Files
third_party_mesa3d/src/imagination/rogue/rogue_compile.c
2023-02-24 11:29:48 +00:00

770 lines
26 KiB
C

/*
* Copyright © 2022 Imagination Technologies Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "compiler/shader_enums.h"
#include "compiler/spirv/nir_spirv.h"
#include "nir/nir.h"
#include "rogue.h"
#include "rogue_builder.h"
#include "util/macros.h"
/* FIXME: Remove once the compiler/driver interface is finalised. */
#include "vulkan/vulkan_core.h"
/**
* \file rogue_compile.c
*
* \brief Contains NIR to Rogue translation functions, and Rogue passes.
*/
/* For ALU scalars */
/* TODO: expand and use these helpers. */
static rogue_ref nir_ssa_reg(rogue_shader *shader,
unsigned index,
unsigned num_components,
unsigned component)
{
if (num_components > 1) {
return rogue_ref_regarray(
rogue_ssa_vec_regarray(shader, 1, index, component));
}
return rogue_ref_reg(rogue_ssa_reg(shader, index));
}
static rogue_ref nir_ssa_regarray(rogue_shader *shader,
unsigned index,
unsigned num_components,
unsigned component)
{
return rogue_ref_regarray(
rogue_ssa_vec_regarray(shader, num_components, index, component));
}
static rogue_ref nir_ssa_reg_alu_src(rogue_shader *shader,
const nir_alu_instr *alu,
unsigned src_num,
bool vec)
{
unsigned index = alu->src[src_num].src.ssa->index;
unsigned num_components = alu->src[src_num].src.ssa->num_components;
unsigned write_mask = alu->dest.write_mask;
unsigned bit_pos = ffs(write_mask) - 1;
assert(util_is_power_of_two_nonzero(write_mask));
unsigned component = alu->src[src_num].swizzle[bit_pos];
return vec ? nir_ssa_regarray(shader, index, num_components, component)
: nir_ssa_reg(shader, index, num_components, component);
}
static rogue_ref
nir_ssa_reg_alu_dst(rogue_shader *shader, const nir_alu_instr *alu, bool vec)
{
unsigned num_components = alu->dest.dest.ssa.num_components;
unsigned index = alu->dest.dest.ssa.index;
unsigned write_mask = alu->dest.write_mask;
unsigned component = ffs(write_mask) - 1;
assert(util_is_power_of_two_nonzero(write_mask));
return vec ? nir_ssa_regarray(shader, index, num_components, component)
: nir_ssa_reg(shader, index, num_components, component);
}
static void trans_nir_jump_return(rogue_builder *b, nir_jump_instr *jump)
{
rogue_END(b);
}
static void trans_nir_jump(rogue_builder *b, nir_jump_instr *jump)
{
switch (jump->type) {
case nir_jump_return:
return trans_nir_jump_return(b, jump);
default:
break;
}
unreachable("Unimplemented NIR jump instruction type.");
}
static void trans_nir_load_const(rogue_builder *b,
nir_load_const_instr *load_const)
{
unsigned dst_index = load_const->def.index;
unsigned bit_size = load_const->def.bit_size;
switch (bit_size) {
case 32: {
rogue_reg *dst = rogue_ssa_reg(b->shader, dst_index);
uint32_t imm = nir_const_value_as_uint(load_const->value[0], 32);
rogue_MOV(b, rogue_ref_reg(dst), rogue_ref_imm(imm));
break;
}
case 64: {
uint64_t imm = nir_const_value_as_uint(load_const->value[0], 64);
