
We'd like to use this callback to adjust loads and stores from things that are unsupported to things that are supported, but if the input is already supported, we'd prefer not to change it. Rather than making up a bit size that'd work and doing a bunch of pack/unpack bit math, only return a different bit size if the input one doesn't work for us (i.e. can't load enough memory or just an unsupported size entirely). Reviewed-by: Alyssa Rosenzweig <alyssa@rosenzweig.io> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/23173>
2070 lines
69 KiB
C
2070 lines
69 KiB
C
/*
|
|
* Copyright © 2014 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "brw_nir.h"
|
|
#include "brw_nir_rt.h"
|
|
#include "brw_shader.h"
|
|
#include "dev/intel_debug.h"
|
|
#include "compiler/glsl_types.h"
|
|
#include "compiler/nir/nir_builder.h"
|
|
#include "util/u_math.h"
|
|
|
|
static bool
|
|
remap_tess_levels(nir_builder *b, nir_intrinsic_instr *intr,
|
|
enum tess_primitive_mode _primitive_mode)
|
|
{
|
|
const int location = nir_intrinsic_base(intr);
|
|
const unsigned component = nir_intrinsic_component(intr);
|
|
bool out_of_bounds = false;
|
|
bool write = !nir_intrinsic_infos[intr->intrinsic].has_dest;
|
|
unsigned mask = write ? nir_intrinsic_write_mask(intr) : 0;
|
|
nir_ssa_def *src = NULL, *dest = NULL;
|
|
|
|
if (write) {
|
|
assert(intr->src[0].is_ssa);
|
|
assert(intr->num_components == intr->src[0].ssa->num_components);
|
|
} else {
|
|
assert(intr->dest.is_ssa);
|
|
assert(intr->num_components == intr->dest.ssa.num_components);
|
|
}
|
|
|
|
if (location == VARYING_SLOT_TESS_LEVEL_INNER) {
|
|
b->cursor = write ? nir_before_instr(&intr->instr)
|
|
: nir_after_instr(&intr->instr);
|
|
|
|
switch (_primitive_mode) {
|
|
case TESS_PRIMITIVE_QUADS:
|
|
/* gl_TessLevelInner[0..1] lives at DWords 3-2 (reversed). */
|
|
nir_intrinsic_set_base(intr, 0);
|
|
|
|
if (write) {
|
|
assert(intr->src[0].ssa->num_components == 2);
|
|
|
|
intr->num_components = 4;
|
|
|
|
nir_ssa_def *undef = nir_ssa_undef(b, 1, 32);
|
|
nir_ssa_def *x = nir_channel(b, intr->src[0].ssa, 0);
|
|
nir_ssa_def *y = nir_channel(b, intr->src[0].ssa, 1);
|
|
src = nir_vec4(b, undef, undef, y, x);
|
|
mask = !!(mask & WRITEMASK_X) << 3 | !!(mask & WRITEMASK_Y) << 2;
|
|
} else if (intr->dest.ssa.num_components > 1) {
|
|
assert(intr->dest.ssa.num_components == 2);
|
|
|
|
intr->num_components = 4;
|
|
intr->dest.ssa.num_components = 4;
|
|
|
|
unsigned wz[2] = { 3, 2 };
|
|
dest = nir_swizzle(b, &intr->dest.ssa, wz, 2);
|
|
} else {
|
|
nir_intrinsic_set_component(intr, 3 - component);
|
|
}
|
|
break;
|
|
case TESS_PRIMITIVE_TRIANGLES:
|
|
/* gl_TessLevelInner[0] lives at DWord 4. */
|
|
nir_intrinsic_set_base(intr, 1);
|
|
mask &= WRITEMASK_X;
|
|
out_of_bounds = component > 0;
|
|
break;
|
|
case TESS_PRIMITIVE_ISOLINES:
|
|
out_of_bounds = true;
|
|
break;
|
|
default:
|
|
unreachable("Bogus tessellation domain");
|
|
}
|
|
} else if (location == VARYING_SLOT_TESS_LEVEL_OUTER) {
|
|
b->cursor = write ? nir_before_instr(&intr->instr)
|
|
: nir_after_instr(&intr->instr);
|
|
|
|
nir_intrinsic_set_base(intr, 1);
|
|
|
|
switch (_primitive_mode) {
|
|
case TESS_PRIMITIVE_QUADS:
|
|
case TESS_PRIMITIVE_TRIANGLES:
|
|
/* Quads: gl_TessLevelOuter[0..3] lives at DWords 7-4 (reversed).
|
|
* Triangles: gl_TessLevelOuter[0..2] lives at DWords 7-5 (reversed).
|
|
*/
|
|
if (write) {
|
|
assert(intr->src[0].ssa->num_components == 4);
|
|
|
|
unsigned wzyx[4] = { 3, 2, 1, 0 };
|
|
src = nir_swizzle(b, intr->src[0].ssa, wzyx, 4);
|
|
mask = !!(mask & WRITEMASK_X) << 3 | !!(mask & WRITEMASK_Y) << 2 |
|
|
!!(mask & WRITEMASK_Z) << 1 | !!(mask & WRITEMASK_W) << 0;
|
|
|
|
/* Don't overwrite the inner factor at DWord 4 for triangles */
|
|
if (_primitive_mode == TESS_PRIMITIVE_TRIANGLES)
|
|
mask &= ~WRITEMASK_X;
|
|
} else if (intr->dest.ssa.num_components > 1) {
|
|
assert(intr->dest.ssa.num_components == 4);
|
|
|
|
unsigned wzyx[4] = { 3, 2, 1, 0 };
|
|
dest = nir_swizzle(b, &intr->dest.ssa, wzyx, 4);
|
|
} else {
|
|
nir_intrinsic_set_component(intr, 3 - component);
|
|
out_of_bounds = component == 3 &&
|
|
_primitive_mode == TESS_PRIMITIVE_TRIANGLES;
|
|
}
|
|
break;
|
|
case TESS_PRIMITIVE_ISOLINES:
|
|
/* gl_TessLevelOuter[0..1] lives at DWords 6-7 (in order). */
|
|
if (write) {
|
|
assert(intr->src[0].ssa->num_components == 4);
|
|
|
|
nir_ssa_def *undef = nir_ssa_undef(b, 1, 32);
|
|
nir_ssa_def *x = nir_channel(b, intr->src[0].ssa, 0);
|
|
nir_ssa_def *y = nir_channel(b, intr->src[0].ssa, 1);
|
|
src = nir_vec4(b, undef, undef, x, y);
|
|
mask = !!(mask & WRITEMASK_X) << 2 | !!(mask & WRITEMASK_Y) << 3;
|
|
} else {
|
|
nir_intrinsic_set_component(intr, 2 + component);
|
|
out_of_bounds = component > 1;
|
|
}
|
|
break;
|
|
default:
|
|
unreachable("Bogus tessellation domain");
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
if (out_of_bounds) {
|
|
if (!write)
|
|
nir_ssa_def_rewrite_uses(&intr->dest.ssa, nir_ssa_undef(b, 1, 32));
|
|
nir_instr_remove(&intr->instr);
|
|
} else if (write) {
|
|
nir_intrinsic_set_write_mask(intr, mask);
|
|
|
|
if (src) {
|
|
nir_instr_rewrite_src(&intr->instr, &intr->src[0],
|
|
nir_src_for_ssa(src));
|
|
}
|
|
} else if (dest) {
|
|
nir_ssa_def_rewrite_uses_after(&intr->dest.ssa, dest,
|
|
dest->parent_instr);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
is_input(nir_intrinsic_instr *intrin)
|
|
{
|
|
return intrin->intrinsic == nir_intrinsic_load_input ||
|
|
intrin->intrinsic == nir_intrinsic_load_per_vertex_input ||
|
|
intrin->intrinsic == nir_intrinsic_load_interpolated_input;
|
|
}
|
|
|
|
static bool
|
|
is_output(nir_intrinsic_instr *intrin)
|
|
{
|
|
return intrin->intrinsic == nir_intrinsic_load_output ||
|
|
intrin->intrinsic == nir_intrinsic_load_per_vertex_output ||
|
|
intrin->intrinsic == nir_intrinsic_store_output ||
|
|
intrin->intrinsic == nir_intrinsic_store_per_vertex_output;
|
|
}
|
|
|
|
|
|
static bool
|
|
remap_patch_urb_offsets(nir_block *block, nir_builder *b,
|
|
const struct brw_vue_map *vue_map,
|
|
enum tess_primitive_mode tes_primitive_mode)
|
|
{
|
|
nir_foreach_instr_safe(instr, block) {
|
|
if (instr->type != nir_instr_type_intrinsic)
|
|
continue;
|
|
|
|
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
|
|
|
gl_shader_stage stage = b->shader->info.stage;
|
|
|
|
if ((stage == MESA_SHADER_TESS_CTRL && is_output(intrin)) ||
|
|
(stage == MESA_SHADER_TESS_EVAL && is_input(intrin))) {
|
|
|
|
if (remap_tess_levels(b, intrin, tes_primitive_mode))
|
|
continue;
|
|
|
|
int vue_slot = vue_map->varying_to_slot[intrin->const_index[0]];
|
|
assert(vue_slot != -1);
|
|
intrin->const_index[0] = vue_slot;
|
|
|
|
nir_src *vertex = nir_get_io_arrayed_index_src(intrin);
|
|
if (vertex) {
|
|
if (nir_src_is_const(*vertex)) {
|
|
intrin->const_index[0] += nir_src_as_uint(*vertex) *
|
|
vue_map->num_per_vertex_slots;
|
|
} else {
|
|
b->cursor = nir_before_instr(&intrin->instr);
|
|
|
|
/* Multiply by the number of per-vertex slots. */
|
|
nir_ssa_def *vertex_offset =
|
|
nir_imul(b,
|
|
nir_ssa_for_src(b, *vertex, 1),
|
|
nir_imm_int(b,
|
|
vue_map->num_per_vertex_slots));
|
|
|
|
/* Add it to the existing offset */
|
|
nir_src *offset = nir_get_io_offset_src(intrin);
|
|
nir_ssa_def *total_offset =
|
|
nir_iadd(b, vertex_offset,
|
|
nir_ssa_for_src(b, *offset, 1));
|
|
|
|
nir_instr_rewrite_src(&intrin->instr, offset,
|
|
nir_src_for_ssa(total_offset));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void
|
|
brw_nir_lower_vs_inputs(nir_shader *nir,
|
|
bool edgeflag_is_last,
|
|
const uint8_t *vs_attrib_wa_flags)
|
|
{
|
|
/* Start with the location of the variable's base. */
|
|
nir_foreach_shader_in_variable(var, nir)
|
|
var->data.driver_location = var->data.location;
|
|
|
|
/* Now use nir_lower_io to walk dereference chains. Attribute arrays are
|
|
* loaded as one vec4 or dvec4 per element (or matrix column), depending on
|
|
* whether it is a double-precision type or not.
