Files
third_party_mesa3d/src/gallium/drivers/radeonsi/si_shader_nir.c
Marek Olšák 4c5efc40f4 radeonsi: update copyrights
Acked-by: Timothy Arceri <tarceri@itsqueeze.com>
2018-04-05 15:34:58 -04:00

978 lines
30 KiB
C

/*
* Copyright 2017 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_shader_internal.h"
#include "si_pipe.h"
#include "ac_nir_to_llvm.h"
#include "tgsi/tgsi_from_mesa.h"
#include "compiler/nir/nir.h"
#include "compiler/nir_types.h"
static void scan_instruction(struct tgsi_shader_info *info,
nir_instr *instr)
{
if (instr->type == nir_instr_type_alu) {
nir_alu_instr *alu = nir_instr_as_alu(instr);
switch (alu->op) {
case nir_op_fddx:
case nir_op_fddy:
case nir_op_fddx_fine:
case nir_op_fddy_fine:
case nir_op_fddx_coarse:
case nir_op_fddy_coarse:
info->uses_derivatives = true;
break;
default:
break;
}
} else if (instr->type == nir_instr_type_tex) {
nir_tex_instr *tex = nir_instr_as_tex(instr);
if (!tex->texture) {
info->samplers_declared |=
u_bit_consecutive(tex->sampler_index, 1);
} else {
if (tex->texture->var->data.bindless)
info->uses_bindless_samplers = true;
}
switch (tex->op) {
case nir_texop_tex:
case nir_texop_txb:
case nir_texop_lod:
info->uses_derivatives = true;
break;
default:
break;
}
} else if (instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
switch (intr->intrinsic) {
case nir_intrinsic_load_front_face:
info->uses_frontface = 1;
break;
case nir_intrinsic_load_instance_id:
info->uses_instanceid = 1;
break;
case nir_intrinsic_load_invocation_id:
info->uses_invocationid = true;
break;
case nir_intrinsic_load_num_work_groups:
info->uses_grid_size = true;
break;
case nir_intrinsic_load_local_group_size:
/* The block size is translated to IMM with a fixed block size. */
if (info->properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0)
info->uses_block_size = true;
break;
case nir_intrinsic_load_local_invocation_id:
case nir_intrinsic_load_work_group_id: {
unsigned mask = nir_ssa_def_components_read(&intr->dest.ssa);
while (mask) {
unsigned i = u_bit_scan(&mask);
if (intr->intrinsic == nir_intrinsic_load_work_group_id)
info->uses_block_id[i] = true;
else
info->uses_thread_id[i] = true;
}
break;
}
case nir_intrinsic_load_vertex_id:
info->uses_vertexid = 1;
break;
case nir_intrinsic_load_vertex_id_zero_base:
info->uses_vertexid_nobase = 1;
break;
case nir_intrinsic_load_base_vertex:
info->uses_basevertex = 1;
break;
case nir_intrinsic_load_primitive_id:
info->uses_primid = 1;
break;
case nir_intrinsic_load_sample_mask_in:
info->reads_samplemask = true;
break;
case nir_intrinsic_load_tess_level_inner:
case nir_intrinsic_load_tess_level_outer:
info->reads_tess_factors = true;
break;
case nir_intrinsic_image_var_store:
case nir_intrinsic_image_var_atomic_add:
case nir_intrinsic_image_var_atomic_min:
case nir_intrinsic_image_var_atomic_max:
case nir_intrinsic_image_var_atomic_and:
case nir_intrinsic_image_var_atomic_or:
case nir_intrinsic_image_var_atomic_xor:
case nir_intrinsic_image_var_atomic_exchange:
case nir_intrinsic_image_var_atomic_comp_swap:
case nir_intrinsic_store_ssbo:
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
info->writes_memory = true;
break;
case nir_intrinsic_load_var: {
nir_variable *var = intr->variables[0]->var;
nir_variable_mode mode = var->data.mode;
enum glsl_base_type base_type =
glsl_get_base_type(glsl_without_array(var->type));
if (mode == nir_var_shader_in) {
switch (var->data.interpolation) {
case INTERP_MODE_NONE:
if (glsl_base_type_is_integer(base_type))
break;
/* fall-through */
case INTERP_MODE_SMOOTH:
if (var->data.sample)
info->uses_persp_sample = true;