uint32_t imm_2x32[2] = { imm & 0xffffffff, (imm >> 32) & 0xffffffff };
rogue_regarray *dst[2] = {
rogue_ssa_vec_regarray(b->shader, 1, dst_index, 0),
rogue_ssa_vec_regarray(b->shader, 1, dst_index, 1),
};
rogue_MOV(b, rogue_ref_regarray(dst[0]), rogue_ref_imm(imm_2x32[0]));
rogue_MOV(b, rogue_ref_regarray(dst[1]), rogue_ref_imm(imm_2x32[1]));
break;
}
default:
unreachable("Unimplemented NIR load_const bit size.");
}
}
static void trans_nir_intrinsic_load_input_fs(rogue_builder *b,
nir_intrinsic_instr *intr)
{
struct rogue_fs_build_data *fs_data = &b->shader->ctx->stage_data.fs;
unsigned load_size = nir_dest_num_components(intr->dest);
assert(load_size == 1); /* TODO: We can support larger load sizes. */
rogue_reg *dst = rogue_ssa_reg(b->shader, intr->dest.ssa.index);
struct nir_io_semantics io_semantics = nir_intrinsic_io_semantics(intr);
unsigned component = nir_intrinsic_component(intr);
unsigned coeff_index = rogue_coeff_index_fs(&fs_data->iterator_args,
io_semantics.location,
component);
unsigned wcoeff_index = rogue_coeff_index_fs(&fs_data->iterator_args, ~0, 0);
rogue_regarray *coeffs = rogue_coeff_regarray(b->shader,
ROGUE_COEFF_ALIGN * load_size,
coeff_index);
rogue_regarray *wcoeffs =
rogue_coeff_regarray(b->shader, ROGUE_COEFF_ALIGN, wcoeff_index);
rogue_instr *instr = &rogue_FITRP_PIXEL(b,
rogue_ref_reg(dst),
rogue_ref_drc(0),
rogue_ref_regarray(coeffs),
rogue_ref_regarray(wcoeffs),
rogue_ref_val(load_size))
->instr;
rogue_add_instr_comment(instr, "load_input_fs");
}
static void trans_nir_intrinsic_load_input_vs(rogue_builder *b,
nir_intrinsic_instr *intr)
{
ASSERTED unsigned load_size = nir_dest_num_components(intr->dest);
assert(load_size == 1); /* TODO: We can support larger load sizes. */
rogue_reg *dst = rogue_ssa_reg(b->shader, intr->dest.ssa.index);
struct nir_io_semantics io_semantics = nir_intrinsic_io_semantics(intr);
unsigned component = nir_intrinsic_component(intr);
/* TODO: Get these properly with the intrinsic index (ssa argument) */
unsigned vtxin_index =
((io_semantics.location - VERT_ATTRIB_GENERIC0) * 3) + component;
rogue_reg *src = rogue_vtxin_reg(b->shader, vtxin_index);
rogue_instr *instr =
&rogue_MOV(b, rogue_ref_reg(dst), rogue_ref_reg(src))->instr;
rogue_add_instr_comment(instr, "load_input_vs");
}
static void trans_nir_intrinsic_load_input(rogue_builder *b,
nir_intrinsic_instr *intr)
{
switch (b->shader->stage) {
case MESA_SHADER_FRAGMENT:
return trans_nir_intrinsic_load_input_fs(b, intr);
case MESA_SHADER_VERTEX:
return trans_nir_intrinsic_load_input_vs(b, intr);
default:
break;
}
unreachable("Unimplemented NIR load_input variant.");
}
static void trans_nir_intrinsic_store_output_fs(rogue_builder *b,
nir_intrinsic_instr *intr)
{
ASSERTED unsigned store_size = nir_src_num_components(intr->src[0]);
assert(store_size == 1);
/* TODO: When hoisting I/O allocation to the driver, check if this is
* correct.
