Files
third_party_mesa3d/src/gallium/drivers/iris/iris_query.c
Kenneth Graunke 5307ff6a5f iris: Implement DrawTransformFeedback()
We get the count by dividing the offset by the stride.
2019-02-21 10:26:11 -08:00

1003 lines
32 KiB
C

/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* @file iris_query.c
*
* Query object support. This allows measuring various simple statistics
* via counters on the GPU.
*/
#include <stdio.h>
#include <errno.h>
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#include "pipe/p_screen.h"
#include "util/fast_idiv_by_const.h"
#include "util/u_inlines.h"
#include "iris_context.h"
#include "iris_defines.h"
#include "iris_resource.h"
#include "iris_screen.h"
#include "vulkan/util/vk_util.h"
#define IA_VERTICES_COUNT 0x2310
#define IA_PRIMITIVES_COUNT 0x2318
#define VS_INVOCATION_COUNT 0x2320
#define HS_INVOCATION_COUNT 0x2300
#define DS_INVOCATION_COUNT 0x2308
#define GS_INVOCATION_COUNT 0x2328
#define GS_PRIMITIVES_COUNT 0x2330
#define CL_INVOCATION_COUNT 0x2338
#define CL_PRIMITIVES_COUNT 0x2340
#define PS_INVOCATION_COUNT 0x2348
#define CS_INVOCATION_COUNT 0x2290
#define PS_DEPTH_COUNT 0x2350
#define SO_PRIM_STORAGE_NEEDED(n) (0x5240 + (n) * 8)
#define SO_NUM_PRIMS_WRITTEN(n) (0x5200 + (n) * 8)
#define MI_MATH (0x1a << 23)
#define MI_ALU_LOAD 0x080
#define MI_ALU_LOADINV 0x480
#define MI_ALU_LOAD0 0x081
#define MI_ALU_LOAD1 0x481
#define MI_ALU_ADD 0x100
#define MI_ALU_SUB 0x101
#define MI_ALU_AND 0x102
#define MI_ALU_OR 0x103
#define MI_ALU_XOR 0x104
#define MI_ALU_STORE 0x180
#define MI_ALU_STOREINV 0x580
#define MI_ALU_R0 0x00
#define MI_ALU_R1 0x01
#define MI_ALU_R2 0x02
#define MI_ALU_R3 0x03
#define MI_ALU_R4 0x04
#define MI_ALU_SRCA 0x20
#define MI_ALU_SRCB 0x21
#define MI_ALU_ACCU 0x31
#define MI_ALU_ZF 0x32
#define MI_ALU_CF 0x33
#define _MI_ALU(op, x, y) (((op) << 20) | ((x) << 10) | (y))
#define _MI_ALU0(op) _MI_ALU(MI_ALU_##op, 0, 0)
#define _MI_ALU1(op, x) _MI_ALU(MI_ALU_##op, x, 0)
#define _MI_ALU2(op, x, y) _MI_ALU(MI_ALU_##op, x, y)
#define MI_ALU0(op) _MI_ALU0(op)
#define MI_ALU1(op, x) _MI_ALU1(op, MI_ALU_##x)
#define MI_ALU2(op, x, y) _MI_ALU2(op, MI_ALU_##x, MI_ALU_##y)
#define emit_lri32 ice->vtbl.load_register_imm32
#define emit_lri64 ice->vtbl.load_register_imm64
#define emit_lrr32 ice->vtbl.load_register_reg32
struct iris_query {
enum pipe_query_type type;
int index;
bool ready;
bool stalled;
uint64_t result;
struct iris_bo *bo;
struct iris_query_snapshots *map;
int batch_idx;
};
struct iris_query_snapshots {
/** iris_render_condition's saved MI_PREDICATE_DATA value. */
uint64_t predicate_data;
/** Have the start/end snapshots landed? */
uint64_t snapshots_landed;
/** Starting and ending counter snapshots */
uint64_t start;
uint64_t end;
};
struct iris_query_so_overflow {
uint64_t predicate_data;
uint64_t snapshots_landed;
struct {
uint64_t prim_storage_needed[2];
uint64_t num_prims[2];
} stream[4];
};
/**
* Is this type of query written by PIPE_CONTROL?
