
This moves the following methods that are currently defined in vec4_visitor (even though they are side products of the liveness analysis computation) and are already implemented in brw_vec4_live_variables.cpp: > int var_range_start(unsigned v, unsigned n) const; > int var_range_end(unsigned v, unsigned n) const; > bool virtual_grf_interferes(int a, int b) const; > int *virtual_grf_start; > int *virtual_grf_end; It makes sense for them to be part of the vec4_live_variables object, because they have the same lifetime as other liveness analysis results and because this will allow some extra validation to happen wherever they are accessed in order to make sure that we only ever use up-to-date liveness analysis results. The naming of the virtual_grf_start/end arrays was rather misleading, they were indexed by variable rather than by vgrf, this renames them start/end to match the FS liveness analysis pass. The churn in the definition of var_range_start/end is just in order to avoid a collision between the start/end arrays and local variables declared with the same name. Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4012>
547 lines
19 KiB
C++
547 lines
19 KiB
C++
/*
|
|
* Copyright © 2011 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "util/register_allocate.h"
|
|
#include "brw_vec4.h"
|
|
#include "brw_cfg.h"
|
|
|
|
using namespace brw;
|
|
|
|
namespace brw {
|
|
|
|
static void
|
|
assign(unsigned int *reg_hw_locations, backend_reg *reg)
|
|
{
|
|
if (reg->file == VGRF) {
|
|
reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
|
|
reg->offset %= REG_SIZE;
|
|
}
|
|
}
|
|
|
|
bool
|
|
vec4_visitor::reg_allocate_trivial()
|
|
{
|
|
unsigned int hw_reg_mapping[this->alloc.count];
|
|
bool virtual_grf_used[this->alloc.count];
|
|
int next;
|
|
|
|
/* Calculate which virtual GRFs are actually in use after whatever
|
|
* optimization passes have occurred.
|
|
*/
|
|
for (unsigned i = 0; i < this->alloc.count; i++) {
|
|
virtual_grf_used[i] = false;
|
|
}
|
|
|
|
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
|
|
if (inst->dst.file == VGRF)
|
|
virtual_grf_used[inst->dst.nr] = true;
|
|
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
if (inst->src[i].file == VGRF)
|
|
virtual_grf_used[inst->src[i].nr] = true;
|
|
}
|
|
}
|
|
|
|
hw_reg_mapping[0] = this->first_non_payload_grf;
|
|
next = hw_reg_mapping[0] + this->alloc.sizes[0];
|
|
for (unsigned i = 1; i < this->alloc.count; i++) {
|
|
if (virtual_grf_used[i]) {
|
|
hw_reg_mapping[i] = next;
|
|
next += this->alloc.sizes[i];
|
|
}
|
|
}
|
|
prog_data->total_grf = next;
|
|
|
|
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
|
|
assign(hw_reg_mapping, &inst->dst);
|
|
assign(hw_reg_mapping, &inst->src[0]);
|
|
assign(hw_reg_mapping, &inst->src[1]);
|
|
assign(hw_reg_mapping, &inst->src[2]);
|
|
}
|
|
|
|
if (prog_data->total_grf > max_grf) {
|
|
fail("Ran out of regs on trivial allocator (%d/%d)\n",
|
|
prog_data->total_grf, max_grf);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
extern "C" void
|
|
brw_vec4_alloc_reg_set(struct brw_compiler *compiler)
|
|
{
|
|
int base_reg_count =
|
|
compiler->devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
|
|
|
|
/* After running split_virtual_grfs(), almost all VGRFs will be of size 1.
|
|
* SEND-from-GRF sources cannot be split, so we also need classes for each
|
|
* potential message length.
|
|
*/
|
|
const int class_count = MAX_VGRF_SIZE;
|
|
int class_sizes[MAX_VGRF_SIZE];
|
|
|
|
for (int i = 0; i < class_count; i++)
|
|
class_sizes[i] = i + 1;
|
|
|
|
/* Compute the total number of registers across all classes. */
|
|
int ra_reg_count = 0;
|
|
for (int i = 0; i < class_count; i++) {
|
|
ra_reg_count += base_reg_count - (class_sizes[i] - 1);
|
|
}
|
|
|
|
ralloc_free(compiler->vec4_reg_set.ra_reg_to_grf);
|
|
compiler->vec4_reg_set.ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
|
|
ralloc_free(compiler->vec4_reg_set.regs);
|
|
compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
|
|
if (compiler->devinfo->gen >= 6)
|
|
ra_set_allocate_round_robin(compiler->vec4_reg_set.regs);
|
|
ralloc_free(compiler->vec4_reg_set.classes);
|
|
compiler->vec4_reg_set.classes = ralloc_array(compiler, int, class_count);
|
|
|
|
/* Now, add the registers to their classes, and add the conflicts
|
|
* between them and the base GRF registers (and also each other).