|
|
*/
|
|
nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
|
|
nir_lower_io_lower_64bit_to_32);
|
|
|
|
/* This pass needs actual constants */
|
|
nir_opt_constant_folding(nir);
|
|
|
|
nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
|
|
|
|
brw_nir_apply_attribute_workarounds(nir, vs_attrib_wa_flags);
|
|
|
|
/* The last step is to remap VERT_ATTRIB_* to actual registers */
|
|
|
|
/* Whether or not we have any system generated values. gl_DrawID is not
|
|
* included here as it lives in its own vec4.
|
|
*/
|
|
const bool has_sgvs =
|
|
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX) ||
|
|
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE) ||
|
|
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) ||
|
|
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);
|
|
|
|
const unsigned num_inputs = util_bitcount64(nir->info.inputs_read);
|
|
|
|
nir_foreach_function(function, nir) {
|
|
if (!function->impl)
|
|
continue;
|
|
|
|
nir_builder b;
|
|
nir_builder_init(&b, function->impl);
|
|
|
|
nir_foreach_block(block, function->impl) {
|
|
nir_foreach_instr_safe(instr, block) {
|
|
if (instr->type != nir_instr_type_intrinsic)
|
|
continue;
|
|
|
|
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
|
|
|
switch (intrin->intrinsic) {
|
|
case nir_intrinsic_load_first_vertex:
|
|
case nir_intrinsic_load_base_instance:
|
|
case nir_intrinsic_load_vertex_id_zero_base:
|
|
case nir_intrinsic_load_instance_id:
|
|
case nir_intrinsic_load_is_indexed_draw:
|
|
case nir_intrinsic_load_draw_id: {
|
|
b.cursor = nir_after_instr(&intrin->instr);
|
|
|
|
/* gl_VertexID and friends are stored by the VF as the last
|
|
* vertex element. We convert them to load_input intrinsics at
|
|
* the right location.
|
|
*/
|
|
nir_intrinsic_instr *load =
|
|
nir_intrinsic_instr_create(nir, nir_intrinsic_load_input);
|
|
load->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
|
|
|
|
nir_intrinsic_set_base(load, num_inputs);
|
|
switch (intrin->intrinsic) {
|
|
case nir_intrinsic_load_first_vertex:
|
|
nir_intrinsic_set_component(load, 0);
|
|
break;
|
|
case nir_intrinsic_load_base_instance:
|
|
nir_intrinsic_set_component(load, 1);
|
|
break;
|
|
case nir_intrinsic_load_vertex_id_zero_base:
|
|
nir_intrinsic_set_component(load, 2);
|
|
break;
|
|
case nir_intrinsic_load_instance_id:
|
|
nir_intrinsic_set_component(load, 3);
|
|
break;
|
|
case nir_intrinsic_load_draw_id:
|
|
case nir_intrinsic_load_is_indexed_draw:
|
|
/* gl_DrawID and IsIndexedDraw are stored right after
|
|
* gl_VertexID and friends if any of them exist.
|
|
*/
|
|
nir_intrinsic_set_base(load, num_inputs + has_sgvs);
|
|
if (intrin->intrinsic == nir_intrinsic_load_draw_id)
|
|
nir_intrinsic_set_component(load, 0);
|
|
else
|
|
nir_intrinsic_set_component(load, 1);
|
|
break;
|
|
default:
|
|
unreachable("Invalid system value intrinsic");
|
|
}
|
|
|
|
load->num_components = 1;
|
|
nir_ssa_dest_init(&load->instr, &load->dest, 1, 32);
|
|
nir_builder_instr_insert(&b, &load->instr);
|
|
|
|
nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
|
|
&load->dest.ssa);
|
|
nir_instr_remove(&intrin->instr);
|
|
break;
|
|
}
|
|
|
|
case nir_intrinsic_load_input: {
|
|
/* Attributes come in a contiguous block, ordered by their
|
|
* gl_vert_attrib value. That means we can compute the slot
|
|
* number for an attribute by masking out the enabled attributes
|
|
* before it and counting the bits.
|
|
*/
|
|
int attr = nir_intrinsic_base(intrin);
|
|
uint64_t inputs_read = nir->info.inputs_read;
|
|
int slot = -1;
|
|
if (edgeflag_is_last) {
|
|
inputs_read &= ~BITFIELD64_BIT(VERT_ATTRIB_EDGEFLAG);
|
|
if (attr == VERT_ATTRIB_EDGEFLAG)
|
|
slot = num_inputs - 1;
|
|
}
|
|
if (slot == -1)
|
|
slot = util_bitcount64(inputs_read &
|
|
BITFIELD64_MASK(attr));
|
|
nir_intrinsic_set_base(intrin, slot);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break; /* Nothing to do */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
brw_nir_lower_vue_inputs(nir_shader *nir,
|
|
const struct brw_vue_map *vue_map)
|
|
{
|
|
nir_foreach_shader_in_variable(var, nir)
|
|
var->data.driver_location = var->data.location;
|
|
|
|
/* Inputs are stored in vec4 slots, so use type_size_vec4(). */
|
|
nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
|
|
nir_lower_io_lower_64bit_to_32);
|
|
|
|
/* This pass needs actual constants */
|
|
nir_opt_constant_folding(nir);
|
|
|
|
nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
|
|
|
|
nir_foreach_function(function, nir) {
|
|
if (!function->impl)
|
|
continue;
|
|
|
|
nir_foreach_block(block, function->impl) {
|
|
nir_foreach_instr(instr, block) {
|
|
if (instr->type != nir_instr_type_intrinsic)
|
|
continue;
|
|
|
|
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
|
|
|
if (intrin->intrinsic == nir_intrinsic_load_input ||
|
|
intrin->intrinsic == nir_intrinsic_load_per_vertex_input) {
|
|
/* Offset 0 is the VUE header, which contains
|
|
* VARYING_SLOT_LAYER [.y], VARYING_SLOT_VIEWPORT [.z], and
|
|
* VARYING_SLOT_PSIZ [.w].
|
|
*/
|
|
int varying = nir_intrinsic_base(intrin);
|
|
int vue_slot;
|
|
switch (varying) {
|
|
case VARYING_SLOT_PSIZ:
|
|
nir_intrinsic_set_base(intrin, 0);
|
|
nir_intrinsic_set_component(intrin, 3);
|
|
break;
|
|
|
|
default:
|
|
vue_slot = vue_map->varying_to_slot[varying];
|
|
assert(vue_slot != -1);
|
|
nir_intrinsic_set_base(intrin, vue_slot);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
brw_nir_lower_tes_inputs(nir_shader *nir, const struct brw_vue_map *vue_map)
|
|
{
|
|
nir_foreach_shader_in_variable(var, nir)
|
|
var->data.driver_location = var->data.location;
|
|
|
|
nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
|
|
nir_lower_io_lower_64bit_to_32);
|
|
|
|
/* This pass needs actual constants */
|
|
nir_opt_constant_folding(nir);
|
|
|
|
nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
|
|
|
|
nir_foreach_function(function, nir) {
|
|
if (function->impl) {
|
|
nir_builder b;
|
|
nir_builder_init(&b, function->impl);
|
|
nir_foreach_block(block, function->impl) {
|
|
remap_patch_urb_offsets(block, &b, vue_map,
|
|
nir->info.tess._primitive_mode);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool
|
|
lower_barycentric_per_sample(nir_builder *b,
|
|
nir_instr *instr,
|
|
UNUSED void *cb_data)
|
|
{
|
|
if (instr->type != nir_instr_type_intrinsic)
|
|
return false;
|
|
|
|
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
|
if (intrin->intrinsic != nir_intrinsic_load_barycentric_pixel &&
|
|
intrin->intrinsic != nir_intrinsic_load_barycentric_centroid)
|
|
return false;
|
|
|
|
b->cursor = nir_before_instr(instr);
|
|
nir_ssa_def *centroid =
|
|
nir_load_barycentric(b, nir_intrinsic_load_barycentric_sample,
|
|
nir_intrinsic_interp_mode(intrin));
|
|
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, centroid);
|
|
nir_instr_remove(instr);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Convert interpolateAtOffset() offsets from [-0.5, +0.5] floating point
|
|
* offsets to integer [-8, +7] offsets (in units of 1/16th of a pixel).
|
|
*
|
|
* We clamp to +7/16 on the upper end of the range, since +0.5 isn't
|
|
* representable in a S0.4 value; a naive conversion would give us -8/16,
|
|
* which is the opposite of what was intended.
|
|
*
|
|
* This is allowed by GL_ARB_gpu_shader5's quantization rules:
|
|
*
|
|
* "Not all values of <offset> may be supported; x and y offsets may
|
|
* be rounded to fixed-point values with the number of fraction bits
|
|
* given by the implementation-dependent constant
|
|
* FRAGMENT_INTERPOLATION_OFFSET_BITS."
|
|
*/
|
|
static bool
|
|
lower_barycentric_at_offset(nir_builder *b, nir_instr *instr, void *data)
|
|
{
|
|
if (instr->type != nir_instr_type_intrinsic)
|
|
return false;
|
|
|
|
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
|
|
|
if (intrin->intrinsic != nir_intrinsic_load_barycentric_at_offset)
|
|
return false;
|
|
|
|
b->cursor = nir_before_instr(instr);
|
|
|
|
assert(intrin->src[0].ssa);
|
|
nir_ssa_def *offset =
|
|
nir_imin(b, nir_imm_int(b, 7),
|
|
nir_f2i32(b, nir_fmul_imm(b, intrin->src[0].ssa, 16)));
|
|
|
|
nir_instr_rewrite_src(instr, &intrin->src[0], nir_src_for_ssa(offset));
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
brw_nir_lower_fs_inputs(nir_shader *nir,
|
|
const struct intel_device_info *devinfo,
|
|
const struct brw_wm_prog_key *key)
|
|
{
|
|
nir_foreach_shader_in_variable(var, nir) {
|
|
var->data.driver_location = var->data.location;
|
|
|
|
/* Apply default interpolation mode.
|
|
*
|
|
* Everything defaults to smooth except for the legacy GL color
|
|
* built-in variables, which might be flat depending on API state.
|
|
*/
|
|
if (var->data.interpolation == INTERP_MODE_NONE) {
|
|
const bool flat = key->flat_shade &&
|
|
(var->data.location == VARYING_SLOT_COL0 ||
|
|
var->data.location == VARYING_SLOT_COL1);
|
|
|
|
var->data.interpolation = flat ? INTERP_MODE_FLAT
|
|
: INTERP_MODE_SMOOTH;
|
|
}
|
|
|
|
/* On Ironlake and below, there is only one interpolation mode.