else if (var->data.centroid)
info->uses_persp_centroid = true;
else
info->uses_persp_center = true;
break;
case INTERP_MODE_NOPERSPECTIVE:
if (var->data.sample)
info->uses_linear_sample = true;
else if (var->data.centroid)
info->uses_linear_centroid = true;
else
info->uses_linear_center = true;
break;
}
}
break;
}
case nir_intrinsic_interp_var_at_centroid:
case nir_intrinsic_interp_var_at_sample:
case nir_intrinsic_interp_var_at_offset: {
enum glsl_interp_mode interp =
intr->variables[0]->var->data.interpolation;
switch (interp) {
case INTERP_MODE_SMOOTH:
case INTERP_MODE_NONE:
if (intr->intrinsic == nir_intrinsic_interp_var_at_centroid)
info->uses_persp_opcode_interp_centroid = true;
else if (intr->intrinsic == nir_intrinsic_interp_var_at_sample)
info->uses_persp_opcode_interp_sample = true;
else
info->uses_persp_opcode_interp_offset = true;
break;
case INTERP_MODE_NOPERSPECTIVE:
if (intr->intrinsic == nir_intrinsic_interp_var_at_centroid)
info->uses_linear_opcode_interp_centroid = true;
else if (intr->intrinsic == nir_intrinsic_interp_var_at_sample)
info->uses_linear_opcode_interp_sample = true;
else
info->uses_linear_opcode_interp_offset = true;
break;
case INTERP_MODE_FLAT:
break;
default:
unreachable("Unsupported interpoation type");
}
break;
}
default:
break;
}
}
}
void si_nir_scan_tess_ctrl(const struct nir_shader *nir,
const struct tgsi_shader_info *info,
struct tgsi_tessctrl_info *out)
{
memset(out, 0, sizeof(*out));
if (nir->info.stage != MESA_SHADER_TESS_CTRL)
return;
/* Initial value = true. Here the pass will accumulate results from
* multiple segments surrounded by barriers. If tess factors aren't
* written at all, it's a shader bug and we don't care if this will be
* true.
*/
out->tessfactors_are_def_in_all_invocs = true;
/* TODO: Implement scanning of tess factors, see tgsi backend. */
}
void si_nir_scan_shader(const struct nir_shader *nir,
struct tgsi_shader_info *info)
{
nir_function *func;
unsigned i;
info->processor = pipe_shader_type_from_mesa(nir->info.stage);
info->num_tokens = 2; /* indicate that the shader is non-empty */
info->num_instructions = 2;
info->properties[TGSI_PROPERTY_NEXT_SHADER] =
pipe_shader_type_from_mesa(nir->info.next_stage);
if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT] =
nir->info.tess.tcs_vertices_out;
}
if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
if (nir->info.tess.primitive_mode == GL_ISOLINES)
info->properties[TGSI_PROPERTY_TES_PRIM_MODE] = PIPE_PRIM_LINES;
else
info->properties[TGSI_PROPERTY_TES_PRIM_MODE] = nir->info.tess.primitive_mode;
STATIC_ASSERT((TESS_SPACING_EQUAL + 1) % 3 == PIPE_TESS_SPACING_EQUAL);
STATIC_ASSERT((TESS_SPACING_FRACTIONAL_ODD + 1) % 3 ==
PIPE_TESS_SPACING_FRACTIONAL_ODD);
STATIC_ASSERT((TESS_SPACING_FRACTIONAL_EVEN + 1) % 3 ==
PIPE_TESS_SPACING_FRACTIONAL_EVEN);
info->properties[TGSI_PROPERTY_TES_SPACING] = (nir->info.tess.spacing + 1) % 3;
info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW] = !nir->info.tess.ccw;
info->properties[TGSI_PROPERTY_TES_POINT_MODE] = nir->info.tess.point_mode;
}
if (nir->info.stage == MESA_SHADER_GEOMETRY) {
info->properties[TGSI_PROPERTY_GS_INPUT_PRIM] = nir->info.gs.input_primitive;
info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM] = nir->info.gs.output_primitive;
info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES] = nir->info.gs.vertices_out;
info->properties[TGSI_PROPERTY_GS_INVOCATIONS] = nir->info.gs.invocations;
}
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
info->properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL] =