*/
unsigned pixout_index = nir_src_as_uint(intr->src[1]);
rogue_reg *dst = rogue_pixout_reg(b->shader, pixout_index);
rogue_reg *src = rogue_ssa_reg(b->shader, intr->src[0].ssa->index);
rogue_instr *instr =
&rogue_MOV(b, rogue_ref_reg(dst), rogue_ref_reg(src))->instr;
rogue_add_instr_comment(instr, "store_output_fs");
}
static void trans_nir_intrinsic_store_output_vs(rogue_builder *b,
nir_intrinsic_instr *intr)
{
struct rogue_vs_build_data *vs_data = &b->shader->ctx->stage_data.vs;
ASSERTED unsigned store_size = nir_src_num_components(intr->src[0]);
assert(store_size == 1);
struct nir_io_semantics io_semantics = nir_intrinsic_io_semantics(intr);
unsigned component = nir_intrinsic_component(intr);
unsigned vtxout_index = rogue_output_index_vs(&vs_data->outputs,
io_semantics.location,
component);
rogue_reg *dst = rogue_vtxout_reg(b->shader, vtxout_index);
rogue_reg *src = rogue_ssa_reg(b->shader, intr->src[0].ssa->index);
rogue_instr *instr =
&rogue_MOV(b, rogue_ref_reg(dst), rogue_ref_reg(src))->instr;
rogue_add_instr_comment(instr, "store_output_vs");
}
static void trans_nir_intrinsic_store_output(rogue_builder *b,
nir_intrinsic_instr *intr)
{
switch (b->shader->stage) {
case MESA_SHADER_FRAGMENT:
return trans_nir_intrinsic_store_output_fs(b, intr);
case MESA_SHADER_VERTEX:
return trans_nir_intrinsic_store_output_vs(b, intr);
default:
break;
}
unreachable("Unimplemented NIR store_output variant.");
}
static inline gl_shader_stage
pvr_stage_to_mesa(enum pvr_stage_allocation pvr_stage)
{
switch (pvr_stage) {
case PVR_STAGE_ALLOCATION_VERTEX_GEOMETRY:
return MESA_SHADER_VERTEX;
case PVR_STAGE_ALLOCATION_FRAGMENT:
return MESA_SHADER_FRAGMENT;
case PVR_STAGE_ALLOCATION_COMPUTE:
return MESA_SHADER_COMPUTE;
default:
break;
}
unreachable("Unsupported pvr_stage_allocation.");
}
static inline enum pvr_stage_allocation
mesa_stage_to_pvr(gl_shader_stage mesa_stage)
{
switch (mesa_stage) {
case MESA_SHADER_VERTEX:
return PVR_STAGE_ALLOCATION_VERTEX_GEOMETRY;
case MESA_SHADER_FRAGMENT:
return PVR_STAGE_ALLOCATION_FRAGMENT;
case MESA_SHADER_COMPUTE:
return PVR_STAGE_ALLOCATION_COMPUTE;
default:
break;
}
unreachable("Unsupported gl_shader_stage.");
}
static void
trans_nir_intrinsic_load_vulkan_descriptor(rogue_builder *b,
nir_intrinsic_instr *intr)
{
rogue_instr *instr;
unsigned desc_set = nir_src_comp_as_uint(intr->src[0], 0);
unsigned binding = nir_src_comp_as_uint(intr->src[0], 1);
ASSERTED VkDescriptorType desc_type = nir_src_comp_as_uint(intr->src[0], 2);
assert(desc_type == nir_intrinsic_desc_type(intr));
struct pvr_pipeline_layout *pipeline_layout =
b->shader->ctx->pipeline_layout;
/* Defaults for offline compiler. */
/* TODO: Load these from an offline pipeline description
* if using the offline compiler.