|
|
*/
|
|
int reg = 0;
|
|
unsigned *q_values[MAX_VGRF_SIZE];
|
|
for (int i = 0; i < class_count; i++) {
|
|
int class_reg_count = base_reg_count - (class_sizes[i] - 1);
|
|
compiler->vec4_reg_set.classes[i] = ra_alloc_reg_class(compiler->vec4_reg_set.regs);
|
|
|
|
q_values[i] = new unsigned[MAX_VGRF_SIZE];
|
|
|
|
for (int j = 0; j < class_reg_count; j++) {
|
|
ra_class_add_reg(compiler->vec4_reg_set.regs, compiler->vec4_reg_set.classes[i], reg);
|
|
|
|
compiler->vec4_reg_set.ra_reg_to_grf[reg] = j;
|
|
|
|
for (int base_reg = j;
|
|
base_reg < j + class_sizes[i];
|
|
base_reg++) {
|
|
ra_add_reg_conflict(compiler->vec4_reg_set.regs, base_reg, reg);
|
|
}
|
|
|
|
reg++;
|
|
}
|
|
|
|
for (int j = 0; j < class_count; j++) {
|
|
/* Calculate the q values manually because the algorithm used by
|
|
* ra_set_finalize() to do it has higher complexity affecting the
|
|
* start-up time of some applications. q(i, j) is just the maximum
|
|
* number of registers from class i a register from class j can
|
|
* conflict with.
|
|
*/
|
|
q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
|
|
}
|
|
}
|
|
assert(reg == ra_reg_count);
|
|
|
|
for (int reg = 0; reg < base_reg_count; reg++)
|
|
ra_make_reg_conflicts_transitive(compiler->vec4_reg_set.regs, reg);
|
|
|
|
ra_set_finalize(compiler->vec4_reg_set.regs, q_values);
|
|
|
|
for (int i = 0; i < MAX_VGRF_SIZE; i++)
|
|
delete[] q_values[i];
|
|
}
|
|
|
|
void
|
|
vec4_visitor::setup_payload_interference(struct ra_graph *g,
|
|
int first_payload_node,
|
|
int reg_node_count)
|
|
{
|
|
int payload_node_count = this->first_non_payload_grf;
|
|
|
|
for (int i = 0; i < payload_node_count; i++) {
|
|
/* Mark each payload reg node as being allocated to its physical register.
|
|
*
|
|
* The alternative would be to have per-physical register classes, which
|
|
* would just be silly.
|
|
*/
|
|
ra_set_node_reg(g, first_payload_node + i, i);
|
|
|
|
/* For now, just mark each payload node as interfering with every other
|
|
* node to be allocated.
|
|
*/
|
|
for (int j = 0; j < reg_node_count; j++) {
|
|
ra_add_node_interference(g, first_payload_node + i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool
|
|
vec4_visitor::reg_allocate()
|
|
{
|
|
unsigned int hw_reg_mapping[alloc.count];
|
|
int payload_reg_count = this->first_non_payload_grf;
|
|
|
|
/* Using the trivial allocator can be useful in debugging undefined
|
|
* register access as a result of broken optimization passes.
|
|
*/
|
|
if (0)
|
|
return reg_allocate_trivial();
|
|
|
|
calculate_live_intervals();
|
|
|
|
int node_count = alloc.count;
|
|
int first_payload_node = node_count;
|
|
node_count += payload_reg_count;
|
|
struct ra_graph *g =
|
|
ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count);
|
|
|
|
for (unsigned i = 0; i < alloc.count; i++) {
|
|
int size = this->alloc.sizes[i];
|
|
assert(size >= 1 && size <= MAX_VGRF_SIZE);
|
|
ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]);
|
|
|
|
for (unsigned j = 0; j < i; j++) {
|
|
if (live_intervals->vgrfs_interfere(i, j)) {
|
|
ra_add_node_interference(g, i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Certain instructions can't safely use the same register for their
|
|
* sources and destination. Add interference.