nir->info.fs.early_fragment_tests | nir->info.fs.post_depth_coverage;
info->properties[TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE] = nir->info.fs.post_depth_coverage;
if (nir->info.fs.pixel_center_integer) {
info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] =
TGSI_FS_COORD_PIXEL_CENTER_INTEGER;
}
if (nir->info.fs.depth_layout != FRAG_DEPTH_LAYOUT_NONE) {
switch (nir->info.fs.depth_layout) {
case FRAG_DEPTH_LAYOUT_ANY:
info->properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT] = TGSI_FS_DEPTH_LAYOUT_ANY;
break;
case FRAG_DEPTH_LAYOUT_GREATER:
info->properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT] = TGSI_FS_DEPTH_LAYOUT_GREATER;
break;
case FRAG_DEPTH_LAYOUT_LESS:
info->properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT] = TGSI_FS_DEPTH_LAYOUT_LESS;
break;
case FRAG_DEPTH_LAYOUT_UNCHANGED:
info->properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT] = TGSI_FS_DEPTH_LAYOUT_UNCHANGED;
break;
default:
unreachable("Unknow depth layout");
}
}
}
if (nir->info.stage == MESA_SHADER_COMPUTE) {
info->properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] = nir->info.cs.local_size[0];
info->properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] = nir->info.cs.local_size[1];
info->properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH] = nir->info.cs.local_size[2];
}
i = 0;
uint64_t processed_inputs = 0;
unsigned num_inputs = 0;
nir_foreach_variable(variable, &nir->inputs) {
unsigned semantic_name, semantic_index;
const struct glsl_type *type = variable->type;
if (nir_is_per_vertex_io(variable, nir->info.stage)) {
assert(glsl_type_is_array(type));
type = glsl_get_array_element(type);
}
unsigned attrib_count = glsl_count_attribute_slots(type,
nir->info.stage == MESA_SHADER_VERTEX);
i = variable->data.driver_location;
/* Vertex shader inputs don't have semantics. The state
* tracker has already mapped them to attributes via
* variable->data.driver_location.
*/
if (nir->info.stage == MESA_SHADER_VERTEX) {
/* TODO: gather the actual input useage and remove this. */
info->input_usage_mask[i] = TGSI_WRITEMASK_XYZW;
if (glsl_type_is_dual_slot(variable->type)) {
num_inputs += 2;
/* TODO: gather the actual input useage and remove this. */
info->input_usage_mask[i+1] = TGSI_WRITEMASK_XYZW;
} else
num_inputs++;
continue;
}
/* Fragment shader position is a system value. */
if (nir->info.stage == MESA_SHADER_FRAGMENT &&
variable->data.location == VARYING_SLOT_POS) {
if (variable->data.pixel_center_integer)
info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] =
TGSI_FS_COORD_PIXEL_CENTER_INTEGER;
num_inputs++;
continue;
}
for (unsigned j = 0; j < attrib_count; j++, i++) {
if (processed_inputs & ((uint64_t)1 << i))
continue;
processed_inputs |= ((uint64_t)1 << i);
num_inputs++;
tgsi_get_gl_varying_semantic(variable->data.location + j, true,
&semantic_name, &semantic_index);
info->input_semantic_name[i] = semantic_name;
info->input_semantic_index[i] = semantic_index;
if (semantic_name == TGSI_SEMANTIC_PRIMID)
info->uses_primid = true;
if (variable->data.sample)
info->input_interpolate_loc[i] = TGSI_INTERPOLATE_LOC_SAMPLE;
else if (variable->data.centroid)
info->input_interpolate_loc[i] = TGSI_INTERPOLATE_LOC_CENTROID;
else
info->input_interpolate_loc[i] = TGSI_INTERPOLATE_LOC_CENTER;
enum glsl_base_type base_type =
glsl_get_base_type(glsl_without_array(variable->type));
switch (variable->data.interpolation) {
case INTERP_MODE_NONE:
if (glsl_base_type_is_integer(base_type)) {
info->input_interpolate[i] = TGSI_INTERPOLATE_CONSTANT;
break;
}
if (semantic_name == TGSI_SEMANTIC_COLOR) {