|
|
* Centroid interpolation doesn't mean anything on this hardware --
|
|
* there is no multisampling.
|
|
*/
|
|
if (devinfo->ver < 6) {
|
|
var->data.centroid = false;
|
|
var->data.sample = false;
|
|
}
|
|
}
|
|
|
|
nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
|
|
nir_lower_io_lower_64bit_to_32);
|
|
if (devinfo->ver >= 11)
|
|
nir_lower_interpolation(nir, ~0);
|
|
|
|
if (key->multisample_fbo == BRW_NEVER) {
|
|
nir_lower_single_sampled(nir);
|
|
} else if (key->persample_interp == BRW_ALWAYS) {
|
|
nir_shader_instructions_pass(nir, lower_barycentric_per_sample,
|
|
nir_metadata_block_index |
|
|
nir_metadata_dominance,
|
|
NULL);
|
|
}
|
|
|
|
nir_shader_instructions_pass(nir, lower_barycentric_at_offset,
|
|
nir_metadata_block_index |
|
|
nir_metadata_dominance,
|
|
NULL);
|
|
|
|
/* This pass needs actual constants */
|
|
nir_opt_constant_folding(nir);
|
|
|
|
nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
|
|
}
|
|
|
|
void
|
|
brw_nir_lower_vue_outputs(nir_shader *nir)
|
|
{
|
|
nir_foreach_shader_out_variable(var, nir) {
|
|
var->data.driver_location = var->data.location;
|
|
}
|
|
|
|
nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
|
|
nir_lower_io_lower_64bit_to_32);
|
|
}
|
|
|
|
void
|
|
brw_nir_lower_tcs_outputs(nir_shader *nir, const struct brw_vue_map *vue_map,
|
|
enum tess_primitive_mode tes_primitive_mode)
|
|
{
|
|
nir_foreach_shader_out_variable(var, nir) {
|
|
var->data.driver_location = var->data.location;
|
|
}
|
|
|
|
nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
|
|
nir_lower_io_lower_64bit_to_32);
|
|
|
|
/* This pass needs actual constants */
|
|
nir_opt_constant_folding(nir);
|
|
|
|
nir_io_add_const_offset_to_base(nir, nir_var_shader_out);
|
|
|
|
nir_foreach_function(function, nir) {
|
|
if (function->impl) {
|
|
nir_builder b;
|
|
nir_builder_init(&b, function->impl);
|
|
nir_foreach_block(block, function->impl) {
|
|
remap_patch_urb_offsets(block, &b, vue_map, tes_primitive_mode);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
brw_nir_lower_fs_outputs(nir_shader *nir)
|
|
{
|
|
nir_foreach_shader_out_variable(var, nir) {
|
|
var->data.driver_location =
|
|
SET_FIELD(var->data.index, BRW_NIR_FRAG_OUTPUT_INDEX) |
|
|
SET_FIELD(var->data.location, BRW_NIR_FRAG_OUTPUT_LOCATION);
|
|
}
|
|
|
|
nir_lower_io(nir, nir_var_shader_out, type_size_dvec4, 0);
|
|
}
|
|
|
|
#define OPT(pass, ...) ({ \
|
|
bool this_progress = false; \
|
|
NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \
|
|
if (this_progress) \
|
|
progress = true; \
|
|
this_progress; \
|
|
})
|
|
|
|
void
|
|
brw_nir_optimize(nir_shader *nir, const struct brw_compiler *compiler)
|
|
{
|
|
bool progress;
|
|
unsigned lower_flrp =
|
|
(nir->options->lower_flrp16 ? 16 : 0) |
|
|
(nir->options->lower_flrp32 ? 32 : 0) |
|
|
(nir->options->lower_flrp64 ? 64 : 0);
|
|
const bool is_scalar = compiler->scalar_stage[nir->info.stage];
|
|
|
|
do {
|
|
progress = false;
|
|
/* This pass is causing problems with types used by OpenCL :
|
|
* https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/13955
|
|
*
|
|
* Running with it disabled made no difference in the resulting assembly
|
|
* code.
|
|
*/
|
|
if (nir->info.stage != MESA_SHADER_KERNEL)
|
|
OPT(nir_split_array_vars, nir_var_function_temp);
|
|
OPT(nir_shrink_vec_array_vars, nir_var_function_temp);
|
|
OPT(nir_opt_deref);
|
|
if (OPT(nir_opt_memcpy))
|
|
OPT(nir_split_var_copies);
|
|
OPT(nir_lower_vars_to_ssa);
|
|
if (!nir->info.var_copies_lowered) {
|
|
/* Only run this pass if nir_lower_var_copies was not called
|
|
* yet. That would lower away any copy_deref instructions and we
|
|
* don't want to introduce any more.
|
|
*/
|
|
OPT(nir_opt_find_array_copies);
|
|
}
|
|
OPT(nir_opt_copy_prop_vars);
|
|
OPT(nir_opt_dead_write_vars);
|
|
OPT(nir_opt_combine_stores, nir_var_all);
|
|
|
|
OPT(nir_opt_ray_queries);
|
|
OPT(nir_opt_ray_query_ranges);
|
|
|
|
if (is_scalar) {
|
|
OPT(nir_lower_alu_to_scalar, NULL, NULL);
|
|
} else {
|
|
OPT(nir_opt_shrink_stores, true);
|
|
OPT(nir_opt_shrink_vectors);
|
|
}
|
|
|
|
OPT(nir_copy_prop);
|
|
|
|
if (is_scalar) {
|
|
OPT(nir_lower_phis_to_scalar, false);
|
|
}
|
|
|
|
OPT(nir_copy_prop);
|
|
OPT(nir_opt_dce);
|
|
OPT(nir_opt_cse);
|
|
OPT(nir_opt_combine_stores, nir_var_all);
|
|
|
|
/* Passing 0 to the peephole select pass causes it to convert
|
|
* if-statements that contain only move instructions in the branches
|
|
* regardless of the count.
|
|
*
|
|
* Passing 1 to the peephole select pass causes it to convert
|
|
* if-statements that contain at most a single ALU instruction (total)
|
|
* in both branches. Before Gfx6, some math instructions were
|
|
* prohibitively expensive and the results of compare operations need an
|
|
* extra resolve step. For these reasons, this pass is more harmful
|
|
* than good on those platforms.
|
|
*
|
|
* For indirect loads of uniforms (push constants), we assume that array
|
|
* indices will nearly always be in bounds and the cost of the load is
|
|
* low. Therefore there shouldn't be a performance benefit to avoid it.
|
|
* However, in vec4 tessellation shaders, these loads operate by
|
|
* actually pulling from memory.
|
|
*/
|
|
const bool is_vec4_tessellation = !is_scalar &&
|
|
(nir->info.stage == MESA_SHADER_TESS_CTRL ||
|
|
nir->info.stage == MESA_SHADER_TESS_EVAL);
|
|
OPT(nir_opt_peephole_select, 0, !is_vec4_tessellation, false);
|
|
OPT(nir_opt_peephole_select, 8, !is_vec4_tessellation,
|
|
compiler->devinfo->ver >= 6);
|
|
|
|
OPT(nir_opt_intrinsics);
|
|
OPT(nir_opt_idiv_const, 32);
|
|
OPT(nir_opt_algebraic);
|
|
OPT(nir_lower_constant_convert_alu_types);
|
|
OPT(nir_opt_constant_folding);
|
|
|
|
if (lower_flrp != 0) {
|
|
if (OPT(nir_lower_flrp,
|
|
lower_flrp,
|
|
false /* always_precise */)) {
|
|
OPT(nir_opt_constant_folding);
|
|
}
|
|
|
|
/* Nothing should rematerialize any flrps, so we only need to do this
|
|
* lowering once.
|
|
*/
|
|
lower_flrp = 0;
|
|
}
|
|
|
|
OPT(nir_opt_dead_cf);
|
|
if (OPT(nir_opt_trivial_continues)) {
|
|
/* If nir_opt_trivial_continues makes progress, then we need to clean
|
|
* things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
|
|
* to make progress.
|
|
*/
|
|
OPT(nir_copy_prop);
|
|
OPT(nir_opt_dce);
|
|
}
|
|
OPT(nir_opt_if, nir_opt_if_optimize_phi_true_false);
|
|
OPT(nir_opt_conditional_discard);
|
|
if (nir->options->max_unroll_iterations != 0) {
|
|
OPT(nir_opt_loop_unroll);
|
|
}
|
|
OPT(nir_opt_remove_phis);
|
|
OPT(nir_opt_gcm, false);
|
|
OPT(nir_opt_undef);
|
|
OPT(nir_lower_pack);
|
|
} while (progress);
|
|
|
|
/* Workaround Gfxbench unused local sampler variable which will trigger an
|
|
* assert in the opt_large_constants pass.
|
|
*/
|
|
OPT(nir_remove_dead_variables, nir_var_function_temp, NULL);
|
|
}
|
|
|
|
static unsigned
|
|
lower_bit_size_callback(const nir_instr *instr, UNUSED void *data)
|
|
{
|
|
const struct brw_compiler *compiler = (const struct brw_compiler *) data;
|
|
const struct intel_device_info *devinfo = compiler->devinfo;
|
|
|
|
switch (instr->type) {
|
|
case nir_instr_type_alu: {
|
|
nir_alu_instr *alu = nir_instr_as_alu(instr);
|
|
switch (alu->op) {
|
|
case nir_op_bit_count:
|
|
case nir_op_ufind_msb:
|
|
case nir_op_ifind_msb:
|
|
case nir_op_find_lsb:
|
|
/* These are handled specially because the destination is always
|
|
* 32-bit and so the bit size of the instruction is given by the
|
|
* source.
|
|
*/
|
|
assert(alu->src[0].src.is_ssa);
|
|
return alu->src[0].src.ssa->bit_size >= 32 ? 0 : 32;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
assert(alu->dest.dest.is_ssa);
|
|
if (alu->dest.dest.ssa.bit_size >= 32)
|
|
return 0;
|
|
|
|
/* Note: nir_op_iabs and nir_op_ineg are not lowered here because the
|
|
* 8-bit ABS or NEG instruction should eventually get copy propagated
|
|
* into the MOV that does the type conversion. This results in far
|
|
* fewer MOV instructions.