*/
unsigned desc_set_table_sh_reg = 0;
unsigned flat_desc_idx = binding;
if (pipeline_layout) {
/* Fetch shared registers containing descriptor set table address. */
enum pvr_stage_allocation pvr_stage = mesa_stage_to_pvr(b->shader->stage);
assert(pipeline_layout->sh_reg_layout_per_stage[pvr_stage]
.descriptor_set_addrs_table.present);
desc_set_table_sh_reg =
pipeline_layout->sh_reg_layout_per_stage[pvr_stage]
.descriptor_set_addrs_table.offset;
/* Lookup offsets for descriptor set and descriptor. */
assert(desc_set < pipeline_layout->set_count);
unsigned binding_count =
pipeline_layout->set_layout[desc_set]->binding_count;
assert(binding < binding_count);
flat_desc_idx = ~0U;
for (unsigned u = 0; u < binding_count; ++u) {
unsigned binding_number =
pipeline_layout->set_layout[desc_set]->bindings[u].binding_number;
if (binding_number == binding) {
flat_desc_idx = pipeline_layout->set_layout[desc_set]
->bindings[u]
.descriptor_index;
break;
}
}
assert(flat_desc_idx != ~0U);
}
unsigned desc_set_table_addr_idx = b->shader->ctx->next_ssa_idx++;
rogue_ssa_vec_regarray(b->shader, 2, desc_set_table_addr_idx, 0);
rogue_regarray *desc_set_table_addr_2x32[2] = {
rogue_ssa_vec_regarray(b->shader, 1, desc_set_table_addr_idx, 0),
rogue_ssa_vec_regarray(b->shader, 1, desc_set_table_addr_idx, 1),
};
instr = &rogue_MOV(b,
rogue_ref_regarray(desc_set_table_addr_2x32[0]),
rogue_ref_reg(
rogue_shared_reg(b->shader, desc_set_table_sh_reg)))
->instr;
rogue_add_instr_comment(instr, "desc_set_table_addr_lo");
instr =
&rogue_MOV(
b,
rogue_ref_regarray(desc_set_table_addr_2x32[1]),
rogue_ref_reg(rogue_shared_reg(b->shader, desc_set_table_sh_reg + 1)))
->instr;
rogue_add_instr_comment(instr, "desc_set_table_addr_hi");
/* TODO: Don't add offsets if the descriptor set/flat descriptor is 0. */
/* Offset the descriptor set table address to access the descriptor set. */
unsigned desc_set_table_addr_offset_idx = b->shader->ctx->next_ssa_idx++;
rogue_regarray *desc_set_table_addr_offset_64 =
rogue_ssa_vec_regarray(b->shader, 2, desc_set_table_addr_offset_idx, 0);
rogue_regarray *desc_set_table_addr_offset_2x32[2] = {
rogue_ssa_vec_regarray(b->shader, 1, desc_set_table_addr_offset_idx, 0),
rogue_ssa_vec_regarray(b->shader, 1, desc_set_table_addr_offset_idx, 1),
};
rogue_ADD64(b,
rogue_ref_regarray(desc_set_table_addr_offset_2x32[0]),
rogue_ref_regarray(desc_set_table_addr_offset_2x32[1]),
rogue_ref_io(ROGUE_IO_NONE),
rogue_ref_regarray(desc_set_table_addr_2x32[0]),
rogue_ref_regarray(desc_set_table_addr_2x32[1]),
rogue_ref_imm(desc_set * 4), /* TODO: use UMADD64 instead */
rogue_ref_imm(0),
rogue_ref_io(ROGUE_IO_NONE));
unsigned desc_set_addr_idx = b->shader->ctx->next_ssa_idx++;
rogue_regarray *desc_set_addr_64 =
rogue_ssa_vec_regarray(b->shader, 2, desc_set_addr_idx, 0);
rogue_regarray *desc_set_addr_2x32[2] = {
rogue_ssa_vec_regarray(b->shader, 1, desc_set_addr_idx, 0),
rogue_ssa_vec_regarray(b->shader, 1, desc_set_addr_idx, 1),
};
instr = &rogue_LD(b,
rogue_ref_regarray(desc_set_addr_64),
rogue_ref_drc(0),
rogue_ref_val(2),
rogue_ref_regarray(desc_set_table_addr_offset_64))
->instr;
rogue_add_instr_comment(instr, "load descriptor set");
/* Offset the descriptor set address to access the descriptor. */
unsigned desc_addr_offset_idx = b->shader->ctx->next_ssa_idx++;
