Files
third_party_mesa3d/src/compiler/nir/nir_loop_analyze.c
Jason Ekstrand 414148cdc1 nir: Support deref instructions in loop_analyze
Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com>
Acked-by: Rob Clark <robdclark@gmail.com>
Acked-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
Acked-by: Dave Airlie <airlied@redhat.com>
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2018-06-22 20:15:56 -07:00

878 lines
28 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2015 Thomas Helland
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir.h"
#include "nir_constant_expressions.h"
#include "nir_loop_analyze.h"
typedef enum {
undefined,
invariant,
not_invariant,
basic_induction
} nir_loop_variable_type;
struct nir_basic_induction_var;
typedef struct {
/* A link for the work list */
struct list_head process_link;
bool in_loop;
/* The ssa_def associated with this info */
nir_ssa_def *def;
/* The type of this ssa_def */
nir_loop_variable_type type;
/* If this is of type basic_induction */
struct nir_basic_induction_var *ind;
/* True if variable is in an if branch or a nested loop */
bool in_control_flow;
} nir_loop_variable;
typedef struct nir_basic_induction_var {
nir_op alu_op; /* The type of alu-operation */
nir_loop_variable *alu_def; /* The def of the alu-operation */
nir_loop_variable *invariant; /* The invariant alu-operand */
nir_loop_variable *def_outside_loop; /* The phi-src outside the loop */
} nir_basic_induction_var;
typedef struct {
/* The loop we store information for */
nir_loop *loop;
/* Loop_variable for all ssa_defs in function */
nir_loop_variable *loop_vars;
/* A list of the loop_vars to analyze */
struct list_head process_list;
nir_variable_mode indirect_mask;
} loop_info_state;
static nir_loop_variable *
get_loop_var(nir_ssa_def *value, loop_info_state *state)
{
return &(state->loop_vars[value->index]);
}
typedef struct {
loop_info_state *state;
bool in_control_flow;
} init_loop_state;
static bool
init_loop_def(nir_ssa_def *def, void *void_init_loop_state)
{
init_loop_state *loop_init_state = void_init_loop_state;
nir_loop_variable *var = get_loop_var(def, loop_init_state->state);
if (loop_init_state->in_control_flow) {
var->in_control_flow = true;
} else {
/* Add to the tail of the list. That way we start at the beginning of
* the defs in the loop instead of the end when walking the list. This
* means less recursive calls. Only add defs that are not in nested
* loops or conditional blocks.
*/
list_addtail(&var->process_link, &loop_init_state->state->process_list);
}
var->in_loop = true;
return true;
}
static bool
init_loop_block(nir_block *block, loop_info_state *state,
bool in_control_flow)
{
init_loop_state init_state = {.in_control_flow = in_control_flow,
.state = state };
nir_foreach_instr(instr, block) {
if (instr->type == nir_instr_type_intrinsic ||
instr->type == nir_instr_type_alu ||
instr->type == nir_instr_type_tex) {
state->loop->info->num_instructions++;
}
nir_foreach_ssa_def(instr, init_loop_def, &init_state);
}
return true;
}
static inline bool
is_var_alu(nir_loop_variable *var)
{
return var->def->parent_instr->type == nir_instr_type_alu;
}
static inline bool
is_var_constant(nir_loop_variable *var)
{
return var->def->parent_instr->type == nir_instr_type_load_const;
}
static inline bool
is_var_phi(nir_loop_variable *var)
{
return var->def->parent_instr->type == nir_instr_type_phi;
}
static inline bool
mark_invariant(nir_ssa_def *def, loop_info_state *state)
{
nir_loop_variable *var = get_loop_var(def, state);
if (var->type == invariant)
return true;
if (!var->in_loop) {
var->type = invariant;
return true;
}
if (var->type == not_invariant)
return false;
if (is_var_alu(var)) {
nir_alu_instr *alu = nir_instr_as_alu(def->parent_instr);
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
if (!mark_invariant(alu->src[i].src.ssa, state)) {
var->type = not_invariant;
return false;
}
}
var->type = invariant;
return true;
}
/* Phis shouldn't be invariant except if one operand is invariant, and the
* other is the phi itself. These should be removed by opt_remove_phis.
* load_consts are already set to invariant and constant during init,
* and so should return earlier. Remaining op_codes are set undefined.
