)
|
|
continue;
|
|
|
|
fs_reg dst = fs_reg(this, glsl_type::float_type);
|
|
fs_reg index = fs_reg((unsigned)SURF_INDEX_FRAG_CONST_BUFFER);
|
|
fs_reg offset = fs_reg((unsigned)(((uniform_nr -
|
|
pull_uniform_base) * 4) & ~15));
|
|
fs_inst *pull = new(mem_ctx) fs_inst(FS_OPCODE_PULL_CONSTANT_LOAD,
|
|
dst, index, offset);
|
|
pull->ir = inst->ir;
|
|
pull->annotation = inst->annotation;
|
|
pull->base_mrf = 14;
|
|
pull->mlen = 1;
|
|
|
|
inst->insert_before(pull);
|
|
|
|
inst->src[i].file = GRF;
|
|
inst->src[i].reg = dst.reg;
|
|
inst->src[i].reg_offset = 0;
|
|
inst->src[i].smear = (uniform_nr - pull_uniform_base) & 3;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < pull_uniform_count; i++) {
|
|
c->prog_data.pull_param[i] = c->prog_data.param[pull_uniform_base + i];
|
|
}
|
|
c->prog_data.nr_params -= pull_uniform_count;
|
|
c->prog_data.nr_pull_params = pull_uniform_count;
|
|
}
|
|
|
|
bool
|
|
fs_visitor::opt_algebraic()
|
|
{
|
|
bool progress = false;
|
|
|
|
calculate_live_intervals();
|
|
|
|
foreach_list(node, &this->instructions) {
|
|
fs_inst *inst = (fs_inst *)node;
|
|
|
|
switch (inst->opcode) {
|
|
case BRW_OPCODE_MUL:
|
|
if (inst->src[1].file != IMM)
|
|
continue;
|
|
|
|
/* a * 1.0 = a */
|
|
if (inst->src[1].type == BRW_REGISTER_TYPE_F &&
|
|
inst->src[1].imm.f == 1.0) {
|
|
inst->opcode = BRW_OPCODE_MOV;
|
|
inst->src[1] = reg_undef;
|
|
progress = true;
|
|
break;
|
|
}
|
|
|
|
/* a * 0.0 = 0.0 */
|
|
if (inst->src[1].type == BRW_REGISTER_TYPE_F &&
|
|
inst->src[1].imm.f == 0.0) {
|
|
inst->opcode = BRW_OPCODE_MOV;
|
|
inst->src[0] = fs_reg(0.0f);
|
|
inst->src[1] = reg_undef;
|
|
progress = true;
|
|
break;
|
|
}
|
|
|
|
break;
|
|
case BRW_OPCODE_ADD:
|
|
if (inst->src[1].file != IMM)
|
|
continue;
|
|
|
|
/* a + 0.0 = a */
|
|
if (inst->src[1].type == BRW_REGISTER_TYPE_F &&
|
|
inst->src[1].imm.f == 0.0) {
|
|
inst->opcode = BRW_OPCODE_MOV;
|
|
inst->src[1] = reg_undef;
|
|
progress = true;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
/**
|
|
* Must be called after calculate_live_intervales() to remove unused
|
|
* writes to registers -- register allocation will fail otherwise
|
|
* because something deffed but not used won't be considered to
|
|
* interfere with other regs.
|
|
*/
|
|
bool
|
|
fs_visitor::dead_code_eliminate()
|
|
{
|
|
bool progress = false;
|
|
int pc = 0;
|
|
|
|
calculate_live_intervals();
|
|
|
|
foreach_list_safe(node, &this->instructions) {
|
|
fs_inst *inst = (fs_inst *)node;
|
|
|
|
if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) {
|
|
inst->remove();
|
|
progress = true;
|
|
}
|
|
|
|
pc++;
|
|
}
|
|
|
|
if (progress)
|
|
live_intervals_valid = false;
|
|
|
|
return progress;
|
|
}
|
|
|
|
/**
|
|
* Implements a second type of register coalescing: This one checks if
|
|
* the two regs involved in a raw move don't interfere, in which case
|
|
* they can both by stored in the same place and the MOV removed.