rogue_regarray *desc_addr_offset_64 =
rogue_ssa_vec_regarray(b->shader, 2, desc_addr_offset_idx, 0);
rogue_regarray *desc_addr_offset_2x32[2] = {
rogue_ssa_vec_regarray(b->shader, 1, desc_addr_offset_idx, 0),
rogue_ssa_vec_regarray(b->shader, 1, desc_addr_offset_idx, 1),
};
rogue_ADD64(b,
rogue_ref_regarray(desc_addr_offset_2x32[0]),
rogue_ref_regarray(desc_addr_offset_2x32[1]),
rogue_ref_io(ROGUE_IO_NONE),
rogue_ref_regarray(desc_set_addr_2x32[0]),
rogue_ref_regarray(desc_set_addr_2x32[1]),
rogue_ref_imm(flat_desc_idx * 4), /* TODO: use UMADD64 instead */
rogue_ref_imm(0),
rogue_ref_io(ROGUE_IO_NONE));
unsigned desc_addr_idx = intr->dest.ssa.index;
rogue_regarray *desc_addr_64 =
rogue_ssa_vec_regarray(b->shader, 2, desc_addr_idx, 0);
instr = &rogue_LD(b,
rogue_ref_regarray(desc_addr_64),
rogue_ref_drc(0),
rogue_ref_val(2),
rogue_ref_regarray(desc_addr_offset_64))
->instr;
rogue_add_instr_comment(instr, "load descriptor");
}
static void trans_nir_intrinsic_load_global_constant(rogue_builder *b,
nir_intrinsic_instr *intr)
{
/* 64-bit source address. */
unsigned src_index = intr->src[0].ssa->index;
rogue_regarray *src = rogue_ssa_vec_regarray(b->shader, 2, src_index, 0);
/*** TODO NEXT: this could be either a reg or regarray. ***/
rogue_reg *dst = rogue_ssa_reg(b->shader, intr->dest.ssa.index);
/* TODO NEXT: src[1] should be depending on ssa vec size for burst loads */
rogue_instr *instr = &rogue_LD(b,
rogue_ref_reg(dst),
rogue_ref_drc(0),
rogue_ref_val(1),
rogue_ref_regarray(src))
->instr;
rogue_add_instr_comment(instr, "load_global_constant");
}
static void trans_nir_intrinsic(rogue_builder *b, nir_intrinsic_instr *intr)
{
switch (intr->intrinsic) {
case nir_intrinsic_load_input:
return trans_nir_intrinsic_load_input(b, intr);
case nir_intrinsic_store_output:
return trans_nir_intrinsic_store_output(b, intr);
case nir_intrinsic_load_vulkan_descriptor:
return trans_nir_intrinsic_load_vulkan_descriptor(b, intr);
case nir_intrinsic_load_global_constant:
return trans_nir_intrinsic_load_global_constant(b, intr);
default:
break;
}
unreachable("Unimplemented NIR intrinsic instruction.");
}
static void trans_nir_alu_pack_unorm_4x8(rogue_builder *b, nir_alu_instr *alu)
{
rogue_ref dst = nir_ssa_reg_alu_dst(b->shader, alu, false);
rogue_ref src = nir_ssa_reg_alu_src(b->shader, alu, 0, true);
rogue_alu_instr *pck_u8888 = rogue_PCK_U8888(b, dst, src);
rogue_set_instr_repeat(&pck_u8888->instr, 4);
rogue_set_alu_op_mod(pck_u8888, ROGUE_ALU_OP_MOD_SCALE);
}
static void trans_nir_alu_fmul(rogue_builder *b, nir_alu_instr *alu)
{
rogue_ref dst = nir_ssa_reg_alu_dst(b->shader, alu, false);
rogue_ref src0 = nir_ssa_reg_alu_src(b->shader, alu, 0, false);
rogue_ref src1 = nir_ssa_reg_alu_src(b->shader, alu, 1, false);
rogue_FMUL(b, dst, src0, src1);
}
static void trans_nir_alu_ffma(rogue_builder *b, nir_alu_instr *alu)
{
rogue_ref dst = nir_ssa_reg_alu_dst(b->shader, alu, false);
rogue_ref src0 = nir_ssa_reg_alu_src(b->shader, alu, 0, false);
rogue_ref src1 = nir_ssa_reg_alu_src(b->shader, alu, 1, false);
rogue_ref src2 = nir_ssa_reg_alu_src(b->shader, alu, 2, false);
rogue_FMAD(b, dst, src0, src1, src2);
}
static void trans_nir_alu_vecN(rogue_builder *b, nir_alu_instr *alu, unsigned n)
{
unsigned dst_index = alu->dest.dest.ssa.index;
rogue_regarray *dst;
rogue_reg *src;