|
|
*/
|
|
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
|
|
if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
if (inst->src[i].file == VGRF) {
|
|
ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
setup_payload_interference(g, first_payload_node, node_count);
|
|
|
|
if (!ra_allocate(g)) {
|
|
/* Failed to allocate registers. Spill a reg, and the caller will
|
|
* loop back into here to try again.
|
|
*/
|
|
int reg = choose_spill_reg(g);
|
|
if (this->no_spills) {
|
|
fail("Failure to register allocate. Reduce number of live "
|
|
"values to avoid this.");
|
|
} else if (reg == -1) {
|
|
fail("no register to spill\n");
|
|
} else {
|
|
spill_reg(reg);
|
|
}
|
|
ralloc_free(g);
|
|
return false;
|
|
}
|
|
|
|
/* Get the chosen virtual registers for each node, and map virtual
|
|
* regs in the register classes back down to real hardware reg
|
|
* numbers.
|
|
*/
|
|
prog_data->total_grf = payload_reg_count;
|
|
for (unsigned i = 0; i < alloc.count; i++) {
|
|
int reg = ra_get_node_reg(g, i);
|
|
|
|
hw_reg_mapping[i] = compiler->vec4_reg_set.ra_reg_to_grf[reg];
|
|
prog_data->total_grf = MAX2(prog_data->total_grf,
|
|
hw_reg_mapping[i] + alloc.sizes[i]);
|
|
}
|
|
|
|
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
|
|
assign(hw_reg_mapping, &inst->dst);
|
|
assign(hw_reg_mapping, &inst->src[0]);
|
|
assign(hw_reg_mapping, &inst->src[1]);
|
|
assign(hw_reg_mapping, &inst->src[2]);
|
|
}
|
|
|
|
ralloc_free(g);
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* When we decide to spill a register, instead of blindly spilling every use,
|
|
* save unspills when the spill register is used (read) in consecutive
|
|
* instructions. This can potentially save a bunch of unspills that would
|
|
* have very little impact in register allocation anyway.
|
|
*
|
|
* Notice that we need to account for this behavior when spilling a register
|
|
* and when evaluating spilling costs. This function is designed so it can
|
|
* be called from both places and avoid repeating the logic.
|
|
*
|
|
* - When we call this function from spill_reg(), we pass in scratch_reg the
|
|
* actual unspill/spill register that we want to reuse in the current
|
|
* instruction.
|
|
*
|
|
* - When we call this from evaluate_spill_costs(), we pass the register for
|
|
* which we are evaluating spilling costs.
|
|
*
|
|
* In either case, we check if the previous instructions read scratch_reg until
|
|
* we find one that writes to it with a compatible mask or does not read/write
|
|
* scratch_reg at all.
|
|
*/
|
|
static bool
|
|
can_use_scratch_for_source(const vec4_instruction *inst, unsigned i,
|
|
unsigned scratch_reg)
|
|
{
|
|
assert(inst->src[i].file == VGRF);
|
|
bool prev_inst_read_scratch_reg = false;
|
|
|
|
/* See if any previous source in the same instructions reads scratch_reg */
|
|
for (unsigned n = 0; n < i; n++) {
|
|
if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg)
|
|
prev_inst_read_scratch_reg = true;
|
|
}
|
|
|
|
/* Now check if previous instructions read/write scratch_reg */
|
|
for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev;
|
|
!prev_inst->is_head_sentinel();
|
|
prev_inst = (vec4_instruction *) prev_inst->prev) {
|
|
|
|
/* If the previous instruction writes to scratch_reg then we can reuse
|
|
* it if the write is not conditional and the channels we write are
|
|
* compatible with our read mask
|
|
*/
|
|
if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) {
|
|
return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) &&
|
|
(brw_mask_for_swizzle(inst->src[i].swizzle) &
|
|
~prev_inst->dst.writemask) == 0;
|
|
}
|
|
|
|
/* Skip scratch read/writes so that instructions generated by spilling
|
|
* other registers (that won't read/write scratch_reg) do not stop us from
|
|
* reusing scratch_reg for this instruction.