|
|
*/
|
|
bool
|
|
fs_visitor::register_coalesce_2()
|
|
{
|
|
bool progress = false;
|
|
|
|
calculate_live_intervals();
|
|
|
|
foreach_list_safe(node, &this->instructions) {
|
|
fs_inst *inst = (fs_inst *)node;
|
|
|
|
if (inst->opcode != BRW_OPCODE_MOV ||
|
|
inst->predicate ||
|
|
inst->saturate ||
|
|
inst->src[0].file != GRF ||
|
|
inst->src[0].negate ||
|
|
inst->src[0].abs ||
|
|
inst->src[0].smear != -1 ||
|
|
inst->dst.file != GRF ||
|
|
inst->dst.type != inst->src[0].type ||
|
|
virtual_grf_sizes[inst->src[0].reg] != 1 ||
|
|
virtual_grf_interferes(inst->dst.reg, inst->src[0].reg)) {
|
|
continue;
|
|
}
|
|
|
|
int reg_from = inst->src[0].reg;
|
|
assert(inst->src[0].reg_offset == 0);
|
|
int reg_to = inst->dst.reg;
|
|
int reg_to_offset = inst->dst.reg_offset;
|
|
|
|
foreach_list_safe(node, &this->instructions) {
|
|
fs_inst *scan_inst = (fs_inst *)node;
|
|
|
|
if (scan_inst->dst.file == GRF &&
|
|
scan_inst->dst.reg == reg_from) {
|
|
scan_inst->dst.reg = reg_to;
|
|
scan_inst->dst.reg_offset = reg_to_offset;
|
|
}
|
|
for (int i = 0; i < 3; i++) {
|
|
if (scan_inst->src[i].file == GRF &&
|
|
scan_inst->src[i].reg == reg_from) {
|
|
scan_inst->src[i].reg = reg_to;
|
|
scan_inst->src[i].reg_offset = reg_to_offset;
|
|
}
|
|
}
|
|
}
|
|
|
|
inst->remove();
|
|
live_intervals_valid = false;
|
|
progress = true;
|
|
continue;
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
bool
|
|
fs_visitor::register_coalesce()
|
|
{
|
|
bool progress = false;
|
|
int if_depth = 0;
|
|
int loop_depth = 0;
|
|
|
|
foreach_list_safe(node, &this->instructions) {
|
|
fs_inst *inst = (fs_inst *)node;
|
|
|
|
/* Make sure that we dominate the instructions we're going to
|
|
* scan for interfering with our coalescing, or we won't have
|
|
* scanned enough to see if anything interferes with our
|
|
* coalescing. We don't dominate the following instructions if
|
|
* we're in a loop or an if block.
|
|
*/
|
|
switch (inst->opcode) {
|
|
case BRW_OPCODE_DO:
|
|
loop_depth++;
|
|
break;
|
|
case BRW_OPCODE_WHILE:
|
|
loop_depth--;
|
|
break;
|
|
case BRW_OPCODE_IF:
|
|
if_depth++;
|
|
break;
|
|
case BRW_OPCODE_ENDIF:
|
|
if_depth--;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (loop_depth || if_depth)
|
|
continue;
|
|
|
|
if (inst->opcode != BRW_OPCODE_MOV ||
|
|
inst->predicate ||
|
|
inst->saturate ||
|
|
inst->dst.file != GRF || (inst->src[0].file != GRF &&
|
|
inst->src[0].file != UNIFORM)||
|
|
inst->dst.type != inst->src[0].type)
|
|
continue;
|
|
|
|
bool has_source_modifiers = inst->src[0].abs || inst->src[0].negate;
|
|
|
|
/* Found a move of a GRF to a GRF. Let's see if we can coalesce
|
|
* them: check for no writes to either one until the exit of the
|
|
* program.
|
|
*/
|
|
bool interfered = false;
|
|
|
|
for (fs_inst *scan_inst = (fs_inst *)inst->next;
|
|
!scan_inst->is_tail_sentinel();
|
|
scan_inst = (fs_inst *)scan_inst->next) {
|
|
if (scan_inst->dst.file == GRF) {
|
|
if (scan_inst->overwrites_reg(inst->dst) ||
|
|
scan_inst->overwrites_reg(inst->src[0])) {
|
|
interfered = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* The gen6 MATH instruction can't handle source modifiers or
|
|
* unusual register regions, so avoid coalescing those for
|
|
* now. We should do something more specific.