for (unsigned u = 0; u < n; ++u) {
dst = rogue_ssa_vec_regarray(b->shader, 1, dst_index, u);
src = rogue_ssa_reg(b->shader, alu->src[u].src.ssa->index);
rogue_MOV(b, rogue_ref_regarray(dst), rogue_ref_reg(src));
}
}
static void trans_nir_alu_iadd64(rogue_builder *b, nir_alu_instr *alu)
{
unsigned dst_index = alu->dest.dest.ssa.index;
rogue_regarray *dst[2] = {
rogue_ssa_vec_regarray(b->shader, 1, dst_index, 0),
rogue_ssa_vec_regarray(b->shader, 1, dst_index, 1),
};
unsigned src_index[2] = { alu->src[0].src.ssa->index,
alu->src[1].src.ssa->index };
rogue_regarray *src[2][2] = {
[0] = {
rogue_ssa_vec_regarray(b->shader, 1, src_index[0], 0),
rogue_ssa_vec_regarray(b->shader, 1, src_index[0], 1),
},
[1] = {
rogue_ssa_vec_regarray(b->shader, 1, src_index[1], 0),
rogue_ssa_vec_regarray(b->shader, 1, src_index[1], 1),
},
};
rogue_ADD64(b,
rogue_ref_regarray(dst[0]),
rogue_ref_regarray(dst[1]),
rogue_ref_io(ROGUE_IO_NONE),
rogue_ref_regarray(src[0][0]),
rogue_ref_regarray(src[0][1]),
rogue_ref_regarray(src[1][0]),
rogue_ref_regarray(src[1][1]),
rogue_ref_io(ROGUE_IO_NONE));
}
static void trans_nir_alu_iadd(rogue_builder *b, nir_alu_instr *alu)
{
unsigned bit_size = alu->dest.dest.ssa.bit_size;
switch (bit_size) {
/* TODO: case 32: */
case 64:
return trans_nir_alu_iadd64(b, alu);
default:
break;
}
unreachable("Unsupported bit size.");
}
static void trans_nir_alu(rogue_builder *b, nir_alu_instr *alu)
{
switch (alu->op) {
case nir_op_pack_unorm_4x8:
return trans_nir_alu_pack_unorm_4x8(b, alu);
return;
case nir_op_fmul:
return trans_nir_alu_fmul(b, alu);
case nir_op_ffma:
return trans_nir_alu_ffma(b, alu);
case nir_op_vec4:
return trans_nir_alu_vecN(b, alu, 4);
case nir_op_iadd:
return trans_nir_alu_iadd(b, alu);
default:
break;
}
unreachable("Unimplemented NIR ALU instruction.");
}
PUBLIC
unsigned rogue_count_used_regs(const rogue_shader *shader,
enum rogue_reg_class class)
{
unsigned reg_count;
if (rogue_reg_infos[class].num) {
reg_count = __bitset_count(shader->regs_used[class],
BITSET_WORDS(rogue_reg_infos[class].num));
} else {
reg_count = list_length(&shader->regs[class]);
}
#ifndef NDEBUG
/* Check that registers are contiguous. */
rogue_foreach_reg (reg, shader, class) {
assert(reg->index < reg_count);
}
#endif /* NDEBUG */
return reg_count;
}
static inline void rogue_feedback_used_regs(rogue_build_ctx *ctx,
const rogue_shader *shader)
{
/* TODO NEXT: Use this counting method elsewhere as well. */
ctx->common_data[shader->stage].temps =
__bitset_count(shader->regs_used[ROGUE_REG_CLASS_TEMP],
BITSET_WORDS(rogue_reg_infos[ROGUE_REG_CLASS_TEMP].num));
ctx->common_data[shader->stage].internals = __bitset_count(
shader->regs_used[ROGUE_REG_CLASS_INTERNAL],
BITSET_WORDS(rogue_reg_infos[ROGUE_REG_CLASS_INTERNAL].num));
}
static bool ssa_def_cb(nir_ssa_def *ssa, void *state)
{
rogue_shader *shader = (rogue_shader *)state;
if (ssa->num_components == 1) {
if (ssa->bit_size == 32) {
rogue_ssa_reg(shader, ssa->index);
} else if (ssa->bit_size == 64) {
rogue_ssa_vec_regarray(shader, 2, ssa->index, 0);
}
} else {
rogue_ssa_vec_regarray(shader, ssa->num_components, ssa->index, 0);
}
/* Keep track of the last SSA index so we can use more. */
shader->ctx->next_ssa_idx = MAX2(shader->ctx->next_ssa_idx, ssa->index);
return true;
}
/**
* \brief Translates a NIR shader to Rogue.
