753 lines
20 KiB
C++
753 lines
20 KiB
C++
/*
|
|
* Copyright © 2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/**
|
|
* \file ir_constant_expression.cpp
|
|
* Evaluate and process constant valued expressions
|
|
*
|
|
* In GLSL, constant valued expressions are used in several places. These
|
|
* must be processed and evaluated very early in the compilation process.
|
|
*
|
|
* * Sizes of arrays
|
|
* * Initializers for uniforms
|
|
* * Initializers for \c const variables
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include "ir.h"
|
|
#include "ir_visitor.h"
|
|
#include "glsl_types.h"
|
|
|
|
#define min(x,y) (x) < (y) ? (x) : (y)
|
|
#define max(x,y) (x) > (y) ? (x) : (y)
|
|
|
|
ir_constant *
|
|
ir_expression::constant_expression_value()
|
|
{
|
|
ir_constant *op[2] = { NULL, NULL };
|
|
ir_constant_data data;
|
|
|
|
memset(&data, 0, sizeof(data));
|
|
|
|
for (unsigned operand = 0; operand < this->get_num_operands(); operand++) {
|
|
op[operand] = this->operands[operand]->constant_expression_value();
|
|
if (!op[operand])
|
|
return NULL;
|
|
}
|
|
|
|
if (op[1] != NULL)
|
|
assert(op[0]->type->base_type == op[1]->type->base_type);
|
|
|
|
bool op0_scalar = op[0]->type->is_scalar();
|
|
bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar();
|
|
|
|
/* When iterating over a vector or matrix's components, we want to increase
|
|
* the loop counter. However, for scalars, we want to stay at 0.
|
|
*/
|
|
unsigned c0_inc = op0_scalar ? 0 : 1;
|
|
unsigned c1_inc = op1_scalar ? 0 : 1;
|
|
unsigned components;
|
|
if (op1_scalar || !op[1]) {
|
|
components = op[0]->type->components();
|
|
} else {
|
|
components = op[1]->type->components();
|
|
}
|
|
|
|
switch (this->operation) {
|
|
case ir_unop_logic_not:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++)
|
|
data.b[c] = !op[0]->value.b[c];
|
|
break;
|
|
|
|
case ir_unop_f2i:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.i[c] = op[0]->value.f[c];
|
|
}
|
|
break;
|
|
case ir_unop_i2f:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_INT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = op[0]->value.i[c];
|
|
}
|
|
break;
|
|
case ir_unop_u2f:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_UINT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = op[0]->value.u[c];
|
|
}
|
|
break;
|
|
case ir_unop_b2f:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = op[0]->value.b[c] ? 1.0 : 0.0;
|
|
}
|
|
break;
|
|
case ir_unop_f2b:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.b[c] = bool(op[0]->value.f[c]);
|
|
}
|
|
break;
|
|
case ir_unop_b2i:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.u[c] = op[0]->value.b[c] ? 1 : 0;
|
|
}
|
|
break;
|
|
case ir_unop_i2b:
|
|
assert(op[0]->type->is_integer());
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.b[c] = bool(op[0]->value.u[c]);
|
|
}
|
|
break;
|
|
|
|
case ir_unop_trunc:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = truncf(op[0]->value.f[c]);
|
|
}
|
|
break;
|
|
|
|
case ir_unop_ceil:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = ceilf(op[0]->value.f[c]);
|
|
}
|
|
break;
|
|
|
|
case ir_unop_floor:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = floorf(op[0]->value.f[c]);
|
|
}
|
|
break;
|
|
|
|
case ir_unop_fract:
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.u[c] = 0;
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.i[c] = 0;
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ir_unop_sin:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = sinf(op[0]->value.f[c]);
|
|
}
|
|
break;
|
|
|
|
case ir_unop_cos:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = cosf(op[0]->value.f[c]);
|
|
}
|
|
break;
|
|
|
|
case ir_unop_neg:
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.u[c] = -op[0]->value.u[c];
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.i[c] = -op[0]->value.i[c];
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
data.f[c] = -op[0]->value.f[c];
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ir_unop_abs:
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.u[c] = op[0]->value.u[c];
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.i[c] = op[0]->value.i[c];
|
|
if (data.i[c] < 0)
|
|
data.i[c] = -data.i[c];
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
data.f[c] = fabs(op[0]->value.f[c]);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ir_unop_sign:
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.u[c] = op[0]->value.i[c] > 0;
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0);
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0));
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ir_unop_rcp:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
switch (this->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
if (op[0]->value.u[c] != 0.0)
|
|
data.u[c] = 1 / op[0]->value.u[c];
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