*/
static bool
iris_is_query_pipelined(struct iris_query *q)
{
switch (q->type) {
case PIPE_QUERY_OCCLUSION_COUNTER:
case PIPE_QUERY_OCCLUSION_PREDICATE:
case PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE:
case PIPE_QUERY_TIMESTAMP:
case PIPE_QUERY_TIMESTAMP_DISJOINT:
case PIPE_QUERY_TIME_ELAPSED:
return true;
default:
return false;
}
}
static void
mark_available(struct iris_context *ice, struct iris_query *q)
{
struct iris_batch *batch = &ice->batches[q->batch_idx];
unsigned flags = PIPE_CONTROL_WRITE_IMMEDIATE;
unsigned offset = offsetof(struct iris_query_snapshots, snapshots_landed);
if (!iris_is_query_pipelined(q)) {
ice->vtbl.store_data_imm64(batch, q->bo, offset, true);
} else {
/* Order available *after* the query results. */
flags |= PIPE_CONTROL_FLUSH_ENABLE;
iris_emit_pipe_control_write(batch, flags, q->bo, offset, true);
}
}
/**
* Write PS_DEPTH_COUNT to q->(dest) via a PIPE_CONTROL.
*/
static void
iris_pipelined_write(struct iris_batch *batch,
struct iris_query *q,
enum pipe_control_flags flags,
unsigned offset)
{
const struct gen_device_info *devinfo = &batch->screen->devinfo;
const unsigned optional_cs_stall =
devinfo->gen == 9 && devinfo->gt == 4 ? PIPE_CONTROL_CS_STALL : 0;
iris_emit_pipe_control_write(batch, flags | optional_cs_stall,
q->bo, offset, 0ull);
}
static void
write_value(struct iris_context *ice, struct iris_query *q, unsigned offset)
{
struct iris_batch *batch = &ice->batches[q->batch_idx];
const struct gen_device_info *devinfo = &batch->screen->devinfo;
if (!iris_is_query_pipelined(q)) {
iris_emit_pipe_control_flush(batch,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_STALL_AT_SCOREBOARD);
q->stalled = true;
}
switch (q->type) {
case PIPE_QUERY_OCCLUSION_COUNTER:
case PIPE_QUERY_OCCLUSION_PREDICATE:
case PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE:
if (devinfo->gen >= 10) {
/* "Driver must program PIPE_CONTROL with only Depth Stall Enable
* bit set prior to programming a PIPE_CONTROL with Write PS Depth
* Count sync operation."
*/
iris_emit_pipe_control_flush(batch, PIPE_CONTROL_DEPTH_STALL);
}
iris_pipelined_write(&ice->batches[IRIS_BATCH_RENDER], q,
PIPE_CONTROL_WRITE_DEPTH_COUNT |
PIPE_CONTROL_DEPTH_STALL,
offset);
break;
case PIPE_QUERY_TIME_ELAPSED:
case PIPE_QUERY_TIMESTAMP:
case PIPE_QUERY_TIMESTAMP_DISJOINT:
iris_pipelined_write(&ice->batches[IRIS_BATCH_RENDER], q,
PIPE_CONTROL_WRITE_TIMESTAMP,
offset);
break;
case PIPE_QUERY_PRIMITIVES_GENERATED:
ice->vtbl.store_register_mem64(batch,
q->index == 0 ? CL_INVOCATION_COUNT :
SO_PRIM_STORAGE_NEEDED(q->index),
q->bo, offset, false);
break;
case PIPE_QUERY_PRIMITIVES_EMITTED:
ice->vtbl.store_register_mem64(batch,
SO_NUM_PRIMS_WRITTEN(q->index),
q->bo, offset, false);
break;
case PIPE_QUERY_PIPELINE_STATISTICS: {
static const uint32_t index_to_reg[] = {
IA_VERTICES_COUNT,
IA_PRIMITIVES_COUNT,
VS_INVOCATION_COUNT,
GS_INVOCATION_COUNT,
GS_PRIMITIVES_COUNT,
CL_INVOCATION_COUNT,
CL_PRIMITIVES_COUNT,
PS_INVOCATION_COUNT,
HS_INVOCATION_COUNT,
DS_INVOCATION_COUNT,
CS_INVOCATION_COUNT,
};
const uint32_t reg = index_to_reg[q->index];
ice->vtbl.store_register_mem64(batch, reg, q->bo, offset, false);
break;
}
default:
assert(false);
}
}
static void
write_overflow_values(struct iris_context *ice, struct iris_query *q, bool end)
{
struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
uint32_t count = q->type == PIPE_QUERY_SO_OVERFLOW_PREDICATE ? 1 : 4;
iris_emit_pipe_control_flush(batch,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_STALL_AT_SCOREBOARD);
for (uint32_t i = 0; i < count; i++) {