*
* \param[in] ctx Shared multi-stage build context.
* \param[in] nir NIR shader.
* \return A rogue_shader* if successful, or NULL if unsuccessful.
*/
PUBLIC
rogue_shader *rogue_nir_to_rogue(rogue_build_ctx *ctx, const nir_shader *nir)
{
gl_shader_stage stage = nir->info.stage;
rogue_shader *shader = rogue_shader_create(ctx, stage);
if (!shader)
return NULL;
shader->ctx = ctx;
/* Make sure we only have a single function. */
assert(exec_list_length(&nir->functions) == 1);
rogue_builder b;
rogue_builder_init(&b, shader);
nir_function_impl *entry = nir_shader_get_entrypoint((nir_shader *)nir);
/* Go through SSA used by NIR and "reserve" them so that sub-arrays won't be
* declared before the parent arrays. */
nir_foreach_block_unstructured (block, entry) {
nir_foreach_instr (instr, block) {
if (instr->type == nir_instr_type_load_const) {
nir_load_const_instr *load_const = nir_instr_as_load_const(instr);
if (load_const->def.num_components > 1)
continue;
}
nir_foreach_ssa_def(instr, ssa_def_cb, shader);
}
}
++shader->ctx->next_ssa_idx;
/* Translate shader entrypoint. */
nir_foreach_block (block, entry) {
rogue_push_block(&b);
nir_foreach_instr (instr, block) {
switch (instr->type) {
case nir_instr_type_alu:
trans_nir_alu(&b, nir_instr_as_alu(instr));
break;
case nir_instr_type_intrinsic:
trans_nir_intrinsic(&b, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_load_const:
trans_nir_load_const(&b, nir_instr_as_load_const(instr));
break;
case nir_instr_type_jump:
trans_nir_jump(&b, nir_instr_as_jump(instr));
break;
default:
unreachable("Unimplemented NIR instruction type.");
}
}
}
/* Apply passes. */
rogue_shader_passes(shader);
rogue_feedback_used_regs(ctx, shader);
return shader;
}
/**
* \brief Performs Rogue passes on a shader.
*
* \param[in] shader The shader.
*/
PUBLIC
void rogue_shader_passes(rogue_shader *shader)
{
rogue_validate_shader(shader, "before passes");
if (ROGUE_DEBUG(IR_PASSES))
rogue_print_pass_debug(shader, "before passes", stdout);
/* Passes */
ROGUE_PASS_V(shader, rogue_constreg);
ROGUE_PASS_V(shader, rogue_copy_prop);
ROGUE_PASS_V(shader, rogue_dce);
ROGUE_PASS_V(shader, rogue_lower_pseudo_ops);
ROGUE_PASS_V(shader, rogue_schedule_wdf, false);
ROGUE_PASS_V(shader, rogue_schedule_uvsw, false);
ROGUE_PASS_V(shader, rogue_trim);
ROGUE_PASS_V(shader, rogue_regalloc);
ROGUE_PASS_V(shader, rogue_dce);
ROGUE_PASS_V(shader, rogue_schedule_instr_groups, false);
if (ROGUE_DEBUG(IR))
rogue_print_pass_debug(shader, "after passes", stdout);
}