if (op[0]->value.i[c] != 0.0)
|
|
data.i[c] = 1 / op[0]->value.i[c];
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
if (op[0]->value.f[c] != 0.0)
|
|
data.f[c] = 1.0 / op[0]->value.f[c];
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ir_unop_rsq:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = 1.0 / sqrtf(op[0]->value.f[c]);
|
|
}
|
|
break;
|
|
|
|
case ir_unop_sqrt:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = sqrtf(op[0]->value.f[c]);
|
|
}
|
|
break;
|
|
|
|
case ir_unop_exp:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = expf(op[0]->value.f[c]);
|
|
}
|
|
break;
|
|
|
|
case ir_unop_exp2:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = exp2f(op[0]->value.f[c]);
|
|
}
|
|
break;
|
|
|
|
case ir_unop_log:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = logf(op[0]->value.f[c]);
|
|
}
|
|
break;
|
|
|
|
case ir_unop_log2:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = log2f(op[0]->value.f[c]);
|
|
}
|
|
break;
|
|
|
|
case ir_unop_dFdx:
|
|
case ir_unop_dFdy:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = 0.0;
|
|
}
|
|
break;
|
|
|
|
case ir_binop_pow:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]);
|
|
}
|
|
break;
|
|
|
|
case ir_binop_dot:
|
|
assert(op[0]->type->is_vector() && op[1]->type->is_vector());
|
|
data.f[0] = 0;
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++) {
|
|
switch (op[0]->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.u[0] += op[0]->value.u[c] * op[1]->value.u[c];
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.i[0] += op[0]->value.i[c] * op[1]->value.i[c];
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
data.f[0] += op[0]->value.f[c] * op[1]->value.f[c];
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
break;
|
|
case ir_binop_min:
|
|
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
c < components;
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
switch (op[0]->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.u[c] = min(op[0]->value.u[c0], op[1]->value.u[c1]);
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.i[c] = min(op[0]->value.i[c0], op[1]->value.i[c1]);
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
data.f[c] = min(op[0]->value.f[c0], op[1]->value.f[c1]);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
break;
|
|
case ir_binop_max:
|
|
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
c < components;
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
switch (op[0]->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.u[c] = max(op[0]->value.u[c0], op[1]->value.u[c1]);
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.i[c] = max(op[0]->value.i[c0], op[1]->value.i[c1]);
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
data.f[c] = max(op[0]->value.f[c0], op[1]->value.f[c1]);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ir_binop_cross:
|
|
assert(op[0]->type == glsl_type::vec3_type);
|
|
assert(op[1]->type == glsl_type::vec3_type);
|
|
data.f[0] = (op[0]->value.f[1] * op[1]->value.f[2] -
|
|
op[1]->value.f[1] * op[0]->value.f[2]);
|
|
data.f[1] = (op[0]->value.f[2] * op[1]->value.f[0] -
|
|
op[1]->value.f[2] * op[0]->value.f[0]);
|
|
data.f[2] = (op[0]->value.f[0] * op[1]->value.f[1] -
|
|
op[1]->value.f[0] * op[0]->value.f[1]);
|
|
break;
|
|
|
|
case ir_binop_add:
|
|
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
c < components;
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
switch (op[0]->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1];
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1];
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1];
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
break;
|
|
case ir_binop_sub:
|
|
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
c < components;
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
switch (op[0]->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1];
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1];
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1];
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
break;
|
|
case ir_binop_mul:
|
|
/* Check for equal types, or unequal types involving scalars */
|
|
if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix())
|
|
|| op0_scalar || op1_scalar) {
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
c < components;
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
switch (op[0]->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1];
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1];
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1];
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
} else {
|
|
assert(op[0]->type->is_matrix() || op[1]->type->is_matrix());
|
|
|
|
/* Multiply an N-by-M matrix with an M-by-P matrix. Since either
|
|
* matrix can be a GLSL vector, either N or P can be 1.