|
|
*/
|
|
switch (alu->op) {
|
|
case nir_op_idiv:
|
|
case nir_op_imod:
|
|
case nir_op_irem:
|
|
case nir_op_udiv:
|
|
case nir_op_umod:
|
|
case nir_op_fceil:
|
|
case nir_op_ffloor:
|
|
case nir_op_ffract:
|
|
case nir_op_fround_even:
|
|
case nir_op_ftrunc:
|
|
return 32;
|
|
case nir_op_frcp:
|
|
case nir_op_frsq:
|
|
case nir_op_fsqrt:
|
|
case nir_op_fpow:
|
|
case nir_op_fexp2:
|
|
case nir_op_flog2:
|
|
case nir_op_fsin:
|
|
case nir_op_fcos:
|
|
return devinfo->ver < 9 ? 32 : 0;
|
|
case nir_op_isign:
|
|
assert(!"Should have been lowered by nir_opt_algebraic.");
|
|
return 0;
|
|
default:
|
|
if (nir_op_infos[alu->op].num_inputs >= 2 &&
|
|
alu->dest.dest.ssa.bit_size == 8)
|
|
return 16;
|
|
|
|
if (nir_alu_instr_is_comparison(alu) &&
|
|
alu->src[0].src.ssa->bit_size == 8)
|
|
return 16;
|
|
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case nir_instr_type_intrinsic: {
|
|
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
|
switch (intrin->intrinsic) {
|
|
case nir_intrinsic_read_invocation:
|
|
case nir_intrinsic_read_first_invocation:
|
|
case nir_intrinsic_vote_feq:
|
|
case nir_intrinsic_vote_ieq:
|
|
case nir_intrinsic_shuffle:
|
|
case nir_intrinsic_shuffle_xor:
|
|
case nir_intrinsic_shuffle_up:
|
|
case nir_intrinsic_shuffle_down:
|
|
case nir_intrinsic_quad_broadcast:
|
|
case nir_intrinsic_quad_swap_horizontal:
|
|
case nir_intrinsic_quad_swap_vertical:
|
|
case nir_intrinsic_quad_swap_diagonal:
|
|
if (intrin->src[0].ssa->bit_size == 8)
|
|
return 16;
|
|
return 0;
|
|
|
|
case nir_intrinsic_reduce:
|
|
case nir_intrinsic_inclusive_scan:
|
|
case nir_intrinsic_exclusive_scan:
|
|
/* There are a couple of register region issues that make things
|
|
* complicated for 8-bit types:
|
|
*
|
|
* 1. Only raw moves are allowed to write to a packed 8-bit
|
|
* destination.
|
|
* 2. If we use a strided destination, the efficient way to do
|
|
* scan operations ends up using strides that are too big to
|
|
* encode in an instruction.
|
|
*
|
|
* To get around these issues, we just do all 8-bit scan operations
|
|
* in 16 bits. It's actually fewer instructions than what we'd have
|
|
* to do if we were trying to do it in native 8-bit types and the
|
|
* results are the same once we truncate to 8 bits at the end.
|
|
*/
|
|
if (intrin->dest.ssa.bit_size == 8)
|
|
return 16;
|
|
return 0;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case nir_instr_type_phi: {
|
|
nir_phi_instr *phi = nir_instr_as_phi(instr);
|
|
if (phi->dest.ssa.bit_size == 8)
|
|
return 16;
|
|
return 0;
|
|
}
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* On gfx12.5+, if the offsets are not both constant and in the {-8,7} range,
|
|
* we will have nir_lower_tex() lower the source offset by returning true from
|
|
* this filter function.
|
|
*/
|
|
static bool
|
|
lower_xehp_tg4_offset_filter(const nir_instr *instr, UNUSED const void *data)
|
|
{
|
|
if (instr->type != nir_instr_type_tex)
|
|
return false;
|
|
|
|
nir_tex_instr *tex = nir_instr_as_tex(instr);
|
|
|
|
if (tex->op != nir_texop_tg4)
|
|
return false;
|
|
|
|
int offset_index = nir_tex_instr_src_index(tex, nir_tex_src_offset);
|
|
if (offset_index < 0)
|
|
return false;
|
|
|
|
if (!nir_src_is_const(tex->src[offset_index].src))
|
|
return true;
|
|
|
|
int64_t offset_x = nir_src_comp_as_int(tex->src[offset_index].src, 0);
|
|
int64_t offset_y = nir_src_comp_as_int(tex->src[offset_index].src, 1);
|
|
|
|
return offset_x < -8 || offset_x > 7 || offset_y < -8 || offset_y > 7;
|
|
}
|
|
|
|
/* Does some simple lowering and runs the standard suite of optimizations
|
|
*
|
|
* This is intended to be called more-or-less directly after you get the
|
|
* shader out of GLSL or some other source. While it is geared towards i965,
|
|
* it is not at all generator-specific.
|
|
*/
|
|
void
|
|
brw_preprocess_nir(const struct brw_compiler *compiler, nir_shader *nir,
|
|
const struct brw_nir_compiler_opts *opts)
|
|
{
|
|
const struct intel_device_info *devinfo = compiler->devinfo;
|
|
UNUSED bool progress; /* Written by OPT */
|
|
|
|
const bool is_scalar = compiler->scalar_stage[nir->info.stage];
|
|
|
|
nir_validate_ssa_dominance(nir, "before brw_preprocess_nir");
|
|
|
|
OPT(nir_lower_frexp);
|
|
|
|
if (is_scalar) {
|
|
OPT(nir_lower_alu_to_scalar, NULL, NULL);
|
|
}
|
|
|
|
if (nir->info.stage == MESA_SHADER_GEOMETRY)
|
|
OPT(nir_lower_gs_intrinsics, 0);
|
|
|
|
/* See also brw_nir_trig_workarounds.py */
|
|
if (compiler->precise_trig &&
|
|
!(devinfo->ver >= 10 || devinfo->platform == INTEL_PLATFORM_KBL))
|
|
OPT(brw_nir_apply_trig_workarounds);
|
|
|
|
/* This workaround existing for performance reasons. Since it requires not
|
|
* setting RENDER_SURFACE_STATE::SurfaceArray when the array length is 1,
|
|
* we're loosing the HW robustness feature in that case.
|
|
*
|
|
* So when robust image access is enabled, just avoid the workaround.
|
|
*/
|
|
if (intel_needs_workaround(devinfo, 1806565034) && !opts->robust_image_access)
|
|
OPT(brw_nir_clamp_image_1d_2d_array_sizes);
|
|
|
|
const nir_lower_tex_options tex_options = {
|
|
.lower_txp = ~0,
|
|
.lower_txf_offset = true,
|
|
.lower_rect_offset = true,
|
|
.lower_txd_cube_map = true,
|
|
/* For below, See bspec 45942, "Enable new message layout for cube array" */
|
|
.lower_txd_3d = devinfo->verx10 >= 125,
|
|
.lower_txd_array = devinfo->verx10 >= 125,
|
|
.lower_txb_shadow_clamp = true,
|
|
.lower_txd_shadow_clamp = true,
|
|
.lower_txd_offset_clamp = true,
|
|
.lower_tg4_offsets = true,
|
|
.lower_txs_lod = true, /* Wa_14012320009 */
|
|
.lower_offset_filter =
|
|
devinfo->verx10 >= 125 ? lower_xehp_tg4_offset_filter : NULL,
|
|
.lower_invalid_implicit_lod = true,
|
|
};
|
|
|
|
OPT(nir_lower_tex, &tex_options);
|
|
OPT(nir_normalize_cubemap_coords);
|
|
|
|
OPT(nir_lower_global_vars_to_local);
|
|
|
|
OPT(nir_split_var_copies);
|
|
OPT(nir_split_struct_vars, nir_var_function_temp);
|
|
|
|
brw_nir_optimize(nir, compiler);
|
|
|
|
OPT(nir_lower_doubles, opts->softfp64, nir->options->lower_doubles_options);
|
|
if (OPT(nir_lower_int64_float_conversions)) {
|
|
OPT(nir_opt_algebraic);
|
|
OPT(nir_lower_doubles, opts->softfp64,
|
|
nir->options->lower_doubles_options);
|
|
}
|
|
|
|
OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);
|
|
|
|
/* Lower a bunch of stuff */
|
|
OPT(nir_lower_var_copies);
|
|
|
|
/* This needs to be run after the first optimization pass but before we
|
|
* lower indirect derefs away
|
|
*/
|
|
if (compiler->supports_shader_constants) {
|
|
OPT(nir_opt_large_constants, NULL, 32);
|
|
}
|
|
|
|
if (is_scalar) {
|
|
OPT(nir_lower_load_const_to_scalar);
|
|
}
|
|
|
|
OPT(nir_lower_system_values);
|
|
nir_lower_compute_system_values_options lower_csv_options = {
|
|
.has_base_workgroup_id = nir->info.stage == MESA_SHADER_COMPUTE,
|
|
};
|
|
OPT(nir_lower_compute_system_values, &lower_csv_options);
|
|
|
|
const nir_lower_subgroups_options subgroups_options = {
|
|
.ballot_bit_size = 32,
|
|
.ballot_components = 1,
|
|
.lower_to_scalar = true,
|
|
.lower_vote_trivial = !is_scalar,
|
|
.lower_relative_shuffle = true,
|
|
.lower_quad_broadcast_dynamic = true,
|
|
.lower_elect = true,
|
|
};
|
|
OPT(nir_lower_subgroups, &subgroups_options);
|
|
|
|
nir_variable_mode indirect_mask =
|
|
brw_nir_no_indirect_mask(compiler, nir->info.stage);
|
|
OPT(nir_lower_indirect_derefs, indirect_mask, UINT32_MAX);
|
|
|
|
/* Even in cases where we can handle indirect temporaries via scratch, we
|
|
* it can still be expensive. Lower indirects on small arrays to
|
|
* conditional load/stores.
|
|
*
|
|
* The threshold of 16 was chosen semi-arbitrarily. The idea is that an
|
|
* indirect on an array of 16 elements is about 30 instructions at which
|
|
* point, you may be better off doing a send. With a SIMD8 program, 16
|
|
* floats is 1/8 of the entire register file. Any array larger than that
|
|
* is likely to cause pressure issues. Also, this value is sufficiently
|
|
* high that the benchmarks known to suffer from large temporary array
|
|
* issues are helped but nothing else in shader-db is hurt except for maybe
|
|
* that one kerbal space program shader.
|
|
*/
|
|
if (is_scalar && !(indirect_mask & nir_var_function_temp))
|
|
OPT(nir_lower_indirect_derefs, nir_var_function_temp, 16);
|
|
|
|
/* Lower array derefs of vectors for SSBO and UBO loads. For both UBOs and
|
|
* SSBOs, our back-end is capable of loading an entire vec4 at a time and
|
|
* we would like to take advantage of that whenever possible regardless of
|
|
* whether or not the app gives us full loads. This should allow the
|
|
* optimizer to combine UBO and SSBO load operations and save us some send
|
|
* messages.
|
|
*/
|
|
OPT(nir_lower_array_deref_of_vec,
|
|
nir_var_mem_ubo | nir_var_mem_ssbo,
|
|
nir_lower_direct_array_deref_of_vec_load);
|
|
|
|
/* Clamp load_per_vertex_input of the TCS stage so that we do not generate
|
|
* loads reading out of bounds. We can do this here because we called
|
|
* nir_lower_system_values above.