int s = q->index + i;
int g_idx = offsetof(struct iris_query_so_overflow,
stream[s].num_prims[end]);
int w_idx = offsetof(struct iris_query_so_overflow,
stream[s].prim_storage_needed[end]);
ice->vtbl.store_register_mem64(batch, SO_NUM_PRIMS_WRITTEN(s),
q->bo, g_idx, false);
ice->vtbl.store_register_mem64(batch, SO_PRIM_STORAGE_NEEDED(s),
q->bo, w_idx, false);
}
}
uint64_t
iris_timebase_scale(const struct gen_device_info *devinfo,
uint64_t gpu_timestamp)
{
return (1000000000ull * gpu_timestamp) / devinfo->timestamp_frequency;
}
static uint64_t
iris_raw_timestamp_delta(uint64_t time0, uint64_t time1)
{
if (time0 > time1) {
return (1ULL << TIMESTAMP_BITS) + time1 - time0;
} else {
return time1 - time0;
}
}
static bool
stream_overflowed(struct iris_query_so_overflow *so, int s)
{
return (so->stream[s].prim_storage_needed[1] -
so->stream[s].prim_storage_needed[0]) !=
(so->stream[s].num_prims[1] - so->stream[s].num_prims[0]);
}
static void
calculate_result_on_cpu(const struct gen_device_info *devinfo,
struct iris_query *q)
{
switch (q->type) {
case PIPE_QUERY_OCCLUSION_PREDICATE:
case PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE:
q->result = q->map->end != q->map->start;
break;
case PIPE_QUERY_TIMESTAMP:
case PIPE_QUERY_TIMESTAMP_DISJOINT:
/* The timestamp is the single starting snapshot. */
q->result = iris_timebase_scale(devinfo, q->map->start);
q->result &= (1ull << TIMESTAMP_BITS) - 1;
break;
case PIPE_QUERY_TIME_ELAPSED:
q->result = iris_raw_timestamp_delta(q->map->start, q->map->end);
q->result = iris_timebase_scale(devinfo, q->result);
q->result &= (1ull << TIMESTAMP_BITS) - 1;
break;
case PIPE_QUERY_SO_OVERFLOW_PREDICATE:
q->result = stream_overflowed((void *) q->map, q->index);
break;
case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE:
q->result = false;
for (int i = 0; i < MAX_VERTEX_STREAMS; i++)
q->result |= stream_overflowed((void *) q->map, i);
break;
case PIPE_QUERY_OCCLUSION_COUNTER:
case PIPE_QUERY_PRIMITIVES_GENERATED:
case PIPE_QUERY_PRIMITIVES_EMITTED:
case PIPE_QUERY_PIPELINE_STATISTICS:
default:
q->result = q->map->end - q->map->start;
break;
}
q->ready = true;
}
static void
emit_alu_add(struct iris_batch *batch, unsigned dst_reg,
unsigned reg_a, unsigned reg_b)
{
uint32_t *math = iris_get_command_space(batch, 5 * sizeof(uint32_t));
math[0] = MI_MATH | (5 - 2);
math[1] = _MI_ALU2(LOAD, MI_ALU_SRCA, reg_a);
math[2] = _MI_ALU2(LOAD, MI_ALU_SRCB, reg_b);
math[3] = _MI_ALU0(ADD);
math[4] = _MI_ALU2(STORE, dst_reg, MI_ALU_ACCU);
}
static void
emit_alu_shl(struct iris_batch *batch, unsigned dst_reg,
unsigned src_reg, unsigned shift)
{
assert(shift > 0);
int dwords = 1 + 4 * shift;
uint32_t *math = iris_get_command_space(batch, sizeof(uint32_t) * dwords);
math[0] = MI_MATH | ((1 + 4 * shift) - 2);
for (unsigned i = 0; i < shift; i++) {
unsigned add_src = (i == 0) ? src_reg : dst_reg;
math[1 + (i * 4) + 0] = _MI_ALU2(LOAD, MI_ALU_SRCA, add_src);
math[1 + (i * 4) + 1] = _MI_ALU2(LOAD, MI_ALU_SRCB, add_src);
math[1 + (i * 4) + 2] = _MI_ALU0(ADD);
math[1 + (i * 4) + 3] = _MI_ALU2(STORE, dst_reg, MI_ALU_ACCU);
}
}
/* Emit dwords to multiply GPR0 by N */
static void
build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
{
VK_OUTARRAY_MAKE(out, dw, dw_count);
#define APPEND_ALU(op, x, y) \
vk_outarray_append(&out, alu_dw) *alu_dw = _MI_ALU(MI_ALU_##op, x, y)
assert(N > 0);
unsigned top_bit = 31 - __builtin_clz(N);
for (int i = top_bit - 1; i >= 0; i--) {
/* We get our initial data in GPR0 and we write the final data out to
* GPR0 but we use GPR1 as our scratch register.