|
|
*
|
|
* For vec*mat, the vector is treated as a row vector. This
|
|
* means the vector is a 1-row x M-column matrix.
|
|
*
|
|
* For mat*vec, the vector is treated as a column vector. Since
|
|
* matrix_columns is 1 for vectors, this just works.
|
|
*/
|
|
const unsigned n = op[0]->type->is_vector()
|
|
? 1 : op[0]->type->vector_elements;
|
|
const unsigned m = op[1]->type->vector_elements;
|
|
const unsigned p = op[1]->type->matrix_columns;
|
|
for (unsigned j = 0; j < p; j++) {
|
|
for (unsigned i = 0; i < n; i++) {
|
|
for (unsigned k = 0; k < m; k++) {
|
|
data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
case ir_binop_div:
|
|
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
c < components;
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
switch (op[0]->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1];
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1];
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1];
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
break;
|
|
case ir_binop_mod:
|
|
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
|
|
for (unsigned c = 0, c0 = 0, c1 = 0;
|
|
c < components;
|
|
c0 += c0_inc, c1 += c1_inc, c++) {
|
|
|
|
switch (op[0]->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1];
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1];
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
/* We don't use fmod because it rounds toward zero; GLSL specifies
|
|
* the use of floor.
|
|
*/
|
|
data.f[c] = (op[0]->value.f[c0] - op[1]->value.f[c1])
|
|
* floorf(op[0]->value.f[c0] / op[1]->value.f[c1]);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
case ir_binop_logic_and:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++)
|
|
data.b[c] = op[0]->value.b[c] && op[1]->value.b[c];
|
|
break;
|
|
case ir_binop_logic_xor:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++)
|
|
data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c];
|
|
break;
|
|
case ir_binop_logic_or:
|
|
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
|
|
for (unsigned c = 0; c < op[0]->type->components(); c++)
|
|
data.b[c] = op[0]->value.b[c] || op[1]->value.b[c];
|
|
break;
|
|
|
|
case ir_binop_less:
|
|
switch (op[0]->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.b[0] = op[0]->value.u[0] < op[1]->value.u[0];
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.b[0] = op[0]->value.i[0] < op[1]->value.i[0];
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
data.b[0] = op[0]->value.f[0] < op[1]->value.f[0];
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
break;
|
|
case ir_binop_greater:
|
|
switch (op[0]->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.b[0] = op[0]->value.u[0] > op[1]->value.u[0];
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.b[0] = op[0]->value.i[0] > op[1]->value.i[0];
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
data.b[0] = op[0]->value.f[0] > op[1]->value.f[0];
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
break;
|
|
case ir_binop_lequal:
|
|
switch (op[0]->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.b[0] = op[0]->value.u[0] <= op[1]->value.u[0];
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.b[0] = op[0]->value.i[0] <= op[1]->value.i[0];
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
data.b[0] = op[0]->value.f[0] <= op[1]->value.f[0];
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
break;
|
|
case ir_binop_gequal:
|
|
switch (op[0]->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
data.b[0] = op[0]->value.u[0] >= op[1]->value.u[0];
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
data.b[0] = op[0]->value.i[0] >= op[1]->value.i[0];
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