|
|
*/
|
|
if (prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE ||
|
|
prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ)
|
|
continue;
|
|
|
|
/* If the previous instruction does not write to scratch_reg, then check
|
|
* if it reads it
|
|
*/
|
|
int n;
|
|
for (n = 0; n < 3; n++) {
|
|
if (prev_inst->src[n].file == VGRF &&
|
|
prev_inst->src[n].nr == scratch_reg) {
|
|
prev_inst_read_scratch_reg = true;
|
|
break;
|
|
}
|
|
}
|
|
if (n == 3) {
|
|
/* The previous instruction does not read scratch_reg. At this point,
|
|
* if no previous instruction has read scratch_reg it means that we
|
|
* will need to unspill it here and we can't reuse it (so we return
|
|
* false). Otherwise, if we found at least one consecutive instruction
|
|
* that read scratch_reg, then we know that we got here from
|
|
* evaluate_spill_costs (since for the spill_reg path any block of
|
|
* consecutive instructions using scratch_reg must start with a write
|
|
* to that register, so we would've exited the loop in the check for
|
|
* the write that we have at the start of this loop), and in that case
|
|
* it means that we found the point at which the scratch_reg would be
|
|
* unspilled. Since we always unspill a full vec4, it means that we
|
|
* have all the channels available and we can just return true to
|
|
* signal that we can reuse the register in the current instruction
|
|
* too.
|
|
*/
|
|
return prev_inst_read_scratch_reg;
|
|
}
|
|
}
|
|
|
|
return prev_inst_read_scratch_reg;
|
|
}
|
|
|
|
static inline float
|
|
spill_cost_for_type(enum brw_reg_type type)
|
|
{
|
|
/* Spilling of a 64-bit register involves emitting 2 32-bit scratch
|
|
* messages plus the 64b/32b shuffling code.
|
|
*/
|
|
return type_sz(type) == 8 ? 2.25f : 1.0f;
|
|
}
|
|
|
|
void
|
|
vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill)
|
|
{
|
|
float loop_scale = 1.0;
|
|
|
|
unsigned *reg_type_size = (unsigned *)
|
|
ralloc_size(NULL, this->alloc.count * sizeof(unsigned));
|
|
|
|
for (unsigned i = 0; i < this->alloc.count; i++) {
|
|
spill_costs[i] = 0.0;
|
|
no_spill[i] = alloc.sizes[i] != 1 && alloc.sizes[i] != 2;
|
|
reg_type_size[i] = 0;
|
|
}
|
|
|
|
/* Calculate costs for spilling nodes. Call it a cost of 1 per
|
|
* spill/unspill we'll have to do, and guess that the insides of
|
|
* loops run 10 times.
|
|
*/
|
|
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
|
|
for (unsigned int i = 0; i < 3; i++) {
|
|
if (inst->src[i].file == VGRF && !no_spill[inst->src[i].nr]) {
|
|
/* We will only unspill src[i] it it wasn't unspilled for the
|
|
* previous instruction, in which case we'll just reuse the scratch
|
|
* reg for this instruction.
|
|
*/
|
|
if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) {
|
|
spill_costs[inst->src[i].nr] +=
|
|
loop_scale * spill_cost_for_type(inst->src[i].type);
|
|
if (inst->src[i].reladdr ||
|
|
inst->src[i].offset >= REG_SIZE)
|
|
no_spill[inst->src[i].nr] = true;
|
|
|
|
/* We don't support unspills of partial DF reads.
|
|
*
|
|
* Our 64-bit unspills are implemented with two 32-bit scratch
|
|
* messages, each one reading that for both SIMD4x2 threads that
|
|
* we need to shuffle into correct 64-bit data. Ensure that we
|
|
* are reading data for both threads.
|
|
*/
|
|
if (type_sz(inst->src[i].type) == 8 && inst->exec_size != 8)
|
|
no_spill[inst->src[i].nr] = true;
|
|
}
|
|
|
|
/* We can't spill registers that mix 32-bit and 64-bit access (that
|
|
* contain 64-bit data that is operated on via 32-bit instructions)
|
|
*/
|
|
unsigned type_size = type_sz(inst->src[i].type);
|
|
if (reg_type_size[inst->src[i].nr] == 0)
|
|
reg_type_size[inst->src[i].nr] = type_size;
|
|
else if (reg_type_size[inst->src[i].nr] != type_size)
|
|
no_spill[inst->src[i].nr] = true;
|
|
}
|
|
}
|
|
|
|
if (inst->dst.file == VGRF && !no_spill[inst->dst.nr]) {
|
|
spill_costs[inst->dst.nr] +=
|
|
loop_scale * spill_cost_for_type(inst->dst.type);
|
|
if (inst->dst.reladdr || inst->dst.offset >= REG_SIZE)
|
|
no_spill[inst->dst.nr] = true;
|
|
|
|
/* We don't support spills of partial DF writes.