|
|
*/
|
|
if (intel->gen >= 6 &&
|
|
scan_inst->is_math() &&
|
|
(has_source_modifiers || inst->src[0].file == UNIFORM)) {
|
|
interfered = true;
|
|
break;
|
|
}
|
|
|
|
/* The accumulator result appears to get used for the
|
|
* conditional modifier generation. When negating a UD
|
|
* value, there is a 33rd bit generated for the sign in the
|
|
* accumulator value, so now you can't check, for example,
|
|
* equality with a 32-bit value. See piglit fs-op-neg-uint.
|
|
*/
|
|
if (scan_inst->conditional_mod &&
|
|
inst->src[0].negate &&
|
|
inst->src[0].type == BRW_REGISTER_TYPE_UD) {
|
|
interfered = true;
|
|
break;
|
|
}
|
|
}
|
|
if (interfered) {
|
|
continue;
|
|
}
|
|
|
|
/* Rewrite the later usage to point at the source of the move to
|
|
* be removed.
|
|
*/
|
|
for (fs_inst *scan_inst = inst;
|
|
!scan_inst->is_tail_sentinel();
|
|
scan_inst = (fs_inst *)scan_inst->next) {
|
|
for (int i = 0; i < 3; i++) {
|
|
if (scan_inst->src[i].file == GRF &&
|
|
scan_inst->src[i].reg == inst->dst.reg &&
|
|
scan_inst->src[i].reg_offset == inst->dst.reg_offset) {
|
|
fs_reg new_src = inst->src[0];
|
|
if (scan_inst->src[i].abs) {
|
|
new_src.negate = 0;
|
|
new_src.abs = 1;
|
|
}
|
|
new_src.negate ^= scan_inst->src[i].negate;
|
|
scan_inst->src[i] = new_src;
|
|
}
|
|
}
|
|
}
|
|
|
|
inst->remove();
|
|
progress = true;
|
|
}
|
|
|
|
if (progress)
|
|
live_intervals_valid = false;
|
|
|
|
return progress;
|
|
}
|
|
|
|
|
|
bool
|
|
fs_visitor::compute_to_mrf()
|
|
{
|
|
bool progress = false;
|
|
int next_ip = 0;
|
|
|
|
calculate_live_intervals();
|
|
|
|
foreach_list_safe(node, &this->instructions) {
|
|
fs_inst *inst = (fs_inst *)node;
|
|
|
|
int ip = next_ip;
|
|
next_ip++;
|
|
|
|
if (inst->opcode != BRW_OPCODE_MOV ||
|
|
inst->predicate ||
|
|
inst->dst.file != MRF || inst->src[0].file != GRF ||
|
|
inst->dst.type != inst->src[0].type ||
|
|
inst->src[0].abs || inst->src[0].negate || inst->src[0].smear != -1)
|
|
continue;
|
|
|
|
/* Work out which hardware MRF registers are written by this
|
|
* instruction.
|
|
*/
|
|
int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4;
|
|
int mrf_high;
|
|
if (inst->dst.reg & BRW_MRF_COMPR4) {
|
|
mrf_high = mrf_low + 4;
|
|
} else if (c->dispatch_width == 16 &&
|
|
(!inst->force_uncompressed && !inst->force_sechalf)) {
|
|
mrf_high = mrf_low + 1;
|
|
} else {
|
|
mrf_high = mrf_low;
|
|
}
|
|
|
|
/* Can't compute-to-MRF this GRF if someone else was going to
|
|
* read it later.
|
|
*/
|
|
if (this->virtual_grf_use[inst->src[0].reg] > ip)
|
|
continue;
|
|
|
|
/* Found a move of a GRF to a MRF. Let's see if we can go
|
|
* rewrite the thing that made this GRF to write into the MRF.
|
|
*/
|
|
fs_inst *scan_inst;
|
|
for (scan_inst = (fs_inst *)inst->prev;
|
|
scan_inst->prev != NULL;
|
|
scan_inst = (fs_inst *)scan_inst->prev) {
|
|
if (scan_inst->dst.file == GRF &&
|
|
scan_inst->dst.reg == inst->src[0].reg) {
|
|
/* Found the last thing to write our reg we want to turn
|
|
* into a compute-to-MRF.