*/
unsigned src_reg = i == top_bit - 1 ? MI_ALU_R0 : MI_ALU_R1;
unsigned dst_reg = i == 0 ? MI_ALU_R0 : MI_ALU_R1;
/* Shift the current value left by 1 */
APPEND_ALU(LOAD, MI_ALU_SRCA, src_reg);
APPEND_ALU(LOAD, MI_ALU_SRCB, src_reg);
APPEND_ALU(ADD, 0, 0);
if (N & (1 << i)) {
/* Store ACCU to R1 and add R0 to R1 */
APPEND_ALU(STORE, MI_ALU_R1, MI_ALU_ACCU);
APPEND_ALU(LOAD, MI_ALU_SRCA, MI_ALU_R0);
APPEND_ALU(LOAD, MI_ALU_SRCB, MI_ALU_R1);
APPEND_ALU(ADD, 0, 0);
}
APPEND_ALU(STORE, dst_reg, MI_ALU_ACCU);
}
#undef APPEND_ALU
}
static void
emit_mul_gpr0(struct iris_batch *batch, uint32_t N)
{
uint32_t num_dwords;
build_alu_multiply_gpr0(NULL, &num_dwords, N);
uint32_t *math = iris_get_command_space(batch, 4 * num_dwords);
math[0] = MI_MATH | (num_dwords - 2);
build_alu_multiply_gpr0(&math[1], &num_dwords, N);
}
void
iris_math_div32_gpr0(struct iris_context *ice,
struct iris_batch *batch,
uint32_t D)
{
/* Zero out the top of GPR0 */
emit_lri32(batch, CS_GPR(0) + 4, 0);
if (D == 0) {
/* This invalid, but we should do something so we set GPR0 to 0. */
emit_lri32(batch, CS_GPR(0), 0);
} else if (util_is_power_of_two_or_zero(D)) {
unsigned log2_D = util_logbase2(D);
assert(log2_D < 32);
/* We right-shift by log2(D) by left-shifting by 32 - log2(D) and taking
* the top 32 bits of the result.
*/
emit_alu_shl(batch, MI_ALU_R0, MI_ALU_R0, 32 - log2_D);
emit_lrr32(batch, CS_GPR(0) + 0, CS_GPR(0) + 4);
emit_lri32(batch, CS_GPR(0) + 4, 0);
} else {
struct util_fast_udiv_info m = util_compute_fast_udiv_info(D, 32, 32);
assert(m.multiplier <= UINT32_MAX);
if (m.pre_shift) {
/* We right-shift by L by left-shifting by 32 - l and taking the top
* 32 bits of the result.
*/
if (m.pre_shift < 32)
emit_alu_shl(batch, MI_ALU_R0, MI_ALU_R0, 32 - m.pre_shift);
emit_lrr32(batch, CS_GPR(0) + 0, CS_GPR(0) + 4);
emit_lri32(batch, CS_GPR(0) + 4, 0);
}
/* Do the 32x32 multiply into gpr0 */
emit_mul_gpr0(batch, m.multiplier);
if (m.increment) {
/* If we need to increment, save off a copy of GPR0 */
emit_lri32(batch, CS_GPR(1) + 0, m.multiplier);
emit_lri32(batch, CS_GPR(1) + 4, 0);
emit_alu_add(batch, MI_ALU_R0, MI_ALU_R0, MI_ALU_R1);
}
/* Shift by 32 */
emit_lrr32(batch, CS_GPR(0) + 0, CS_GPR(0) + 4);
emit_lri32(batch, CS_GPR(0) + 4, 0);
if (m.post_shift) {
/* We right-shift by L by left-shifting by 32 - l and taking the top
* 32 bits of the result.