info->input_interpolate[i] = TGSI_INTERPOLATE_COLOR;
break;
}
/* fall-through */
case INTERP_MODE_SMOOTH:
assert(!glsl_base_type_is_integer(base_type));
info->input_interpolate[i] = TGSI_INTERPOLATE_PERSPECTIVE;
break;
case INTERP_MODE_NOPERSPECTIVE:
assert(!glsl_base_type_is_integer(base_type));
info->input_interpolate[i] = TGSI_INTERPOLATE_LINEAR;
break;
case INTERP_MODE_FLAT:
info->input_interpolate[i] = TGSI_INTERPOLATE_CONSTANT;
break;
}
/* TODO make this more precise */
if (variable->data.location == VARYING_SLOT_COL0)
info->colors_read |= 0x0f;
else if (variable->data.location == VARYING_SLOT_COL1)
info->colors_read |= 0xf0;
}
}
info->num_inputs = num_inputs;
i = 0;
uint64_t processed_outputs = 0;
unsigned num_outputs = 0;
nir_foreach_variable(variable, &nir->outputs) {
unsigned semantic_name, semantic_index;
i = variable->data.driver_location;
const struct glsl_type *type = variable->type;
if (nir_is_per_vertex_io(variable, nir->info.stage)) {
assert(glsl_type_is_array(type));
type = glsl_get_array_element(type);
}
unsigned attrib_count = glsl_count_attribute_slots(type, false);
for (unsigned k = 0; k < attrib_count; k++, i++) {
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
tgsi_get_gl_frag_result_semantic(variable->data.location + k,
&semantic_name, &semantic_index);
/* Adjust for dual source blending */
if (variable->data.index > 0) {
semantic_index++;
}
} else {
tgsi_get_gl_varying_semantic(variable->data.location + k, true,
&semantic_name, &semantic_index);
}
unsigned num_components = 4;
unsigned vector_elements = glsl_get_vector_elements(glsl_without_array(variable->type));
if (vector_elements)
num_components = vector_elements;
unsigned component = variable->data.location_frac;
if (glsl_type_is_64bit(glsl_without_array(variable->type))) {
if (glsl_type_is_dual_slot(glsl_without_array(variable->type)) && k % 2) {
num_components = (num_components * 2) - 4;
component = 0;
} else {
num_components = MIN2(num_components * 2, 4);
}
}
ubyte usagemask = 0;
for (unsigned j = component; j < num_components + component; j++) {
switch (j) {
case 0:
usagemask |= TGSI_WRITEMASK_X;
break;
case 1:
usagemask |= TGSI_WRITEMASK_Y;
break;
case 2:
usagemask |= TGSI_WRITEMASK_Z;
break;
case 3:
usagemask |= TGSI_WRITEMASK_W;
break;
default:
unreachable("error calculating component index");
}
}
unsigned gs_out_streams;
if (variable->data.stream & (1u << 31)) {
gs_out_streams = variable->data.stream & ~(1u << 31);
} else {
assert(variable->data.stream < 4);
gs_out_streams = 0;
for (unsigned j = 0; j < num_components; ++j)
gs_out_streams |= variable->data.stream << (2 * (component + j));
}
unsigned streamx = gs_out_streams & 3;
unsigned streamy = (gs_out_streams >> 2) & 3;
unsigned streamz = (gs_out_streams >> 4) & 3;
unsigned streamw = (gs_out_streams >> 6) & 3;
if (usagemask & TGSI_WRITEMASK_X) {
info->output_usagemask[i] |= TGSI_WRITEMASK_X;
info->output_streams[i] |= streamx;
info->num_stream_output_components[streamx]++;
}
if (usagemask & TGSI_WRITEMASK_Y) {
info->output_usagemask[i] |= TGSI_WRITEMASK_Y;
info->output_streams[i] |= streamy << 2;
info->num_stream_output_components[streamy]++;
}
if (usagemask & TGSI_WRITEMASK_Z) {
info->output_usagemask[i] |= TGSI_WRITEMASK_Z;
info->output_streams[i] |= streamz << 4;
info->num_stream_output_components[streamz]++;
}
if (usagemask & TGSI_WRITEMASK_W) {
info->output_usagemask[i] |= TGSI_WRITEMASK_W;
info->output_streams[i] |= streamw << 6;
info->num_stream_output_components[streamw]++;
}
/* make sure we only count this location once against
* the num_outputs counter.