|
|
*/
|
|
|
|
/* SENDs can only write to GRFs, so no compute-to-MRF. */
|
|
if (scan_inst->mlen) {
|
|
break;
|
|
}
|
|
|
|
/* If it's predicated, it (probably) didn't populate all
|
|
* the channels. We might be able to rewrite everything
|
|
* that writes that reg, but it would require smarter
|
|
* tracking to delay the rewriting until complete success.
|
|
*/
|
|
if (scan_inst->predicate)
|
|
break;
|
|
|
|
/* If it's half of register setup and not the same half as
|
|
* our MOV we're trying to remove, bail for now.
|
|
*/
|
|
if (scan_inst->force_uncompressed != inst->force_uncompressed ||
|
|
scan_inst->force_sechalf != inst->force_sechalf) {
|
|
break;
|
|
}
|
|
|
|
/* SEND instructions can't have MRF as a destination. */
|
|
if (scan_inst->mlen)
|
|
break;
|
|
|
|
if (intel->gen >= 6) {
|
|
/* gen6 math instructions must have the destination be
|
|
* GRF, so no compute-to-MRF for them.
|
|
*/
|
|
if (scan_inst->is_math()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
|
|
/* Found the creator of our MRF's source value. */
|
|
scan_inst->dst.file = MRF;
|
|
scan_inst->dst.reg = inst->dst.reg;
|
|
scan_inst->saturate |= inst->saturate;
|
|
inst->remove();
|
|
progress = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* We don't handle flow control here. Most computation of
|
|
* values that end up in MRFs are shortly before the MRF
|
|
* write anyway.
|
|
*/
|
|
if (scan_inst->opcode == BRW_OPCODE_DO ||
|
|
scan_inst->opcode == BRW_OPCODE_WHILE ||
|
|
scan_inst->opcode == BRW_OPCODE_ELSE ||
|
|
scan_inst->opcode == BRW_OPCODE_ENDIF) {
|
|
break;
|
|
}
|
|
|
|
/* You can't read from an MRF, so if someone else reads our
|
|
* MRF's source GRF that we wanted to rewrite, that stops us.
|
|
*/
|
|
bool interfered = false;
|
|
for (int i = 0; i < 3; i++) {
|
|
if (scan_inst->src[i].file == GRF &&
|
|
scan_inst->src[i].reg == inst->src[0].reg &&
|
|
scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
|
|
interfered = true;
|
|
}
|
|
}
|
|
if (interfered)
|
|
break;
|
|
|
|
if (scan_inst->dst.file == MRF) {
|
|
/* If somebody else writes our MRF here, we can't
|
|
* compute-to-MRF before that.
|
|
*/
|
|
int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4;
|
|
int scan_mrf_high;
|
|
|
|
if (scan_inst->dst.reg & BRW_MRF_COMPR4) {
|
|
scan_mrf_high = scan_mrf_low + 4;
|
|
} else if (c->dispatch_width == 16 &&
|
|
(!scan_inst->force_uncompressed &&
|
|
!scan_inst->force_sechalf)) {
|
|
scan_mrf_high = scan_mrf_low + 1;
|
|
} else {
|
|
scan_mrf_high = scan_mrf_low;
|
|
}
|
|
|
|
if (mrf_low == scan_mrf_low ||
|
|
mrf_low == scan_mrf_high ||
|
|
mrf_high == scan_mrf_low ||
|
|
mrf_high == scan_mrf_high) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (scan_inst->mlen > 0) {
|
|
/* Found a SEND instruction, which means that there are
|
|
* live values in MRFs from base_mrf to base_mrf +
|
|
* scan_inst->mlen - 1. Don't go pushing our MRF write up
|
|
* above it.
|
|
*/
|
|
if (mrf_low >= scan_inst->base_mrf &&
|
|
mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
|
|
break;
|
|
}
|
|
if (mrf_high >= scan_inst->base_mrf &&
|
|
mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (progress)
|
|
live_intervals_valid = false;
|
|
|
|
return progress;
|
|
}
|
|
|
|
/**
|
|
* Walks through basic blocks, looking for repeated MRF writes and
|
|
* removing the later ones.