*/
if (m.post_shift < 32)
emit_alu_shl(batch, MI_ALU_R0, MI_ALU_R0, 32 - m.post_shift);
emit_lrr32(batch, CS_GPR(0) + 0, CS_GPR(0) + 4);
emit_lri32(batch, CS_GPR(0) + 4, 0);
}
}
}
/*
* GPR0 = (GPR0 == 0) ? 0 : 1;
*/
static void
gpr0_to_bool(struct iris_context *ice)
{
struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
ice->vtbl.load_register_imm64(batch, CS_GPR(1), 1ull);
static const uint32_t math[] = {
MI_MATH | (9 - 2),
MI_ALU2(LOAD, SRCA, R0),
MI_ALU1(LOAD0, SRCB),
MI_ALU0(ADD),
MI_ALU2(STOREINV, R0, ZF),
MI_ALU2(LOAD, SRCA, R0),
MI_ALU2(LOAD, SRCB, R1),
MI_ALU0(AND),
MI_ALU2(STORE, R0, ACCU),
};
iris_batch_emit(batch, math, sizeof(math));
}
static void
load_overflow_data_to_cs_gprs(struct iris_context *ice,
struct iris_query *q,
int idx)
{
struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
ice->vtbl.load_register_mem64(batch, CS_GPR(1), q->bo,
offsetof(struct iris_query_so_overflow,
stream[idx].prim_storage_needed[0]));
ice->vtbl.load_register_mem64(batch, CS_GPR(2), q->bo,
offsetof(struct iris_query_so_overflow,
stream[idx].prim_storage_needed[1]));
ice->vtbl.load_register_mem64(batch, CS_GPR(3), q->bo,
offsetof(struct iris_query_so_overflow,
stream[idx].num_prims[0]));
ice->vtbl.load_register_mem64(batch, CS_GPR(4), q->bo,
offsetof(struct iris_query_so_overflow,
stream[idx].num_prims[1]));
}
/*
* R3 = R4 - R3;
* R1 = R2 - R1;
* R1 = R3 - R1;
* R0 = R0 | R1;
*/
static void
calc_overflow_for_stream(struct iris_context *ice)
{
struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
static const uint32_t maths[] = {
MI_MATH | (17 - 2),
MI_ALU2(LOAD, SRCA, R4),
MI_ALU2(LOAD, SRCB, R3),
MI_ALU0(SUB),
MI_ALU2(STORE, R3, ACCU),
MI_ALU2(LOAD, SRCA, R2),
MI_ALU2(LOAD, SRCB, R1),
MI_ALU0(SUB),
MI_ALU2(STORE, R1, ACCU),
MI_ALU2(LOAD, SRCA, R3),
MI_ALU2(LOAD, SRCB, R1),
MI_ALU0(SUB),
MI_ALU2(STORE, R1, ACCU),
MI_ALU2(LOAD, SRCA, R1),
MI_ALU2(LOAD, SRCB, R0),
MI_ALU0(OR),
MI_ALU2(STORE, R0, ACCU),
};
iris_batch_emit(batch, maths, sizeof(maths));
}
static void
overflow_result_to_gpr0(struct iris_context *ice, struct iris_query *q)
{
struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
ice->vtbl.load_register_imm64(batch, CS_GPR(0), 0ull);
if (q->type == PIPE_QUERY_SO_OVERFLOW_PREDICATE) {
load_overflow_data_to_cs_gprs(ice, q, q->index);
calc_overflow_for_stream(ice);
} else {
for (int i = 0; i < MAX_VERTEX_STREAMS; i++) {
load_overflow_data_to_cs_gprs(ice, q, i);
calc_overflow_for_stream(ice);
}
}
gpr0_to_bool(ice);
}
/**
* Calculate the result and store it to CS_GPR0.