*/
if (processed_outputs & ((uint64_t)1 << i))
continue;
processed_outputs |= ((uint64_t)1 << i);
num_outputs++;
info->output_semantic_name[i] = semantic_name;
info->output_semantic_index[i] = semantic_index;
switch (semantic_name) {
case TGSI_SEMANTIC_PRIMID:
info->writes_primid = true;
break;
case TGSI_SEMANTIC_VIEWPORT_INDEX:
info->writes_viewport_index = true;
break;
case TGSI_SEMANTIC_LAYER:
info->writes_layer = true;
break;
case TGSI_SEMANTIC_PSIZE:
info->writes_psize = true;
break;
case TGSI_SEMANTIC_CLIPVERTEX:
info->writes_clipvertex = true;
break;
case TGSI_SEMANTIC_COLOR:
info->colors_written |= 1 << semantic_index;
break;
case TGSI_SEMANTIC_STENCIL:
info->writes_stencil = true;
break;
case TGSI_SEMANTIC_SAMPLEMASK:
info->writes_samplemask = true;
break;
case TGSI_SEMANTIC_EDGEFLAG:
info->writes_edgeflag = true;
break;
case TGSI_SEMANTIC_POSITION:
if (info->processor == PIPE_SHADER_FRAGMENT)
info->writes_z = true;
else
info->writes_position = true;
break;
}
if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
switch (semantic_name) {
case TGSI_SEMANTIC_PATCH:
info->reads_perpatch_outputs = true;
break;
case TGSI_SEMANTIC_TESSINNER:
case TGSI_SEMANTIC_TESSOUTER:
info->reads_tessfactor_outputs = true;
break;
default:
info->reads_pervertex_outputs = true;
}
}
}
unsigned loc = variable->data.location;
if (loc == FRAG_RESULT_COLOR &&
nir->info.outputs_written & (1ull << loc)) {
assert(attrib_count == 1);
info->properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] = true;
}
}
info->num_outputs = num_outputs;
struct set *ubo_set = _mesa_set_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
/* Intialise const_file_max[0] */
info->const_file_max[0] = -1;
unsigned ubo_idx = 1;
nir_foreach_variable(variable, &nir->uniforms) {
const struct glsl_type *type = variable->type;
enum glsl_base_type base_type =
glsl_get_base_type(glsl_without_array(type));
unsigned aoa_size = MAX2(1, glsl_get_aoa_size(type));
/* Gather buffers declared bitmasks. Note: radeonsi doesn't
* really use the mask (other than ubo_idx == 1 for regular
* uniforms) its really only used for getting the buffer count
* so we don't need to worry about the ordering.
*/
if (variable->interface_type != NULL) {
if (variable->data.mode == nir_var_uniform) {
unsigned block_count;
if (base_type != GLSL_TYPE_INTERFACE) {
struct set_entry *entry =
_mesa_set_search(ubo_set, variable->interface_type);
/* Check if we have already processed
* a member from this ubo.