|
|
*/
|
|
bool
|
|
fs_visitor::remove_duplicate_mrf_writes()
|
|
{
|
|
fs_inst *last_mrf_move[16];
|
|
bool progress = false;
|
|
|
|
/* Need to update the MRF tracking for compressed instructions. */
|
|
if (c->dispatch_width == 16)
|
|
return false;
|
|
|
|
memset(last_mrf_move, 0, sizeof(last_mrf_move));
|
|
|
|
foreach_list_safe(node, &this->instructions) {
|
|
fs_inst *inst = (fs_inst *)node;
|
|
|
|
switch (inst->opcode) {
|
|
case BRW_OPCODE_DO:
|
|
case BRW_OPCODE_WHILE:
|
|
case BRW_OPCODE_IF:
|
|
case BRW_OPCODE_ELSE:
|
|
case BRW_OPCODE_ENDIF:
|
|
memset(last_mrf_move, 0, sizeof(last_mrf_move));
|
|
continue;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (inst->opcode == BRW_OPCODE_MOV &&
|
|
inst->dst.file == MRF) {
|
|
fs_inst *prev_inst = last_mrf_move[inst->dst.reg];
|
|
if (prev_inst && inst->equals(prev_inst)) {
|
|
inst->remove();
|
|
progress = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Clear out the last-write records for MRFs that were overwritten. */
|
|
if (inst->dst.file == MRF) {
|
|
last_mrf_move[inst->dst.reg] = NULL;
|
|
}
|
|
|
|
if (inst->mlen > 0) {
|
|
/* Found a SEND instruction, which will include two or fewer
|
|
* implied MRF writes. We could do better here.
|
|
*/
|
|
for (int i = 0; i < implied_mrf_writes(inst); i++) {
|
|
last_mrf_move[inst->base_mrf + i] = NULL;
|
|
}
|
|
}
|
|
|
|
/* Clear out any MRF move records whose sources got overwritten. */
|
|
if (inst->dst.file == GRF) {
|
|
for (unsigned int i = 0; i < Elements(last_mrf_move); i++) {
|
|
if (last_mrf_move[i] &&
|
|
last_mrf_move[i]->src[0].reg == inst->dst.reg) {
|
|
last_mrf_move[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (inst->opcode == BRW_OPCODE_MOV &&
|
|
inst->dst.file == MRF &&
|
|
inst->src[0].file == GRF &&
|
|
!inst->predicate) {
|
|
last_mrf_move[inst->dst.reg] = inst;
|
|
}
|
|
}
|
|
|
|
if (progress)
|
|
live_intervals_valid = false;
|
|
|
|
return progress;
|
|
}
|
|
|
|
/**
|
|
* Possibly returns an instruction that set up @param reg.
|
|
*
|
|
* Sometimes we want to take the result of some expression/variable
|
|
* dereference tree and rewrite the instruction generating the result
|
|
* of the tree. When processing the tree, we know that the
|
|
* instructions generated are all writing temporaries that are dead
|
|
* outside of this tree. So, if we have some instructions that write
|
|
* a temporary, we're free to point that temp write somewhere else.
|
|
*
|
|
* Note that this doesn't guarantee that the instruction generated
|
|
* only reg -- it might be the size=4 destination of a texture instruction.
|
|
*/
|
|
fs_inst *
|
|
fs_visitor::get_instruction_generating_reg(fs_inst *start,
|
|
fs_inst *end,
|
|
fs_reg reg)
|
|
{
|
|
if (end == start ||
|
|
end->predicate ||
|
|
end->force_uncompressed ||
|
|
end->force_sechalf ||
|
|
!reg.equals(end->dst)) {
|
|
return NULL;
|
|
} else {
|
|
return end;
|
|
}
|
|
}
|
|
|
|
bool
|
|
fs_visitor::run()
|
|
{
|
|
uint32_t prog_offset_16 = 0;
|
|
uint32_t orig_nr_params = c->prog_data.nr_params;
|
|
|
|
brw_wm_payload_setup(brw, c);
|
|
|
|
if (c->dispatch_width == 16) {
|
|
/* We have to do a compaction pass now, or the one at the end of
|
|
* execution will squash down where our prog_offset start needs
|
|
* to be.
|
|
*/
|
|
brw_compact_instructions(p);
|
|
|
|
/* align to 64 byte boundary. */
|
|
while ((c->func.nr_insn * sizeof(struct brw_instruction)) % 64) {
|
|
brw_NOP(p);
|
|
}
|
|
|
|
/* Save off the start of this 16-wide program in case we succeed. */
|
|
prog_offset_16 = c->func.nr_insn * sizeof(struct brw_instruction);
|
|
|
|
brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
|
|
}
|
|
|
|
if (0) {
|
|
emit_dummy_fs();
|
|
} else {
|
|
calculate_urb_setup();
|
|
if (intel->gen < 6)
|
|
emit_interpolation_setup_gen4();
|
|
else
|
|
emit_interpolation_setup_gen6();
|
|
|
|
/* Generate FS IR for main(). (the visitor only descends into
|
|
* functions called "main").