*/
static void
calculate_result_on_gpu(struct iris_context *ice, struct iris_query *q)
{
struct iris_batch *batch = &ice->batches[q->batch_idx];
if (q->type == PIPE_QUERY_SO_OVERFLOW_PREDICATE ||
q->type == PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE) {
overflow_result_to_gpr0(ice, q);
return;
}
ice->vtbl.load_register_mem64(batch, CS_GPR(1), q->bo,
offsetof(struct iris_query_snapshots, start));
ice->vtbl.load_register_mem64(batch, CS_GPR(2), q->bo,
offsetof(struct iris_query_snapshots, end));
static const uint32_t math[] = {
MI_MATH | (5 - 2),
MI_ALU2(LOAD, SRCA, R2),
MI_ALU2(LOAD, SRCB, R1),
MI_ALU0(SUB),
MI_ALU2(STORE, R0, ACCU),
};
iris_batch_emit(batch, math, sizeof(math));
if (q->type == PIPE_QUERY_OCCLUSION_PREDICATE ||
q->type == PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE)
gpr0_to_bool(ice);
}
static struct pipe_query *
iris_create_query(struct pipe_context *ctx,
unsigned query_type,
unsigned index)
{
struct iris_query *q = calloc(1, sizeof(struct iris_query));
q->type = query_type;
q->index = index;
if (q->type == PIPE_QUERY_PIPELINE_STATISTICS && q->index == 10)
q->batch_idx = IRIS_BATCH_COMPUTE;
else
q->batch_idx = IRIS_BATCH_RENDER;
return (struct pipe_query *) q;
}
static void
iris_destroy_query(struct pipe_context *ctx, struct pipe_query *p_query)
{
struct iris_query *query = (void *) p_query;
iris_bo_unreference(query->bo);
free(query);
}
static boolean
iris_begin_query(struct pipe_context *ctx, struct pipe_query *query)
{
struct iris_screen *screen = (void *) ctx->screen;
struct iris_context *ice = (void *) ctx;
struct iris_query *q = (void *) query;
iris_bo_unreference(q->bo);
q->bo = iris_bo_alloc(screen->bufmgr, "query object", 4096,
IRIS_MEMZONE_OTHER);
if (!q->bo)
return false;
q->map = iris_bo_map(&ice->dbg, q->bo, MAP_READ | MAP_WRITE | MAP_ASYNC);
if (!q->map)
return false;
q->result = 0ull;
q->ready = false;
q->map->snapshots_landed = false;
if (q->type == PIPE_QUERY_PRIMITIVES_GENERATED && q->index == 0) {
ice->state.prims_generated_query_active = true;
ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
}
if (q->type == PIPE_QUERY_SO_OVERFLOW_PREDICATE ||
q->type == PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE)
write_overflow_values(ice, q, false);
else
write_value(ice, q, offsetof(struct iris_query_snapshots, start));
return true;
}
static bool
iris_end_query(struct pipe_context *ctx, struct pipe_query *query)
{
struct iris_context *ice = (void *) ctx;
struct iris_query *q = (void *) query;
if (q->type == PIPE_QUERY_TIMESTAMP) {
iris_begin_query(ctx, query);
mark_available(ice, q);
return true;
}
if (q->type == PIPE_QUERY_PRIMITIVES_GENERATED && q->index == 0) {
ice->state.prims_generated_query_active = false;
ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
}
if (q->type == PIPE_QUERY_SO_OVERFLOW_PREDICATE ||
q->type == PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE)
write_overflow_values(ice, q, true);
else
write_value(ice, q, offsetof(struct iris_query_snapshots, end));
mark_available(ice, q);
return true;
}
/**
* See if the snapshots have landed for a query, and if so, compute the
* result and mark it ready. Does not flush (unlike iris_get_query_result).