*/
if (entry)
continue;
block_count = 1;
} else {
block_count = aoa_size;
}
info->const_buffers_declared |= u_bit_consecutive(ubo_idx, block_count);
ubo_idx += block_count;
_mesa_set_add(ubo_set, variable->interface_type);
}
if (variable->data.mode == nir_var_shader_storage) {
/* TODO: make this more accurate */
info->shader_buffers_declared =
u_bit_consecutive(0, SI_NUM_SHADER_BUFFERS);
}
continue;
}
/* We rely on the fact that nir_lower_samplers_as_deref has
* eliminated struct dereferences.
*/
if (base_type == GLSL_TYPE_SAMPLER) {
info->samplers_declared |=
u_bit_consecutive(variable->data.binding, aoa_size);
if (variable->data.bindless) {
info->const_buffers_declared |= 1;
info->const_file_max[0] +=
glsl_count_attribute_slots(type, false);
}
} else if (base_type == GLSL_TYPE_IMAGE) {
info->images_declared |=
u_bit_consecutive(variable->data.binding, aoa_size);
if (variable->data.bindless) {
info->const_buffers_declared |= 1;
info->const_file_max[0] +=
glsl_count_attribute_slots(type, false);
}
} else if (base_type != GLSL_TYPE_ATOMIC_UINT) {
if (strncmp(variable->name, "state.", 6) == 0 ||
strncmp(variable->name, "gl_", 3) == 0) {
/* FIXME: figure out why piglit tests with builtin
* uniforms are failing without this.
*/
info->const_buffers_declared =
u_bit_consecutive(0, SI_NUM_CONST_BUFFERS);
} else {
info->const_buffers_declared |= 1;
info->const_file_max[0] +=
glsl_count_attribute_slots(type, false);
}
}
}
_mesa_set_destroy(ubo_set, NULL);
info->num_written_clipdistance = nir->info.clip_distance_array_size;
info->num_written_culldistance = nir->info.cull_distance_array_size;
info->clipdist_writemask = u_bit_consecutive(0, info->num_written_clipdistance);
info->culldist_writemask = u_bit_consecutive(0, info->num_written_culldistance);
if (info->processor == PIPE_SHADER_FRAGMENT)
info->uses_kill = nir->info.fs.uses_discard;
func = (struct nir_function *)exec_list_get_head_const(&nir->functions);
nir_foreach_block(block, func->impl) {
nir_foreach_instr(instr, block)
scan_instruction(info, instr);
}
}
/**
* Perform "lowering" operations on the NIR that are run once when the shader
* selector is created.
*/
void
si_lower_nir(struct si_shader_selector* sel)
{
/* Disable const buffer fast path for old LLVM versions */
if (sel->screen->info.chip_class == SI && HAVE_LLVM < 0x0600 &&
sel->info.const_buffers_declared == 1 &&
sel->info.shader_buffers_declared == 0) {
sel->info.const_buffers_declared |= 0x2;
}
/* Adjust the driver location of inputs and outputs. The state tracker
* interprets them as slots, while the ac/nir backend interprets them
* as individual components.
*/
nir_foreach_variable(variable, &sel->nir->inputs)
variable->data.driver_location *= 4;
nir_foreach_variable(variable, &sel->nir->outputs) {
variable->data.driver_location *= 4;
if (sel->nir->info.stage == MESA_SHADER_FRAGMENT) {
if (variable->data.location == FRAG_RESULT_DEPTH)
variable->data.driver_location += 2;
else if (variable->data.location == FRAG_RESULT_STENCIL)
variable->data.driver_location += 1;
}
}
/* Perform lowerings (and optimizations) of code.