|
|
*/
|
|
if (shader) {
|
|
foreach_list(node, &*shader->ir) {
|
|
ir_instruction *ir = (ir_instruction *)node;
|
|
base_ir = ir;
|
|
this->result = reg_undef;
|
|
ir->accept(this);
|
|
}
|
|
} else {
|
|
emit_fragment_program_code();
|
|
}
|
|
if (failed)
|
|
return false;
|
|
|
|
emit_fb_writes();
|
|
|
|
split_virtual_grfs();
|
|
|
|
setup_paramvalues_refs();
|
|
setup_pull_constants();
|
|
|
|
bool progress;
|
|
do {
|
|
progress = false;
|
|
|
|
progress = remove_duplicate_mrf_writes() || progress;
|
|
|
|
progress = opt_algebraic() || progress;
|
|
progress = opt_cse() || progress;
|
|
progress = opt_copy_propagate() || progress;
|
|
progress = register_coalesce() || progress;
|
|
progress = register_coalesce_2() || progress;
|
|
progress = compute_to_mrf() || progress;
|
|
progress = dead_code_eliminate() || progress;
|
|
} while (progress);
|
|
|
|
remove_dead_constants();
|
|
|
|
schedule_instructions();
|
|
|
|
assign_curb_setup();
|
|
assign_urb_setup();
|
|
|
|
if (0) {
|
|
/* Debug of register spilling: Go spill everything. */
|
|
for (int i = 0; i < virtual_grf_count; i++) {
|
|
spill_reg(i);
|
|
}
|
|
}
|
|
|
|
if (0)
|
|
assign_regs_trivial();
|
|
else {
|
|
while (!assign_regs()) {
|
|
if (failed)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
assert(force_uncompressed_stack == 0);
|
|
assert(force_sechalf_stack == 0);
|
|
|
|
if (failed)
|
|
return false;
|
|
|
|
generate_code();
|
|
|
|
if (c->dispatch_width == 8) {
|
|
c->prog_data.reg_blocks = brw_register_blocks(grf_used);
|
|
} else {
|
|
c->prog_data.reg_blocks_16 = brw_register_blocks(grf_used);
|
|
c->prog_data.prog_offset_16 = prog_offset_16;
|
|
|
|
/* Make sure we didn't try to sneak in an extra uniform */
|
|
assert(orig_nr_params == c->prog_data.nr_params);
|
|
(void) orig_nr_params;
|
|
}
|
|
|
|
return !failed;
|
|
}
|
|
|
|
bool
|
|
brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c,
|
|
struct gl_shader_program *prog)
|
|
{
|
|
struct intel_context *intel = &brw->intel;
|
|
bool start_busy = false;
|
|
float start_time = 0;
|
|
|
|
if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
|
|
start_busy = (intel->batch.last_bo &&
|
|
drm_intel_bo_busy(intel->batch.last_bo));
|
|
start_time = get_time();
|
|
}
|
|
|
|
struct brw_shader *shader = NULL;
|
|
if (prog)
|
|
shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
|
|
|
|
if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
|
|
if (shader) {
|
|
printf("GLSL IR for native fragment shader %d:\n", prog->Name);
|
|
_mesa_print_ir(shader->ir, NULL);
|
|
printf("\n\n");
|
|
} else {
|
|
printf("ARB_fragment_program %d ir for native fragment shader\n",
|
|
c->fp->program.Base.Id);
|
|
_mesa_print_program(&c->fp->program.Base);
|
|
}
|
|
}
|
|
|
|
/* Now the main event: Visit the shader IR and generate our FS IR for it.