*/
var->type = not_invariant;
return false;
}
static void
compute_invariance_information(loop_info_state *state)
{
/* An expression is invariant in a loop L if:
* (base cases)
* its a constant
* its a variable use, all of whose single defs are outside of L
* (inductive cases)
* its a pure computation all of whose args are loop invariant
* its a variable use whose single reaching def, and the
* rhs of that def is loop-invariant
*/
list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
process_link) {
assert(!var->in_control_flow);
if (mark_invariant(var->def, state))
list_del(&var->process_link);
}
}
static bool
compute_induction_information(loop_info_state *state)
{
bool found_induction_var = false;
list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
process_link) {
/* It can't be an induction variable if it is invariant. Invariants and
* things in nested loops or conditionals should have been removed from
* the list by compute_invariance_information().
*/
assert(!var->in_control_flow && var->type != invariant);
/* We are only interested in checking phis for the basic induction
* variable case as its simple to detect. All basic induction variables
* have a phi node
*/
if (!is_var_phi(var))
continue;
nir_phi_instr *phi = nir_instr_as_phi(var->def->parent_instr);
nir_basic_induction_var *biv = rzalloc(state, nir_basic_induction_var);
nir_foreach_phi_src(src, phi) {
nir_loop_variable *src_var = get_loop_var(src->src.ssa, state);
/* If one of the sources is in a conditional or nested block then
* panic.
*/
if (src_var->in_control_flow)
break;
if (!src_var->in_loop) {
biv->def_outside_loop = src_var;
} else if (is_var_alu(src_var)) {
nir_alu_instr *alu = nir_instr_as_alu(src_var->def->parent_instr);
if (nir_op_infos[alu->op].num_inputs == 2) {
biv->alu_def = src_var;
biv->alu_op = alu->op;
for (unsigned i = 0; i < 2; i++) {
/* Is one of the operands const, and the other the phi */
if (alu->src[i].src.ssa->parent_instr->type == nir_instr_type_load_const &&
alu->src[1-i].src.ssa == &phi->dest.ssa)
biv->invariant = get_loop_var(alu->src[i].src.ssa, state);
}
}
}
}
if (biv->alu_def && biv->def_outside_loop && biv->invariant &&
is_var_constant(biv->def_outside_loop)) {
assert(is_var_constant(biv->invariant));
biv->alu_def->type = basic_induction;
biv->alu_def->ind = biv;
var->type = basic_induction;
var->ind = biv;
found_induction_var = true;
} else {
ralloc_free(biv);
}
}
return found_induction_var;
}
static bool
initialize_ssa_def(nir_ssa_def *def, void *void_state)
{
loop_info_state *state = void_state;
nir_loop_variable *var = get_loop_var(def, state);
var->in_loop = false;
var->def = def;
if (def->parent_instr->type == nir_instr_type_load_const) {
var->type = invariant;
} else {
var->type = undefined;
}
return true;
}
static bool
find_loop_terminators(loop_info_state *state)
{
bool success = false;
foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
if (node->type == nir_cf_node_if) {
nir_if *nif = nir_cf_node_as_if(node);
nir_block *break_blk = NULL;
nir_block *continue_from_blk = NULL;
bool continue_from_then = true;
nir_block *last_then = nir_if_last_then_block(nif);
nir_block *last_else = nir_if_last_else_block(nif);
if (nir_block_ends_in_break(last_then)) {
break_blk = last_then;
continue_from_blk = last_else;
continue_from_then = false;
} else if (nir_block_ends_in_break(last_else)) {
break_blk = last_else;
continue_from_blk = last_then;
}
/* If there is a break then we should find a terminator. If we can
* not find a loop terminator, but there is a break-statement then
* we should return false so that we do not try to find trip-count
*/
if (!nir_is_trivial_loop_if(nif, break_blk))
return false;
/* Continue if the if contained no jumps at all */
if (!break_blk)
continue;
if (nif->condition.ssa->parent_instr->type == nir_instr_type_phi)
return false;
nir_loop_terminator *terminator =
rzalloc(state->loop->info, nir_loop_terminator);
list_add(&terminator->loop_terminator_link,
&state->loop->info->loop_terminator_list);
terminator->nif = nif;
terminator->break_block = break_blk;
terminator->continue_from_block = continue_from_blk;