data.b[0] = op[0]->value.f[0] >= op[1]->value.f[0];
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
break;
|
|
|
|
case ir_binop_equal:
|
|
data.b[0] = op[0]->has_value(op[1]);
|
|
break;
|
|
case ir_binop_nequal:
|
|
data.b[0] = !op[0]->has_value(op[1]);
|
|
break;
|
|
|
|
default:
|
|
/* FINISHME: Should handle all expression types. */
|
|
return NULL;
|
|
}
|
|
|
|
void *ctx = talloc_parent(this);
|
|
return new(ctx) ir_constant(this->type, &data);
|
|
}
|
|
|
|
|
|
ir_constant *
|
|
ir_texture::constant_expression_value()
|
|
{
|
|
/* texture lookups aren't constant expressions */
|
|
return NULL;
|
|
}
|
|
|
|
|
|
ir_constant *
|
|
ir_swizzle::constant_expression_value()
|
|
{
|
|
ir_constant *v = this->val->constant_expression_value();
|
|
|
|
if (v != NULL) {
|
|
ir_constant_data data;
|
|
|
|
const unsigned swiz_idx[4] = {
|
|
this->mask.x, this->mask.y, this->mask.z, this->mask.w
|
|
};
|
|
|
|
for (unsigned i = 0; i < this->mask.num_components; i++) {
|
|
switch (v->type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break;
|
|
case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break;
|
|
case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break;
|
|
default: assert(!"Should not get here."); break;
|
|
}
|
|
}
|
|
|
|
void *ctx = talloc_parent(this);
|
|
return new(ctx) ir_constant(this->type, &data);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
ir_constant *
|
|
ir_dereference_variable::constant_expression_value()
|
|
{
|
|
return var->constant_value ? var->constant_value->clone(NULL) : NULL;
|
|
}
|
|
|
|
|
|
ir_constant *
|
|
ir_dereference_array::constant_expression_value()
|
|
{
|
|
void *ctx = talloc_parent(this);
|
|
ir_constant *array = this->array->constant_expression_value();
|
|
ir_constant *idx = this->array_index->constant_expression_value();
|
|
|
|
if ((array != NULL) && (idx != NULL)) {
|
|
if (array->type->is_matrix()) {
|
|
/* Array access of a matrix results in a vector.
|
|
*/
|
|
const unsigned column = idx->value.u[0];
|
|
|
|
const glsl_type *const column_type = array->type->column_type();
|
|
|
|
/* Offset in the constant matrix to the first element of the column
|
|
* to be extracted.
|
|
*/
|
|
const unsigned mat_idx = column * column_type->vector_elements;
|
|
|
|
ir_constant_data data;
|
|
|
|
switch (column_type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
case GLSL_TYPE_INT:
|
|
for (unsigned i = 0; i < column_type->vector_elements; i++)
|
|
data.u[i] = array->value.u[mat_idx + i];
|
|
|
|
break;
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
for (unsigned i = 0; i < column_type->vector_elements; i++)
|
|
data.f[i] = array->value.f[mat_idx + i];
|
|
|
|
break;
|
|
|
|
default:
|
|
assert(!"Should not get here.");
|
|
break;
|
|
}
|
|
|
|
return new(ctx) ir_constant(column_type, &data);
|
|
} else if (array->type->is_vector()) {
|
|
const unsigned component = idx->value.u[0];
|
|
|
|
return new(ctx) ir_constant(array, component);
|
|
} else {
|
|
/* FINISHME: Handle access of constant arrays. */
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
ir_constant *
|
|
ir_dereference_record::constant_expression_value()
|
|
{
|
|
ir_constant *v = this->record->constant_expression_value();
|
|
|
|
return (v != NULL) ? v->get_record_field(this->field) : NULL;
|
|
}
|
|
|
|
|
|
ir_constant *
|
|
ir_assignment::constant_expression_value()
|
|
{
|
|
/* FINISHME: Handle CEs involving assignment (return RHS) */
|
|
return NULL;
|
|
}
|
|
|
|
|
|
ir_constant *
|
|
ir_constant::constant_expression_value()
|
|
{
|
|
return this;
|
|
}
|
|
|
|
|
|
ir_constant *
|
|
ir_call::constant_expression_value()
|
|
{
|
|
/* FINISHME: Handle CEs involving builtin function calls. */
|
|
return NULL;
|
|
}
|
|
|