|
|
*/
|
|
c->dispatch_width = 8;
|
|
|
|
fs_visitor v(c, prog, shader);
|
|
if (!v.run()) {
|
|
prog->LinkStatus = false;
|
|
ralloc_strcat(&prog->InfoLog, v.fail_msg);
|
|
|
|
_mesa_problem(NULL, "Failed to compile fragment shader: %s\n",
|
|
v.fail_msg);
|
|
|
|
return false;
|
|
}
|
|
|
|
if (intel->gen >= 5 && c->prog_data.nr_pull_params == 0) {
|
|
c->dispatch_width = 16;
|
|
fs_visitor v2(c, prog, shader);
|
|
v2.import_uniforms(&v);
|
|
if (!v2.run()) {
|
|
perf_debug("16-wide shader failed to compile, falling back to "
|
|
"8-wide at a 10-20%% performance cost: %s", v2.fail_msg);
|
|
}
|
|
}
|
|
|
|
c->prog_data.dispatch_width = 8;
|
|
|
|
if (unlikely(INTEL_DEBUG & DEBUG_PERF) && shader) {
|
|
if (shader->compiled_once)
|
|
brw_wm_debug_recompile(brw, prog, &c->key);
|
|
shader->compiled_once = true;
|
|
|
|
if (start_busy && !drm_intel_bo_busy(intel->batch.last_bo)) {
|
|
perf_debug("FS compile took %.03f ms and stalled the GPU\n",
|
|
(get_time() - start_time) * 1000);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
brw_fs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
|
|
{
|
|
struct brw_context *brw = brw_context(ctx);
|
|
struct intel_context *intel = &brw->intel;
|
|
struct brw_wm_prog_key key;
|
|
|
|
if (!prog->_LinkedShaders[MESA_SHADER_FRAGMENT])
|
|
return true;
|
|
|
|
struct gl_fragment_program *fp = (struct gl_fragment_program *)
|
|
prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program;
|
|
struct brw_fragment_program *bfp = brw_fragment_program(fp);
|
|
bool program_uses_dfdy = fp->UsesDFdy;
|
|
|
|
memset(&key, 0, sizeof(key));
|
|
|
|
if (intel->gen < 6) {
|
|
if (fp->UsesKill)
|
|
key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT;
|
|
|
|
if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
|
|
key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
|
|
|
|
/* Just assume depth testing. */
|
|
key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
|
|
key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
|
|
}
|
|
|
|
if (prog->Name != 0)
|
|
key.proj_attrib_mask = 0xffffffff;
|
|
|
|
if (intel->gen < 6)
|
|
key.vp_outputs_written |= BITFIELD64_BIT(FRAG_ATTRIB_WPOS);
|
|
|
|
for (int i = 0; i < FRAG_ATTRIB_MAX; i++) {
|
|
if (!(fp->Base.InputsRead & BITFIELD64_BIT(i)))
|
|
continue;
|
|
|
|
if (prog->Name == 0)
|
|
key.proj_attrib_mask |= 1 << i;
|
|
|
|
if (intel->gen < 6) {
|
|
int vp_index = _mesa_vert_result_to_frag_attrib((gl_vert_result) i);
|
|
|
|
if (vp_index >= 0)
|
|
key.vp_outputs_written |= BITFIELD64_BIT(vp_index);
|
|
}
|
|
}
|
|
|
|
key.clamp_fragment_color = true;
|
|
|
|
for (int i = 0; i < MAX_SAMPLERS; i++) {
|
|
if (fp->Base.ShadowSamplers & (1 << i)) {
|
|
/* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
|
|
key.tex.swizzles[i] =
|
|
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
|
|
} else {
|
|
/* Color sampler: assume no swizzling. */
|
|
key.tex.swizzles[i] = SWIZZLE_XYZW;
|
|
}
|
|
}
|
|
|
|
if (fp->Base.InputsRead & FRAG_BIT_WPOS) {
|
|
key.drawable_height = ctx->DrawBuffer->Height;
|
|
}
|
|
|
|
if ((fp->Base.InputsRead & FRAG_BIT_WPOS) || program_uses_dfdy) {
|
|
key.render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
|
|
}
|
|
|
|
key.nr_color_regions = 1;
|
|
|
|
key.program_string_id = bfp->id;
|
|
|
|
uint32_t old_prog_offset = brw->wm.prog_offset;
|
|
struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data;
|
|
|
|
bool success = do_wm_prog(brw, prog, bfp, &key);
|
|
|
|
brw->wm.prog_offset = old_prog_offset;
|
|
brw->wm.prog_data = old_prog_data;
|
|
|
|
return success;
|
|
}
|