*
* Performance considerations aside, we must:
* - lower certain ALU operations
* - ensure constant offsets for texture instructions are folded
* and copy-propagated
*/
NIR_PASS_V(sel->nir, nir_lower_returns);
NIR_PASS_V(sel->nir, nir_lower_vars_to_ssa);
NIR_PASS_V(sel->nir, nir_lower_alu_to_scalar);
NIR_PASS_V(sel->nir, nir_lower_phis_to_scalar);
static const struct nir_lower_tex_options lower_tex_options = {
.lower_txp = ~0u,
};
NIR_PASS_V(sel->nir, nir_lower_tex, &lower_tex_options);
const nir_lower_subgroups_options subgroups_options = {
.subgroup_size = 64,
.ballot_bit_size = 64,
.lower_to_scalar = true,
.lower_subgroup_masks = true,
.lower_vote_trivial = false,
.lower_vote_eq_to_ballot = true,
};
NIR_PASS_V(sel->nir, nir_lower_subgroups, &subgroups_options);
ac_lower_indirect_derefs(sel->nir, sel->screen->info.chip_class);
bool progress;
do {
progress = false;
/* (Constant) copy propagation is needed for txf with offsets. */
NIR_PASS(progress, sel->nir, nir_copy_prop);
NIR_PASS(progress, sel->nir, nir_opt_remove_phis);
NIR_PASS(progress, sel->nir, nir_opt_dce);
if (nir_opt_trivial_continues(sel->nir)) {
progress = true;
NIR_PASS(progress, sel->nir, nir_copy_prop);
NIR_PASS(progress, sel->nir, nir_opt_dce);
}
NIR_PASS(progress, sel->nir, nir_opt_if);
NIR_PASS(progress, sel->nir, nir_opt_dead_cf);
NIR_PASS(progress, sel->nir, nir_opt_cse);
NIR_PASS(progress, sel->nir, nir_opt_peephole_select, 8);
/* Needed for algebraic lowering */
NIR_PASS(progress, sel->nir, nir_opt_algebraic);
NIR_PASS(progress, sel->nir, nir_opt_constant_folding);
NIR_PASS(progress, sel->nir, nir_opt_undef);
NIR_PASS(progress, sel->nir, nir_opt_conditional_discard);
if (sel->nir->options->max_unroll_iterations) {
NIR_PASS(progress, sel->nir, nir_opt_loop_unroll, 0);
}
} while (progress);
}
static void declare_nir_input_vs(struct si_shader_context *ctx,
struct nir_variable *variable,
unsigned input_index,
LLVMValueRef out[4])
{
si_llvm_load_input_vs(ctx, input_index, out);
}
static void declare_nir_input_fs(struct si_shader_context *ctx,
struct nir_variable *variable,
unsigned input_index,
LLVMValueRef out[4])
{
unsigned slot = variable->data.location;
if (slot == VARYING_SLOT_POS) {
out[0] = LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT);
out[1] = LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT);
out[2] = LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT);
out[3] = ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
LLVMGetParam(ctx->main_fn, SI_PARAM_POS_W_FLOAT));
return;
}
si_llvm_load_input_fs(ctx, input_index, out);
}
LLVMValueRef
si_nir_lookup_interp_param(struct ac_shader_abi *abi,
enum glsl_interp_mode interp, unsigned location)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
int interp_param_idx = -1;
switch (interp) {
case INTERP_MODE_FLAT:
return NULL;
case INTERP_MODE_SMOOTH:
case INTERP_MODE_NONE:
if (location == INTERP_CENTER)
interp_param_idx = SI_PARAM_PERSP_CENTER;
else if (location == INTERP_CENTROID)
interp_param_idx = SI_PARAM_PERSP_CENTROID;
else if (location == INTERP_SAMPLE)
interp_param_idx = SI_PARAM_PERSP_SAMPLE;
break;
case INTERP_MODE_NOPERSPECTIVE:
if (location == INTERP_CENTER)
interp_param_idx = SI_PARAM_LINEAR_CENTER;
else if (location == INTERP_CENTROID)
interp_param_idx = SI_PARAM_LINEAR_CENTROID;
else if (location == INTERP_SAMPLE)
interp_param_idx = SI_PARAM_LINEAR_SAMPLE;
break;
default:
assert(!"Unhandled interpolation mode.");
return NULL;
}
return interp_param_idx != -1 ?