|
|
*/
|
|
if (nir->info.stage == MESA_SHADER_TESS_CTRL &&
|
|
compiler->use_tcs_multi_patch)
|
|
OPT(brw_nir_clamp_per_vertex_loads);
|
|
|
|
/* Get rid of split copies */
|
|
brw_nir_optimize(nir, compiler);
|
|
}
|
|
|
|
static bool
|
|
brw_nir_zero_inputs_instr(struct nir_builder *b, nir_instr *instr, void *data)
|
|
{
|
|
if (instr->type != nir_instr_type_intrinsic)
|
|
return false;
|
|
|
|
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
|
if (intrin->intrinsic != nir_intrinsic_load_deref)
|
|
return false;
|
|
|
|
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
|
|
if (!nir_deref_mode_is(deref, nir_var_shader_in))
|
|
return false;
|
|
|
|
if (deref->deref_type != nir_deref_type_var)
|
|
return false;
|
|
|
|
nir_variable *var = deref->var;
|
|
|
|
uint64_t zero_inputs = *(uint64_t *)data;
|
|
if (!(BITFIELD64_BIT(var->data.location) & zero_inputs))
|
|
return false;
|
|
|
|
b->cursor = nir_before_instr(instr);
|
|
|
|
nir_ssa_def *zero = nir_imm_zero(b, 1, 32);
|
|
|
|
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, zero);
|
|
|
|
nir_instr_remove(instr);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
brw_nir_zero_inputs(nir_shader *shader, uint64_t *zero_inputs)
|
|
{
|
|
return nir_shader_instructions_pass(shader, brw_nir_zero_inputs_instr,
|
|
nir_metadata_block_index | nir_metadata_dominance, zero_inputs);
|
|
}
|
|
|
|
/* Code for Wa_18019110168 may have created input/output variables beyond
|
|
* VARYING_SLOT_MAX and removed uses of variables below VARYING_SLOT_MAX.
|
|
* Clean it up, so they all stay below VARYING_SLOT_MAX.
|
|
*/
|
|
static void
|
|
brw_mesh_compact_io(nir_shader *mesh, nir_shader *frag)
|
|
{
|
|
gl_varying_slot mapping[VARYING_SLOT_MAX] = {0, };
|
|
gl_varying_slot cur = VARYING_SLOT_VAR0;
|
|
bool compact = false;
|
|
|
|
nir_foreach_shader_out_variable(var, mesh) {
|
|
gl_varying_slot location = var->data.location;
|
|
if (location < VARYING_SLOT_VAR0)
|
|
continue;
|
|
assert(location < ARRAY_SIZE(mapping));
|
|
|
|
const struct glsl_type *type = var->type;
|
|
if (nir_is_arrayed_io(var, MESA_SHADER_MESH) || var->data.per_view) {
|
|
assert(glsl_type_is_array(type));
|
|
type = glsl_get_array_element(type);
|
|
}
|
|
|
|
if (mapping[location])
|
|
continue;
|
|
|
|
unsigned num_slots = glsl_count_attribute_slots(type, false);
|
|
|
|
compact |= location + num_slots > VARYING_SLOT_MAX;
|
|
|
|
mapping[location] = cur;
|
|
cur += num_slots;
|
|
}
|
|
|
|
if (!compact)
|
|
return;
|
|
|
|
/* The rest of this function should be hit only for Wa_18019110168. */
|
|
|
|
nir_foreach_shader_out_variable(var, mesh) {
|
|
gl_varying_slot location = var->data.location;
|
|
if (location < VARYING_SLOT_VAR0)
|
|
continue;
|
|
location = mapping[location];
|
|
if (location == 0)
|
|
continue;
|
|
var->data.location = location;
|
|
}
|
|
|
|
nir_foreach_shader_in_variable(var, frag) {
|
|
gl_varying_slot location = var->data.location;
|
|
if (location < VARYING_SLOT_VAR0)
|
|
continue;
|
|
location = mapping[location];
|
|
if (location == 0)
|
|
continue;
|
|
var->data.location = location;
|
|
}
|
|
|
|
nir_shader_gather_info(mesh, nir_shader_get_entrypoint(mesh));
|
|
nir_shader_gather_info(frag, nir_shader_get_entrypoint(frag));
|
|
|
|
if (should_print_nir(mesh)) {
|
|
printf("%s\n", __func__);
|
|
nir_print_shader(mesh, stdout);
|
|
}
|
|
if (should_print_nir(frag)) {
|
|
printf("%s\n", __func__);
|
|
nir_print_shader(frag, stdout);
|
|
}
|
|
}
|
|
|
|
void
|
|
brw_nir_link_shaders(const struct brw_compiler *compiler,
|
|
nir_shader *producer, nir_shader *consumer)
|
|
{
|
|
if (producer->info.stage == MESA_SHADER_MESH &&
|
|
consumer->info.stage == MESA_SHADER_FRAGMENT) {
|
|
uint64_t fs_inputs = 0, ms_outputs = 0;
|
|
/* gl_MeshPerPrimitiveNV[].gl_ViewportIndex, gl_PrimitiveID and gl_Layer
|
|
* are per primitive, but fragment shader does not have them marked as
|
|
* such. Add the annotation here.
|
|
*/
|
|
nir_foreach_shader_in_variable(var, consumer) {
|
|
fs_inputs |= BITFIELD64_BIT(var->data.location);
|
|
|
|
switch (var->data.location) {
|
|
case VARYING_SLOT_LAYER:
|
|
case VARYING_SLOT_PRIMITIVE_ID:
|
|
case VARYING_SLOT_VIEWPORT:
|
|
var->data.per_primitive = 1;
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
}
|
|
|
|
nir_foreach_shader_out_variable(var, producer)
|
|
ms_outputs |= BITFIELD64_BIT(var->data.location);
|
|
|
|
uint64_t zero_inputs = ~ms_outputs & fs_inputs;
|
|
zero_inputs &= BITFIELD64_BIT(VARYING_SLOT_LAYER) |
|
|
BITFIELD64_BIT(VARYING_SLOT_VIEWPORT);
|
|
|
|
if (zero_inputs)
|
|
NIR_PASS(_, consumer, brw_nir_zero_inputs, &zero_inputs);
|
|
}
|
|
|
|
nir_lower_io_arrays_to_elements(producer, consumer);
|
|
nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements");
|
|
nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements");
|
|
|
|
const bool p_is_scalar = compiler->scalar_stage[producer->info.stage];
|
|
const bool c_is_scalar = compiler->scalar_stage[consumer->info.stage];
|
|
|
|
if (p_is_scalar && c_is_scalar) {
|
|
NIR_PASS(_, producer, nir_lower_io_to_scalar_early, nir_var_shader_out);
|
|
NIR_PASS(_, consumer, nir_lower_io_to_scalar_early, nir_var_shader_in);
|
|
brw_nir_optimize(producer, compiler);
|
|
brw_nir_optimize(consumer, compiler);
|
|
}
|
|
|
|
if (nir_link_opt_varyings(producer, consumer))
|
|
brw_nir_optimize(consumer, compiler);
|
|
|
|
NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_out, NULL);
|
|
NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_in, NULL);
|
|
|
|
if (nir_remove_unused_varyings(producer, consumer)) {
|
|
if (should_print_nir(producer)) {
|
|
printf("nir_remove_unused_varyings\n");
|
|
nir_print_shader(producer, stdout);
|
|
}
|
|
if (should_print_nir(consumer)) {
|
|
printf("nir_remove_unused_varyings\n");
|
|
nir_print_shader(consumer, stdout);
|
|
}
|
|
|
|
NIR_PASS(_, producer, nir_lower_global_vars_to_local);
|
|
NIR_PASS(_, consumer, nir_lower_global_vars_to_local);
|
|
|
|
/* The backend might not be able to handle indirects on
|
|
* temporaries so we need to lower indirects on any of the
|
|
* varyings we have demoted here.
|
|
*/
|
|
NIR_PASS(_, producer, nir_lower_indirect_derefs,
|
|
brw_nir_no_indirect_mask(compiler, producer->info.stage),
|
|
UINT32_MAX);
|
|
NIR_PASS(_, consumer, nir_lower_indirect_derefs,
|
|
brw_nir_no_indirect_mask(compiler, consumer->info.stage),
|
|
UINT32_MAX);
|
|
|
|
brw_nir_optimize(producer, compiler);
|
|
brw_nir_optimize(consumer, compiler);
|
|
|
|
if (producer->info.stage == MESA_SHADER_MESH &&
|
|
consumer->info.stage == MESA_SHADER_FRAGMENT) {
|
|
brw_mesh_compact_io(producer, consumer);
|
|
}
|
|
}
|
|
|
|
NIR_PASS(_, producer, nir_lower_io_to_vector, nir_var_shader_out);
|
|
|
|
if (producer->info.stage == MESA_SHADER_TESS_CTRL &&
|
|
producer->options->vectorize_tess_levels)
|
|
NIR_PASS_V(producer, nir_vectorize_tess_levels);
|
|
|
|
NIR_PASS(_, producer, nir_opt_combine_stores, nir_var_shader_out);
|
|
NIR_PASS(_, consumer, nir_lower_io_to_vector, nir_var_shader_in);
|
|
|
|
if (producer->info.stage != MESA_SHADER_TESS_CTRL &&
|
|
producer->info.stage != MESA_SHADER_MESH &&
|
|
producer->info.stage != MESA_SHADER_TASK) {
|
|
/* Calling lower_io_to_vector creates output variable writes with
|
|
* write-masks. On non-TCS outputs, the back-end can't handle it and we
|
|
* need to call nir_lower_io_to_temporaries to get rid of them. This,
|
|
* in turn, creates temporary variables and extra copy_deref intrinsics
|
|
* that we need to clean up.
|
|
*
|
|
* Note Mesh/Task don't support I/O as temporaries (I/O is shared
|
|
* between whole workgroup, possibly using multiple HW threads). For
|
|
* those write-mask in output is handled by I/O lowering.
|
|
*/
|
|
NIR_PASS_V(producer, nir_lower_io_to_temporaries,
|
|
nir_shader_get_entrypoint(producer), true, false);
|
|
NIR_PASS(_, producer, nir_lower_global_vars_to_local);
|
|
NIR_PASS(_, producer, nir_split_var_copies);
|
|
NIR_PASS(_, producer, nir_lower_var_copies);
|
|
}
|
|
}
|
|
|
|
bool
|
|
brw_nir_should_vectorize_mem(unsigned align_mul, unsigned align_offset,
|
|
unsigned bit_size,
|
|
unsigned num_components,
|
|
nir_intrinsic_instr *low,
|
|
nir_intrinsic_instr *high,
|
|
void *data)
|
|
{
|
|
/* Don't combine things to generate 64-bit loads/stores. We have to split
|
|
* those back into 32-bit ones anyway and UBO loads aren't split in NIR so
|
|
* we don't want to make a mess for the back-end.