|
|
*
|
|
* Our 64-bit spills are implemented with two 32-bit scratch messages,
|
|
* each one writing that for both SIMD4x2 threads. Ensure that we
|
|
* are writing data for both threads.
|
|
*/
|
|
if (type_sz(inst->dst.type) == 8 && inst->exec_size != 8)
|
|
no_spill[inst->dst.nr] = true;
|
|
|
|
/* We can't spill registers that mix 32-bit and 64-bit access (that
|
|
* contain 64-bit data that is operated on via 32-bit instructions)
|
|
*/
|
|
unsigned type_size = type_sz(inst->dst.type);
|
|
if (reg_type_size[inst->dst.nr] == 0)
|
|
reg_type_size[inst->dst.nr] = type_size;
|
|
else if (reg_type_size[inst->dst.nr] != type_size)
|
|
no_spill[inst->dst.nr] = true;
|
|
}
|
|
|
|
switch (inst->opcode) {
|
|
|
|
case BRW_OPCODE_DO:
|
|
loop_scale *= 10;
|
|
break;
|
|
|
|
case BRW_OPCODE_WHILE:
|
|
loop_scale /= 10;
|
|
break;
|
|
|
|
case SHADER_OPCODE_GEN4_SCRATCH_READ:
|
|
case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
|
|
for (int i = 0; i < 3; i++) {
|
|
if (inst->src[i].file == VGRF)
|
|
no_spill[inst->src[i].nr] = true;
|
|
}
|
|
if (inst->dst.file == VGRF)
|
|
no_spill[inst->dst.nr] = true;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
ralloc_free(reg_type_size);
|
|
}
|
|
|
|
int
|
|
vec4_visitor::choose_spill_reg(struct ra_graph *g)
|
|
{
|
|
float spill_costs[this->alloc.count];
|
|
bool no_spill[this->alloc.count];
|
|
|
|
evaluate_spill_costs(spill_costs, no_spill);
|
|
|
|
for (unsigned i = 0; i < this->alloc.count; i++) {
|
|
if (!no_spill[i])
|
|
ra_set_node_spill_cost(g, i, spill_costs[i]);
|
|
}
|
|
|
|
return ra_get_best_spill_node(g);
|
|
}
|
|
|
|
void
|
|
vec4_visitor::spill_reg(unsigned spill_reg_nr)
|
|
{
|
|
assert(alloc.sizes[spill_reg_nr] == 1 || alloc.sizes[spill_reg_nr] == 2);
|
|
unsigned spill_offset = last_scratch;
|
|
last_scratch += alloc.sizes[spill_reg_nr];
|
|
|
|
/* Generate spill/unspill instructions for the objects being spilled. */
|
|
unsigned scratch_reg = ~0u;
|
|
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) {
|
|
if (scratch_reg == ~0u ||
|
|
!can_use_scratch_for_source(inst, i, scratch_reg)) {
|
|
/* We need to unspill anyway so make sure we read the full vec4
|
|
* in any case. This way, the cached register can be reused
|
|
* for consecutive instructions that read different channels of
|
|
* the same vec4.
|
|
*/
|
|
scratch_reg = alloc.allocate(alloc.sizes[spill_reg_nr]);
|
|
src_reg temp = inst->src[i];
|
|
temp.nr = scratch_reg;
|
|
temp.offset = 0;
|
|
temp.swizzle = BRW_SWIZZLE_XYZW;
|
|
emit_scratch_read(block, inst,
|
|
dst_reg(temp), inst->src[i], spill_offset);
|
|
temp.offset = inst->src[i].offset;
|
|
}
|
|
assert(scratch_reg != ~0u);
|
|
inst->src[i].nr = scratch_reg;
|
|
}
|
|
}
|
|
|
|
if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) {
|
|
emit_scratch_write(block, inst, spill_offset);
|
|
scratch_reg = inst->dst.nr;
|
|
}
|
|
}
|
|
|
|
invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
|
|
}
|
|
|
|
} /* namespace brw */
|