*/
static void
iris_check_query_no_flush(struct iris_context *ice, struct iris_query *q)
{
struct iris_screen *screen = (void *) ice->ctx.screen;
const struct gen_device_info *devinfo = &screen->devinfo;
if (!q->ready && q->map->snapshots_landed) {
calculate_result_on_cpu(devinfo, q);
}
}
static boolean
iris_get_query_result(struct pipe_context *ctx,
struct pipe_query *query,
boolean wait,
union pipe_query_result *result)
{
struct iris_context *ice = (void *) ctx;
struct iris_query *q = (void *) query;
struct iris_screen *screen = (void *) ctx->screen;
const struct gen_device_info *devinfo = &screen->devinfo;
if (!q->ready) {
if (iris_batch_references(&ice->batches[q->batch_idx], q->bo))
iris_batch_flush(&ice->batches[q->batch_idx]);
if (!q->map->snapshots_landed) {
if (wait)
iris_bo_wait_rendering(q->bo);
else
return false;
}
assert(q->map->snapshots_landed);
calculate_result_on_cpu(devinfo, q);
}
assert(q->ready);
if (q->type == PIPE_QUERY_PIPELINE_STATISTICS) {
switch (q->index) {
case 0:
result->pipeline_statistics.ia_vertices = q->result;
break;
case 1:
result->pipeline_statistics.ia_primitives = q->result;
break;
case 2:
result->pipeline_statistics.vs_invocations = q->result;
break;
case 3:
result->pipeline_statistics.gs_invocations = q->result;
break;
case 4:
result->pipeline_statistics.gs_primitives = q->result;
break;
case 5:
result->pipeline_statistics.c_invocations = q->result;
break;
case 6:
result->pipeline_statistics.c_primitives = q->result;
break;
case 7:
result->pipeline_statistics.ps_invocations = q->result;
break;
case 8:
result->pipeline_statistics.hs_invocations = q->result;
break;
case 9:
result->pipeline_statistics.ds_invocations = q->result;
break;
case 10:
result->pipeline_statistics.cs_invocations = q->result;
break;
}
} else {
result->u64 = q->result;
}
return true;
}
static void
iris_get_query_result_resource(struct pipe_context *ctx,
struct pipe_query *query,
boolean wait,
enum pipe_query_value_type result_type,
int index,
struct pipe_resource *p_res,
unsigned offset)
{
struct iris_context *ice = (void *) ctx;
struct iris_query *q = (void *) query;
struct iris_batch *batch = &ice->batches[q->batch_idx];
const struct gen_device_info *devinfo = &batch->screen->devinfo;
struct iris_resource *res = (void *) p_res;
unsigned snapshots_landed_offset =
offsetof(struct iris_query_snapshots, snapshots_landed);
res->bind_history |= PIPE_BIND_QUERY_BUFFER;
if (index == -1) {
/* They're asking for the availability of the result. If we still
* have commands queued up which produce the result, submit them
* now so that progress happens. Either way, copy the snapshots
* landed field to the destination resource.
*/
if (iris_batch_references(batch, q->bo))
iris_batch_flush(batch);
ice->vtbl.copy_mem_mem(batch, iris_resource_bo(p_res), offset,
q->bo, snapshots_landed_offset,
result_type <= PIPE_QUERY_TYPE_U32 ? 4 : 8);
return;
}
if (!q->ready && q->map->snapshots_landed) {
/* The final snapshots happen to have landed, so let's just compute
* the result on the CPU now...
*/
calculate_result_on_cpu(devinfo, q);
}
if (q->ready) {
/* We happen to have the result on the CPU, so just copy it. */
if (result_type <= PIPE_QUERY_TYPE_U32) {
ice->vtbl.store_data_imm32(batch, iris_resource_bo(p_res), offset,
q->result);
} else {
ice->vtbl.store_data_imm64(batch, iris_resource_bo(p_res), offset,
q->result);
}
/* Make sure the result lands before they use bind the QBO elsewhere
* and use the result.
*/
// XXX: Why? i965 doesn't do this.
iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
return;
}
/* Calculate the result to CS_GPR0 */
calculate_result_on_gpu(ice, q);
bool predicated = !wait && !q->stalled;
if (predicated) {
ice->vtbl.load_register_imm64(batch, MI_PREDICATE_SRC1, 0ull);
ice->vtbl.load_register_mem64(batch, MI_PREDICATE_SRC0, q->bo,
snapshots_landed_offset);
uint32_t predicate = MI_PREDICATE |
MI_PREDICATE_LOADOP_LOADINV |
MI_PREDICATE_COMBINEOP_SET |
MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
iris_batch_emit(batch, &predicate, sizeof(uint32_t));
}
if (result_type <= PIPE_QUERY_TYPE_U32) {
ice->vtbl.store_register_mem32(batch, CS_GPR(0),
iris_resource_bo(p_res),
offset, predicated);
} else {
ice->vtbl.store_register_mem64(batch, CS_GPR(0),
iris_resource_bo(p_res),
offset, predicated);
}
}
static void
iris_set_active_query_state(struct pipe_context *ctx, boolean enable)
{
struct iris_context *ice = (void *) ctx;
if (ice->state.statistics_counters_enabled == enable)
return;
// XXX: most packets aren't paying attention to this yet, because it'd
// have to be done dynamically at draw time, which is a pain
ice->state.statistics_counters_enabled = enable;
ice->state.dirty |= IRIS_DIRTY_CLIP |
IRIS_DIRTY_GS |
IRIS_DIRTY_RASTER |
IRIS_DIRTY_STREAMOUT |
IRIS_DIRTY_TCS |
IRIS_DIRTY_TES |
IRIS_DIRTY_VS |
IRIS_DIRTY_WM;
}
static void
set_predicate_enable(struct iris_context *ice, bool value)
{
if (value)
ice->state.predicate = IRIS_PREDICATE_STATE_RENDER;
else
ice->state.predicate = IRIS_PREDICATE_STATE_DONT_RENDER;
}
static void
set_predicate_for_result(struct iris_context *ice,
struct iris_query *q,
bool inverted)
{
struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
/* The CPU doesn't have the query result yet; use hardware predication */
ice->state.predicate = IRIS_PREDICATE_STATE_USE_BIT;
/* Ensure the memory is coherent for MI_LOAD_REGISTER_* commands. */
iris_emit_pipe_control_flush(batch, PIPE_CONTROL_FLUSH_ENABLE);
q->stalled = true;
switch (q->type) {
case PIPE_QUERY_SO_OVERFLOW_PREDICATE:
case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE:
overflow_result_to_gpr0(ice, q);
ice->vtbl.load_register_reg64(batch, MI_PREDICATE_SRC0, CS_GPR(0));
ice->vtbl.load_register_imm64(batch, MI_PREDICATE_SRC1, 0ull);
break;
default:
/* PIPE_QUERY_OCCLUSION_* */
ice->vtbl.load_register_mem64(batch, MI_PREDICATE_SRC0, q->bo,
offsetof(struct iris_query_snapshots, start));
ice->vtbl.load_register_mem64(batch, MI_PREDICATE_SRC1, q->bo,
offsetof(struct iris_query_snapshots, end));
break;
}
uint32_t mi_predicate = MI_PREDICATE |
MI_PREDICATE_COMBINEOP_SET |
MI_PREDICATE_COMPAREOP_SRCS_EQUAL |
(inverted ? MI_PREDICATE_LOADOP_LOAD
: MI_PREDICATE_LOADOP_LOADINV);
iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
/* We immediately set the predicate on the render batch, as all the
* counters come from 3D operations. However, we may need to predicate
* a compute dispatch, which executes in a different GEM context and has
* a different MI_PREDICATE_DATA register. So, we save the result to
* memory and reload it in iris_launch_grid.
*/
unsigned offset = offsetof(struct iris_query_snapshots, predicate_data);
ice->vtbl.store_register_mem64(batch, MI_PREDICATE_DATA,
q->bo, offset, false);
ice->state.compute_predicate = q->bo;
}
static void
iris_render_condition(struct pipe_context *ctx,
struct pipe_query *query,
boolean condition,
enum pipe_render_cond_flag mode)
{
struct iris_context *ice = (void *) ctx;
struct iris_query *q = (void *) query;
if (!q) {
ice->state.predicate = IRIS_PREDICATE_STATE_RENDER;
return;
}
iris_check_query_no_flush(ice, q);
if (q->result || q->ready) {
set_predicate_enable(ice, (q->result != 0) ^ condition);
} else {
if (mode == PIPE_RENDER_COND_NO_WAIT ||
mode == PIPE_RENDER_COND_BY_REGION_NO_WAIT) {
perf_debug(&ice->dbg, "Conditional rendering demoted from "
"\"no wait\" to \"wait\".");
}
set_predicate_for_result(ice, q, condition);
}
}
void
iris_init_query_functions(struct pipe_context *ctx)
{
ctx->create_query = iris_create_query;
ctx->destroy_query = iris_destroy_query;
ctx->begin_query = iris_begin_query;
ctx->end_query = iris_end_query;
ctx->get_query_result = iris_get_query_result;
ctx->get_query_result_resource = iris_get_query_result_resource;
ctx->set_active_query_state = iris_set_active_query_state;
ctx->render_condition = iris_render_condition;
}