|
|
*/
|
|
if (bit_size > 32)
|
|
return false;
|
|
|
|
if (low->intrinsic == nir_intrinsic_load_global_const_block_intel ||
|
|
low->intrinsic == nir_intrinsic_load_ssbo_uniform_block_intel ||
|
|
low->intrinsic == nir_intrinsic_load_shared_uniform_block_intel) {
|
|
if (num_components > 4) {
|
|
if (!util_is_power_of_two_nonzero(num_components))
|
|
return false;
|
|
|
|
if (bit_size != 32)
|
|
return false;
|
|
|
|
if (num_components > 32)
|
|
return false;
|
|
}
|
|
} else {
|
|
/* We can handle at most a vec4 right now. Anything bigger would get
|
|
* immediately split by brw_nir_lower_mem_access_bit_sizes anyway.
|
|
*/
|
|
if (num_components > 4)
|
|
return false;
|
|
}
|
|
|
|
|
|
uint32_t align;
|
|
if (align_offset)
|
|
align = 1 << (ffs(align_offset) - 1);
|
|
else
|
|
align = align_mul;
|
|
|
|
if (align < bit_size / 8)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static
|
|
bool combine_all_memory_barriers(nir_intrinsic_instr *a,
|
|
nir_intrinsic_instr *b,
|
|
void *data)
|
|
{
|
|
/* Only combine pure memory barriers */
|
|
if ((nir_intrinsic_execution_scope(a) != NIR_SCOPE_NONE) ||
|
|
(nir_intrinsic_execution_scope(b) != NIR_SCOPE_NONE))
|
|
return false;
|
|
|
|
/* Translation to backend IR will get rid of modes we don't care about, so
|
|
* no harm in always combining them.
|
|
*
|
|
* TODO: While HW has only ACQUIRE|RELEASE fences, we could improve the
|
|
* scheduling so that it can take advantage of the different semantics.
|
|
*/
|
|
nir_intrinsic_set_memory_modes(a, nir_intrinsic_memory_modes(a) |
|
|
nir_intrinsic_memory_modes(b));
|
|
nir_intrinsic_set_memory_semantics(a, nir_intrinsic_memory_semantics(a) |
|
|
nir_intrinsic_memory_semantics(b));
|
|
nir_intrinsic_set_memory_scope(a, MAX2(nir_intrinsic_memory_scope(a),
|
|
nir_intrinsic_memory_scope(b)));
|
|
return true;
|
|
}
|
|
|
|
static nir_mem_access_size_align
|
|
get_mem_access_size_align(nir_intrinsic_op intrin, uint8_t bytes,
|
|
uint8_t bit_size, uint32_t align_mul, uint32_t align_offset,
|
|
bool offset_is_const, const void *cb_data)
|
|
{
|
|
const uint32_t align = nir_combined_align(align_mul, align_offset);
|
|
|
|
switch (intrin) {
|
|
case nir_intrinsic_load_ssbo:
|
|
case nir_intrinsic_load_shared:
|
|
case nir_intrinsic_load_scratch:
|
|
/* The offset is constant so we can use a 32-bit load and just shift it
|
|
* around as needed.
|
|
*/
|
|
if (align < 4 && offset_is_const) {
|
|
assert(util_is_power_of_two_nonzero(align_mul) && align_mul >= 4);
|
|
const unsigned pad = align_offset % 4;
|
|
const unsigned comps32 = MIN2(DIV_ROUND_UP(bytes + pad, 4), 4);
|
|
return (nir_mem_access_size_align) {
|
|
.bit_size = 32,
|
|
.num_components = comps32,
|
|
.align = 4,
|
|
};
|
|
}
|
|
break;
|
|
|
|
case nir_intrinsic_load_task_payload:
|
|
if (bytes < 4 || align < 4) {
|
|
return (nir_mem_access_size_align) {
|
|
.bit_size = 32,
|
|
.num_components = 1,
|
|
.align = 4,
|
|
};
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
const bool is_load = nir_intrinsic_infos[intrin].has_dest;
|
|
const bool is_scratch = intrin == nir_intrinsic_load_scratch ||
|
|
intrin == nir_intrinsic_store_scratch;
|
|
|
|
if (align < 4 || bytes < 4) {
|
|
/* Choose a byte, word, or dword */
|
|
bytes = MIN2(bytes, 4);
|
|
if (bytes == 3)
|
|
bytes = is_load ? 4 : 2;
|
|
|
|
if (is_scratch) {
|
|
/* The way scratch address swizzling works in the back-end, it
|
|
* happens at a DWORD granularity so we can't have a single load
|
|
* or store cross a DWORD boundary.
|
|
*/
|
|
if ((align_offset % 4) + bytes > MIN2(align_mul, 4))
|
|
bytes = MIN2(align_mul, 4) - (align_offset % 4);
|
|
|
|
/* Must be a power of two */
|
|
if (bytes == 3)
|
|
bytes = 2;
|
|
}
|
|
|
|
return (nir_mem_access_size_align) {
|
|
.bit_size = bytes * 8,
|
|
.num_components = 1,
|
|
.align = 1,
|
|
};
|
|
} else {
|
|
bytes = MIN2(bytes, 16);
|
|
return (nir_mem_access_size_align) {
|
|
.bit_size = 32,
|
|
.num_components = is_scratch ? 1 :
|
|
is_load ? DIV_ROUND_UP(bytes, 4) : bytes / 4,
|
|
.align = 4,
|
|
};
|
|
}
|
|
}
|
|
|
|
static void
|
|
brw_vectorize_lower_mem_access(nir_shader *nir,
|
|
const struct brw_compiler *compiler,
|
|
bool robust_buffer_access)
|
|
{
|
|
bool progress = false;
|
|
const bool is_scalar = compiler->scalar_stage[nir->info.stage];
|
|
|
|
if (is_scalar) {
|
|
nir_load_store_vectorize_options options = {
|
|
.modes = nir_var_mem_ubo | nir_var_mem_ssbo |
|
|
nir_var_mem_global | nir_var_mem_shared |
|
|
nir_var_mem_task_payload,
|
|
.callback = brw_nir_should_vectorize_mem,
|
|
.robust_modes = (nir_variable_mode)0,
|
|
};
|
|
|
|
if (robust_buffer_access) {
|
|
options.robust_modes = nir_var_mem_ubo | nir_var_mem_ssbo |
|
|
nir_var_mem_global;
|
|
}
|
|
|
|
OPT(nir_opt_load_store_vectorize, &options);
|
|
|
|
/* Only run the blockify optimization on Gfx9+ because although prior HW
|
|
* versions have support for block loads, they do have limitations on
|
|
* alignment as well as requiring split sends which are not supported
|
|
* there.
|
|
*/
|
|
if (compiler->devinfo->ver >= 9) {
|
|
/* Required for nir_divergence_analysis() */
|
|
OPT(nir_convert_to_lcssa, true, true);
|
|
|
|
/* When HW supports block loads, using the divergence analysis, try
|
|
* to find uniform SSBO loads and turn them into block loads.
|
|
*
|
|
* Rerun the vectorizer after that to make the largest possible block
|
|
* loads.
|
|
*
|
|
* This is a win on 2 fronts :
|
|
* - fewer send messages
|
|
* - reduced register pressure
|
|
*/
|
|
nir_divergence_analysis(nir);
|
|
if (OPT(brw_nir_blockify_uniform_loads, compiler->devinfo))
|
|
OPT(nir_opt_load_store_vectorize, &options);
|
|
OPT(nir_opt_remove_phis);
|
|
}
|
|
}
|
|
|
|
OPT(nir_lower_mem_access_bit_sizes,
|
|
nir_var_mem_ssbo |
|
|
nir_var_mem_constant |
|
|
nir_var_mem_task_payload |
|
|
nir_var_shader_temp |
|
|
nir_var_function_temp |
|
|
nir_var_mem_global |
|
|
nir_var_mem_shared,
|
|
get_mem_access_size_align, NULL);
|
|
|
|
while (progress) {
|
|
progress = false;
|
|
|
|
OPT(nir_lower_pack);
|
|
OPT(nir_copy_prop);
|
|
OPT(nir_opt_dce);
|
|
OPT(nir_opt_cse);
|
|
OPT(nir_opt_algebraic);
|
|
OPT(nir_opt_constant_folding);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
nir_shader_has_local_variables(const nir_shader *nir)
|
|
{
|
|
nir_foreach_function(func, nir) {
|
|
if (func->impl && !exec_list_is_empty(&func->impl->locals))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Prepare the given shader for codegen
|
|
*
|
|
* This function is intended to be called right before going into the actual
|
|
* backend and is highly backend-specific. Also, once this function has been
|
|
* called on a shader, it will no longer be in SSA form so most optimizations
|
|
* will not work.
|
|
*/
|
|
void
|
|
brw_postprocess_nir(nir_shader *nir, const struct brw_compiler *compiler,
|
|
bool debug_enabled,
|
|
bool robust_buffer_access)
|
|
{
|
|
const struct intel_device_info *devinfo = compiler->devinfo;
|
|
const bool is_scalar = compiler->scalar_stage[nir->info.stage];
|
|
|
|
UNUSED bool progress; /* Written by OPT */
|
|
|
|
OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);
|
|
|
|
OPT(nir_opt_combine_barriers, combine_all_memory_barriers, NULL);
|
|
|
|
do {
|
|
progress = false;
|
|
OPT(nir_opt_algebraic_before_ffma);
|
|
} while (progress);
|
|
|
|
if (devinfo->verx10 >= 125) {
|
|
/* Lower integer division by constants before nir_lower_idiv. */
|
|
OPT(nir_opt_idiv_const, 32);
|
|
const nir_lower_idiv_options options = {
|
|
.allow_fp16 = false
|
|
};
|
|
OPT(nir_lower_idiv, &options);
|
|
}
|
|
|
|
if (gl_shader_stage_can_set_fragment_shading_rate(nir->info.stage))
|
|
NIR_PASS(_, nir, brw_nir_lower_shading_rate_output);
|
|
|
|
brw_nir_optimize(nir, compiler);
|
|
|
|
if (is_scalar && nir_shader_has_local_variables(nir)) {
|
|
OPT(nir_lower_vars_to_explicit_types, nir_var_function_temp,
|
|
glsl_get_natural_size_align_bytes);
|
|
OPT(nir_lower_explicit_io, nir_var_function_temp,
|
|
nir_address_format_32bit_offset);
|
|
brw_nir_optimize(nir, compiler);
|
|
}
|
|
|
|
brw_vectorize_lower_mem_access(nir, compiler, robust_buffer_access);
|
|
|
|
if (OPT(nir_lower_int64))
|
|
brw_nir_optimize(nir, compiler);
|
|
|
|
if (devinfo->ver >= 6) {
|
|
/* Try and fuse multiply-adds, if successful, run shrink_vectors to
|
|
* avoid peephole_ffma to generate things like this :
|
|
* vec16 ssa_0 = ...