LLVMGetParam(ctx->main_fn, interp_param_idx) : NULL;
}
static LLVMValueRef
si_nir_load_sampler_desc(struct ac_shader_abi *abi,
unsigned descriptor_set, unsigned base_index,
unsigned constant_index, LLVMValueRef dynamic_index,
enum ac_descriptor_type desc_type, bool image,
bool write, bool bindless)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef list = LLVMGetParam(ctx->main_fn, ctx->param_samplers_and_images);
LLVMValueRef index = dynamic_index;
assert(!descriptor_set);
if (!index)
index = ctx->ac.i32_0;
index = LLVMBuildAdd(builder, index,
LLVMConstInt(ctx->ac.i32, base_index + constant_index, false),
"");
if (image) {
assert(desc_type == AC_DESC_IMAGE || desc_type == AC_DESC_BUFFER);
assert(base_index + constant_index < ctx->num_images);
if (dynamic_index)
index = si_llvm_bound_index(ctx, index, ctx->num_images);
index = LLVMBuildSub(ctx->gallivm.builder,
LLVMConstInt(ctx->i32, SI_NUM_IMAGES - 1, 0),
index, "");
/* TODO: be smarter about when we use dcc_off */
return si_load_image_desc(ctx, list, index, desc_type, write);
}
assert(base_index + constant_index < ctx->num_samplers);
if (dynamic_index)
index = si_llvm_bound_index(ctx, index, ctx->num_samplers);
index = LLVMBuildAdd(ctx->gallivm.builder, index,
LLVMConstInt(ctx->i32, SI_NUM_IMAGES / 2, 0), "");
return si_load_sampler_desc(ctx, list, index, desc_type);
}
static void bitcast_inputs(struct si_shader_context *ctx,
LLVMValueRef data[4],
unsigned input_idx)
{
for (unsigned chan = 0; chan < 4; chan++) {
ctx->inputs[input_idx + chan] =
LLVMBuildBitCast(ctx->ac.builder, data[chan], ctx->ac.i32, "");
}
}
bool si_nir_build_llvm(struct si_shader_context *ctx, struct nir_shader *nir)
{
struct tgsi_shader_info *info = &ctx->shader->selector->info;
if (nir->info.stage == MESA_SHADER_VERTEX ||
nir->info.stage == MESA_SHADER_FRAGMENT) {
uint64_t processed_inputs = 0;
nir_foreach_variable(variable, &nir->inputs) {
unsigned attrib_count = glsl_count_attribute_slots(variable->type,
nir->info.stage == MESA_SHADER_VERTEX);
unsigned input_idx = variable->data.driver_location;
LLVMValueRef data[4];
unsigned loc = variable->data.location;
for (unsigned i = 0; i < attrib_count; i++) {
/* Packed components share the same location so skip
* them if we have already processed the location.
*/
if (processed_inputs & ((uint64_t)1 << (loc + i))) {
input_idx += 4;
continue;
}
if (nir->info.stage == MESA_SHADER_VERTEX) {
declare_nir_input_vs(ctx, variable, input_idx / 4, data);
bitcast_inputs(ctx, data, input_idx);
if (glsl_type_is_dual_slot(variable->type)) {
input_idx += 4;
declare_nir_input_vs(ctx, variable, input_idx / 4, data);
bitcast_inputs(ctx, data, input_idx);
}
} else if (nir->info.stage == MESA_SHADER_FRAGMENT) {
declare_nir_input_fs(ctx, variable, input_idx / 4, data);
bitcast_inputs(ctx, data, input_idx);
}
processed_inputs |= ((uint64_t)1 << (loc + i));
input_idx += 4;
}
}
}
ctx->abi.inputs = &ctx->inputs[0];
ctx->abi.load_sampler_desc = si_nir_load_sampler_desc;
ctx->abi.clamp_shadow_reference = true;
ctx->num_samplers = util_last_bit(info->samplers_declared);
ctx->num_images = util_last_bit(info->images_declared);
if (ctx->shader->selector->local_size) {
assert(nir->info.stage == MESA_SHADER_COMPUTE);
si_declare_compute_memory(ctx);
}
ac_nir_translate(&ctx->ac, &ctx->abi, nir);
return true;
}