|
|
* vec16 ssa_1 = fneg ssa_0
|
|
* vec1 ssa_2 = ffma ssa_1, ...
|
|
*
|
|
* We want this instead :
|
|
* vec16 ssa_0 = ...
|
|
* vec1 ssa_1 = fneg ssa_0.x
|
|
* vec1 ssa_2 = ffma ssa_1, ...
|
|
*/
|
|
if (OPT(brw_nir_opt_peephole_ffma))
|
|
OPT(nir_opt_shrink_vectors);
|
|
}
|
|
|
|
if (is_scalar)
|
|
OPT(brw_nir_opt_peephole_imul32x16);
|
|
|
|
if (OPT(nir_opt_comparison_pre)) {
|
|
OPT(nir_copy_prop);
|
|
OPT(nir_opt_dce);
|
|
OPT(nir_opt_cse);
|
|
|
|
/* Do the select peepehole again. nir_opt_comparison_pre (combined with
|
|
* the other optimization passes) will have removed at least one
|
|
* instruction from one of the branches of the if-statement, so now it
|
|
* might be under the threshold of conversion to bcsel.
|
|
*
|
|
* See brw_nir_optimize for the explanation of is_vec4_tessellation.
|
|
*/
|
|
const bool is_vec4_tessellation = !is_scalar &&
|
|
(nir->info.stage == MESA_SHADER_TESS_CTRL ||
|
|
nir->info.stage == MESA_SHADER_TESS_EVAL);
|
|
OPT(nir_opt_peephole_select, 0, is_vec4_tessellation, false);
|
|
OPT(nir_opt_peephole_select, 1, is_vec4_tessellation,
|
|
compiler->devinfo->ver >= 6);
|
|
}
|
|
|
|
do {
|
|
progress = false;
|
|
if (OPT(nir_opt_algebraic_late)) {
|
|
/* At this late stage, anything that makes more constants will wreak
|
|
* havok on the vec4 backend. The handling of constants in the vec4
|
|
* backend is not good.
|
|
*/
|
|
if (is_scalar)
|
|
OPT(nir_opt_constant_folding);
|
|
|
|
OPT(nir_copy_prop);
|
|
OPT(nir_opt_dce);
|
|
OPT(nir_opt_cse);
|
|
}
|
|
} while (progress);
|
|
|
|
|
|
OPT(brw_nir_lower_conversions);
|
|
|
|
if (is_scalar)
|
|
OPT(nir_lower_alu_to_scalar, NULL, NULL);
|
|
|
|
while (OPT(nir_opt_algebraic_distribute_src_mods)) {
|
|
if (is_scalar)
|
|
OPT(nir_opt_constant_folding);
|
|
|
|
OPT(nir_copy_prop);
|
|
OPT(nir_opt_dce);
|
|
OPT(nir_opt_cse);
|
|
}
|
|
|
|
OPT(nir_copy_prop);
|
|
OPT(nir_opt_dce);
|
|
OPT(nir_opt_move, nir_move_comparisons);
|
|
OPT(nir_opt_dead_cf);
|
|
|
|
NIR_PASS(_, nir, nir_convert_to_lcssa, true, true);
|
|
NIR_PASS_V(nir, nir_divergence_analysis);
|
|
|
|
/* TODO: Enable nir_opt_uniform_atomics on Gfx7.x too.
|
|
* It currently fails Vulkan tests on Haswell for an unknown reason.
|
|
*
|
|
* TODO: Using this optimization on RT/OpenCL kernels also seems to cause
|
|
* issues. Until we can understand those issues, disable it.
|
|
*/
|
|
bool opt_uniform_atomic_stage_allowed =
|
|
devinfo->ver >= 8 &&
|
|
nir->info.stage != MESA_SHADER_KERNEL &&
|
|
nir->info.stage != MESA_SHADER_RAYGEN &&
|
|
!gl_shader_stage_is_callable(nir->info.stage);
|
|
|
|
if (opt_uniform_atomic_stage_allowed && OPT(nir_opt_uniform_atomics)) {
|
|
const nir_lower_subgroups_options subgroups_options = {
|
|
.ballot_bit_size = 32,
|
|
.ballot_components = 1,
|
|
.lower_elect = true,
|
|
};
|
|
OPT(nir_lower_subgroups, &subgroups_options);
|
|
|
|
if (OPT(nir_lower_int64))
|
|
brw_nir_optimize(nir, compiler);
|
|
}
|
|
|
|
/* Clean up LCSSA phis */
|
|
OPT(nir_opt_remove_phis);
|
|
|
|
OPT(nir_lower_bool_to_int32);
|
|
OPT(nir_copy_prop);
|
|
OPT(nir_opt_dce);
|
|
|
|
OPT(nir_lower_locals_to_regs);
|
|
|
|
if (unlikely(debug_enabled)) {
|
|
/* Re-index SSA defs so we print more sensible numbers. */
|
|
nir_foreach_function(function, nir) {
|
|
if (function->impl)
|
|
nir_index_ssa_defs(function->impl);
|
|
}
|
|
|
|
fprintf(stderr, "NIR (SSA form) for %s shader:\n",
|
|
_mesa_shader_stage_to_string(nir->info.stage));
|
|
nir_print_shader(nir, stderr);
|
|
}
|
|
|
|
nir_validate_ssa_dominance(nir, "before nir_convert_from_ssa");
|
|
|
|
OPT(nir_convert_from_ssa, true);
|
|
|
|
if (!is_scalar) {
|
|
OPT(nir_move_vec_src_uses_to_dest);
|
|
OPT(nir_lower_vec_to_movs, NULL, NULL);
|
|
}
|
|
|
|
OPT(nir_opt_dce);
|
|
|
|
if (OPT(nir_opt_rematerialize_compares))
|
|
OPT(nir_opt_dce);
|
|
|
|
/* This is the last pass we run before we start emitting stuff. It
|
|
* determines when we need to insert boolean resolves on Gen <= 5. We
|
|
* run it last because it stashes data in instr->pass_flags and we don't
|
|
* want that to be squashed by other NIR passes.
|
|
*/
|
|
if (devinfo->ver <= 5)
|
|
brw_nir_analyze_boolean_resolves(nir);
|
|
|
|
nir_sweep(nir);
|
|
|
|
if (unlikely(debug_enabled)) {
|
|
fprintf(stderr, "NIR (final form) for %s shader:\n",
|
|
_mesa_shader_stage_to_string(nir->info.stage));
|
|
nir_print_shader(nir, stderr);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
brw_nir_apply_sampler_key(nir_shader *nir,
|
|
const struct brw_compiler *compiler,
|
|
const struct brw_sampler_prog_key_data *key_tex)
|
|
{
|
|
const struct intel_device_info *devinfo = compiler->devinfo;
|
|
nir_lower_tex_options tex_options = {
|
|
.lower_txd_clamp_bindless_sampler = true,
|
|
.lower_txd_clamp_if_sampler_index_not_lt_16 = true,
|
|
.lower_invalid_implicit_lod = true,
|
|
.lower_index_to_offset = true,
|
|
};
|
|
|
|
/* Iron Lake and prior require lowering of all rectangle textures */
|
|
if (devinfo->ver < 6)
|
|
tex_options.lower_rect = true;
|
|
|
|
/* Prior to Broadwell, our hardware can't actually do GL_CLAMP */
|
|
if (devinfo->ver < 8) {
|
|
tex_options.saturate_s = key_tex->gl_clamp_mask[0];
|
|
tex_options.saturate_t = key_tex->gl_clamp_mask[1];
|
|
tex_options.saturate_r = key_tex->gl_clamp_mask[2];
|
|
}
|
|
|
|
/* Prior to Haswell, we have to lower gradients on shadow samplers */
|
|
tex_options.lower_txd_shadow = devinfo->verx10 <= 70;
|
|
|
|
return nir_lower_tex(nir, &tex_options);
|
|
}
|
|
|
|
static unsigned
|
|
get_subgroup_size(const struct shader_info *info, unsigned max_subgroup_size)
|
|
{
|
|
switch (info->subgroup_size) {
|
|
case SUBGROUP_SIZE_API_CONSTANT:
|
|
/* We have to use the global constant size. */
|
|
return BRW_SUBGROUP_SIZE;
|
|
|
|
case SUBGROUP_SIZE_UNIFORM:
|
|
/* It has to be uniform across all invocations but can vary per stage
|
|
* if we want. This gives us a bit more freedom.
|
|
*
|
|
* For compute, brw_nir_apply_key is called per-dispatch-width so this
|
|
* is the actual subgroup size and not a maximum. However, we only
|
|
* invoke one size of any given compute shader so it's still guaranteed
|
|
* to be uniform across invocations.
|
|
*/
|
|
return max_subgroup_size;
|
|
|
|
case SUBGROUP_SIZE_VARYING:
|
|
/* The subgroup size is allowed to be fully varying. For geometry
|
|
* stages, we know it's always 8 which is max_subgroup_size so we can
|
|
* return that. For compute, brw_nir_apply_key is called once per
|
|
* dispatch-width so max_subgroup_size is the real subgroup size.
|
|
*
|
|
* For fragment, we return 0 and let it fall through to the back-end
|
|
* compiler. This means we can't optimize based on subgroup size but
|
|
* that's a risk the client took when it asked for a varying subgroup
|
|
* size.
|
|
*/
|
|
return info->stage == MESA_SHADER_FRAGMENT ? 0 : max_subgroup_size;
|
|
|
|
case SUBGROUP_SIZE_REQUIRE_8:
|
|
case SUBGROUP_SIZE_REQUIRE_16:
|
|
case SUBGROUP_SIZE_REQUIRE_32:
|
|
assert(gl_shader_stage_uses_workgroup(info->stage) ||
|
|
(info->stage >= MESA_SHADER_RAYGEN && info->stage <= MESA_SHADER_CALLABLE));
|
|
/* These enum values are expressly chosen to be equal to the subgroup
|
|
* size that they require.
|
|
*/
|
|
return info->subgroup_size;
|
|
|
|
case SUBGROUP_SIZE_FULL_SUBGROUPS:
|
|
case SUBGROUP_SIZE_REQUIRE_64:
|
|
case SUBGROUP_SIZE_REQUIRE_128:
|
|
break;
|
|
}
|
|
|
|
unreachable("Invalid subgroup size type");
|
|
}
|
|
|
|
unsigned
|
|
brw_nir_api_subgroup_size(const nir_shader *nir,
|
|
unsigned hw_subgroup_size)
|
|
{
|
|
return get_subgroup_size(&nir->info, hw_subgroup_size);
|
|
}
|
|
|
|
void
|
|
brw_nir_apply_key(nir_shader *nir,
|
|
const struct brw_compiler *compiler,
|
|
const struct brw_base_prog_key *key,
|
|
unsigned max_subgroup_size)
|
|
{
|
|
bool progress = false;
|
|
|
|
OPT(brw_nir_apply_sampler_key, compiler, &key->tex);
|
|
|
|
const nir_lower_subgroups_options subgroups_options = {
|
|
.subgroup_size = get_subgroup_size(&nir->info, max_subgroup_size),
|
|
.ballot_bit_size = 32,
|
|
.ballot_components = 1,
|
|
.lower_subgroup_masks = true,
|
|
};
|
|
OPT(nir_lower_subgroups, &subgroups_options);
|
|
|
|
if (key->limit_trig_input_range)
|
|
OPT(brw_nir_limit_trig_input_range_workaround);
|
|
|
|
if (progress)
|
|
brw_nir_optimize(nir, compiler);
|
|
}
|
|
|
|
enum brw_conditional_mod
|
|
brw_cmod_for_nir_comparison(nir_op op)
|
|
{
|
|
switch (op) {
|
|
case nir_op_flt:
|
|
case nir_op_flt32:
|
|
case nir_op_ilt:
|
|
case nir_op_ilt32:
|
|
case nir_op_ult:
|
|
case nir_op_ult32:
|
|
return BRW_CONDITIONAL_L;
|
|
|
|
case nir_op_fge:
|
|
case nir_op_fge32:
|
|
case nir_op_ige:
|
|
case nir_op_ige32:
|
|
case nir_op_uge:
|
|
case nir_op_uge32:
|
|
return BRW_CONDITIONAL_GE;
|
|
|
|
case nir_op_feq:
|
|
case nir_op_feq32:
|
|
case nir_op_ieq:
|
|
case nir_op_ieq32:
|
|
case nir_op_b32all_fequal2:
|
|
case nir_op_b32all_iequal2:
|
|
case nir_op_b32all_fequal3:
|
|
case nir_op_b32all_iequal3:
|
|
case nir_op_b32all_fequal4:
|
|
case nir_op_b32all_iequal4:
|
|
return BRW_CONDITIONAL_Z;
|
|
|
|
case nir_op_fneu:
|
|
case nir_op_fneu32:
|
|
case nir_op_ine:
|
|
case nir_op_ine32:
|
|
case nir_op_b32any_fnequal2:
|
|
case nir_op_b32any_inequal2:
|
|
case nir_op_b32any_fnequal3:
|
|
case nir_op_b32any_inequal3:
|
|
case nir_op_b32any_fnequal4:
|
|
case nir_op_b32any_inequal4:
|
|
return BRW_CONDITIONAL_NZ;
|
|
|
|
default:
|
|
unreachable("Unsupported NIR comparison op");
|
|
}
|
|
}
|
|
|
|
enum lsc_opcode
|
|
lsc_aop_for_nir_intrinsic(const nir_intrinsic_instr *atomic)
|
|
{
|
|
switch (nir_intrinsic_atomic_op(atomic)) {
|
|
case nir_atomic_op_iadd: {
|
|
unsigned src_idx;
|
|
switch (atomic->intrinsic) {
|
|
case nir_intrinsic_image_atomic:
|
|
case nir_intrinsic_bindless_image_atomic:
|
|
src_idx = 3;
|
|
break;
|
|
case nir_intrinsic_ssbo_atomic:
|
|
src_idx = 2;
|
|
break;
|
|
case nir_intrinsic_shared_atomic:
|
|
case nir_intrinsic_global_atomic:
|
|
src_idx = 1;
|
|
break;
|
|
default:
|
|
unreachable("Invalid add atomic opcode");
|
|
}
|
|
|
|
if (nir_src_is_const(atomic->src[src_idx])) {
|
|
int64_t add_val = nir_src_as_int(atomic->src[src_idx]);
|
|
if (add_val == 1)
|
|
return LSC_OP_ATOMIC_INC;
|
|
else if (add_val == -1)
|
|
return LSC_OP_ATOMIC_DEC;
|
|
}
|
|
return LSC_OP_ATOMIC_ADD;
|
|
}
|
|
|
|
case nir_atomic_op_imin: return LSC_OP_ATOMIC_MIN;
|
|
case nir_atomic_op_umin: return LSC_OP_ATOMIC_UMIN;
|
|
case nir_atomic_op_imax: return LSC_OP_ATOMIC_MAX;
|
|
case nir_atomic_op_umax: return LSC_OP_ATOMIC_UMAX;
|
|
case nir_atomic_op_iand: return LSC_OP_ATOMIC_AND;
|
|
case nir_atomic_op_ior: return LSC_OP_ATOMIC_OR;
|
|
case nir_atomic_op_ixor: return LSC_OP_ATOMIC_XOR;
|
|
case nir_atomic_op_xchg: return LSC_OP_ATOMIC_STORE;
|
|
case nir_atomic_op_cmpxchg: return LSC_OP_ATOMIC_CMPXCHG;
|
|
|
|
case nir_atomic_op_fmin: return LSC_OP_ATOMIC_FMIN;
|
|
case nir_atomic_op_fmax: return LSC_OP_ATOMIC_FMAX;
|
|
case nir_atomic_op_fcmpxchg: return LSC_OP_ATOMIC_FCMPXCHG;
|
|
case nir_atomic_op_fadd: return LSC_OP_ATOMIC_FADD;
|
|
|
|
default:
|
|
unreachable("Unsupported NIR atomic intrinsic");
|
|
}
|
|
}
|
|
|
|
enum brw_reg_type
|
|
brw_type_for_nir_type(const struct intel_device_info *devinfo,
|
|
nir_alu_type type)
|
|
{
|
|
switch (type) {
|
|
case nir_type_uint:
|
|
case nir_type_uint32:
|
|
return BRW_REGISTER_TYPE_UD;
|
|
case nir_type_bool:
|
|
case nir_type_int:
|
|
case nir_type_bool32:
|
|
case nir_type_int32:
|
|
return BRW_REGISTER_TYPE_D;
|
|
case nir_type_float:
|
|
case nir_type_float32:
|
|
return BRW_REGISTER_TYPE_F;
|
|
case nir_type_float16:
|
|
return BRW_REGISTER_TYPE_HF;
|
|
case nir_type_float64:
|
|
return BRW_REGISTER_TYPE_DF;
|
|
case nir_type_int64:
|
|
return devinfo->ver < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_Q;
|
|
case nir_type_uint64:
|
|
return devinfo->ver < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_UQ;
|
|
case nir_type_int16:
|
|
return BRW_REGISTER_TYPE_W;
|
|
case nir_type_uint16:
|
|
return BRW_REGISTER_TYPE_UW;
|
|
case nir_type_int8:
|
|
return BRW_REGISTER_TYPE_B;
|
|
case nir_type_uint8:
|
|
return BRW_REGISTER_TYPE_UB;
|
|
default:
|
|
unreachable("unknown type");
|
|
}
|
|
|
|
return BRW_REGISTER_TYPE_F;
|
|
}
|
|
|
|
nir_shader *
|
|
brw_nir_create_passthrough_tcs(void *mem_ctx, const struct brw_compiler *compiler,
|
|
const struct brw_tcs_prog_key *key)
|
|
{
|
|
assert(key->input_vertices > 0);
|
|
|
|
const nir_shader_compiler_options *options =
|
|
compiler->nir_options[MESA_SHADER_TESS_CTRL];
|
|
|
|
uint64_t inputs_read = key->outputs_written &
|
|
~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
|
|
|
|
unsigned locations[64];
|
|
unsigned num_locations = 0;
|
|
|
|
u_foreach_bit64(varying, inputs_read)
|
|
locations[num_locations++] = varying;
|
|
|
|
nir_shader *nir =
|
|
nir_create_passthrough_tcs_impl(options, locations, num_locations,
|
|
key->input_vertices);
|
|
|
|
ralloc_steal(mem_ctx, nir);
|
|
|
|
nir->info.inputs_read = inputs_read;
|
|
nir->info.tess._primitive_mode = key->_tes_primitive_mode;
|
|
nir_validate_shader(nir, "in brw_nir_create_passthrough_tcs");
|
|
|
|
struct brw_nir_compiler_opts opts = {};
|
|
brw_preprocess_nir(compiler, nir, &opts);
|
|
|
|
return nir;
|
|
}
|
|
|
|
nir_ssa_def *
|
|
brw_nir_load_global_const(nir_builder *b, nir_intrinsic_instr *load_uniform,
|
|
nir_ssa_def *base_addr, unsigned off)
|
|
{
|
|
assert(load_uniform->intrinsic == nir_intrinsic_load_uniform);
|
|
assert(load_uniform->dest.is_ssa);
|
|
assert(load_uniform->src[0].is_ssa);
|
|
|
|
unsigned bit_size = load_uniform->dest.ssa.bit_size;
|
|
assert(bit_size >= 8 && bit_size % 8 == 0);
|
|
unsigned byte_size = bit_size / 8;
|
|
nir_ssa_def *sysval;
|
|
|
|
if (nir_src_is_const(load_uniform->src[0])) {
|
|
uint64_t offset = off +
|
|
nir_intrinsic_base(load_uniform) +
|
|
nir_src_as_uint(load_uniform->src[0]);
|
|
|
|
/* Things should be component-aligned. */
|
|
assert(offset % byte_size == 0);
|
|
|
|
unsigned suboffset = offset % 64;
|
|
uint64_t aligned_offset = offset - suboffset;
|
|
|
|
/* Load two just in case we go over a 64B boundary */
|
|
nir_ssa_def *data[2];
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
nir_ssa_def *addr = nir_iadd_imm(b, base_addr, aligned_offset + i * 64);
|
|
data[i] = nir_load_global_const_block_intel(b, 16, addr,
|
|
nir_imm_true(b));
|
|
}
|
|
|
|
sysval = nir_extract_bits(b, data, 2, suboffset * 8,
|
|
load_uniform->num_components, bit_size);
|
|
} else {
|
|
nir_ssa_def *offset32 =
|
|
nir_iadd_imm(b, load_uniform->src[0].ssa,
|
|
off + nir_intrinsic_base(load_uniform));
|
|
nir_ssa_def *addr = nir_iadd(b, base_addr, nir_u2u64(b, offset32));
|
|
sysval = nir_load_global_constant(b, addr, byte_size,
|
|
load_uniform->num_components, bit_size);
|
|
}
|
|
|
|
return sysval;
|
|
}
|