terminator->continue_from_then = continue_from_then;
terminator->conditional_instr = nif->condition.ssa->parent_instr;
success = true;
}
}
return success;
}
static int32_t
get_iteration(nir_op cond_op, nir_const_value *initial, nir_const_value *step,
nir_const_value *limit)
{
int32_t iter;
switch (cond_op) {
case nir_op_ige:
case nir_op_ilt:
case nir_op_ieq:
case nir_op_ine: {
int32_t initial_val = initial->i32[0];
int32_t span = limit->i32[0] - initial_val;
iter = span / step->i32[0];
break;
}
case nir_op_uge:
case nir_op_ult: {
uint32_t initial_val = initial->u32[0];
uint32_t span = limit->u32[0] - initial_val;
iter = span / step->u32[0];
break;
}
case nir_op_fge:
case nir_op_flt:
case nir_op_feq:
case nir_op_fne: {
float initial_val = initial->f32[0];
float span = limit->f32[0] - initial_val;
iter = span / step->f32[0];
break;
}
default:
return -1;
}
return iter;
}
static bool
test_iterations(int32_t iter_int, nir_const_value *step,
nir_const_value *limit, nir_op cond_op, unsigned bit_size,
nir_alu_type induction_base_type,
nir_const_value *initial, bool limit_rhs, bool invert_cond)
{
assert(nir_op_infos[cond_op].num_inputs == 2);
nir_const_value iter_src = { {0, } };
nir_op mul_op;
nir_op add_op;
switch (induction_base_type) {
case nir_type_float:
iter_src.f32[0] = (float) iter_int;
mul_op = nir_op_fmul;
add_op = nir_op_fadd;
break;
case nir_type_int:
case nir_type_uint:
iter_src.i32[0] = iter_int;
mul_op = nir_op_imul;
add_op = nir_op_iadd;
break;
default:
unreachable("Unhandled induction variable base type!");
}
/* Multiple the iteration count we are testing by the number of times we
* step the induction variable each iteration.
*/
nir_const_value mul_src[2] = { iter_src, *step };
nir_const_value mul_result =
nir_eval_const_opcode(mul_op, 1, bit_size, mul_src);
/* Add the initial value to the accumulated induction variable total */
nir_const_value add_src[2] = { mul_result, *initial };
nir_const_value add_result =
nir_eval_const_opcode(add_op, 1, bit_size, add_src);
nir_const_value src[2] = { { {0, } }, { {0, } } };
src[limit_rhs ? 0 : 1] = add_result;
src[limit_rhs ? 1 : 0] = *limit;
/* Evaluate the loop exit condition */
nir_const_value result = nir_eval_const_opcode(cond_op, 1, bit_size, src);
return invert_cond ? (result.u32[0] == 0) : (result.u32[0] != 0);
}
static int
calculate_iterations(nir_const_value *initial, nir_const_value *step,
nir_const_value *limit, nir_loop_variable *alu_def,
nir_alu_instr *cond_alu, bool limit_rhs, bool invert_cond)
{
assert(initial != NULL && step != NULL && limit != NULL);
nir_alu_instr *alu = nir_instr_as_alu(alu_def->def->parent_instr);
/* nir_op_isub should have been lowered away by this point */
assert(alu->op != nir_op_isub);
/* Make sure the alu type for our induction variable is compatible with the
* conditional alus input type. If its not something has gone really wrong.
*/
nir_alu_type induction_base_type =
nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type);
if (induction_base_type == nir_type_int || induction_base_type == nir_type_uint) {
assert(nir_alu_type_get_base_type(nir_op_infos[cond_alu->op].input_types[1]) == nir_type_int ||
nir_alu_type_get_base_type(nir_op_infos[cond_alu->op].input_types[1]) == nir_type_uint);
} else {
assert(nir_alu_type_get_base_type(nir_op_infos[cond_alu->op].input_types[0]) ==
induction_base_type);
}
/* Check for nsupported alu operations */
if (alu->op != nir_op_iadd && alu->op != nir_op_fadd)
return -1;
/* do-while loops can increment the starting value before the condition is
* checked. e.g.
*
* do {
* ndx++;
* } while (ndx < 3);
*
* Here we check if the induction variable is used directly by the loop
* condition and if so we assume we need to step the initial value.
*/
unsigned trip_offset = 0;
if (cond_alu->src[0].src.ssa == alu_def->def ||
cond_alu->src[1].src.ssa == alu_def->def) {
trip_offset = 1;
}
int iter_int = get_iteration(cond_alu->op, initial, step, limit);
/* If iter_int is negative the loop is ill-formed or is the conditional is
* unsigned with a huge iteration count so don't bother going any further.
*/
if (iter_int < 0)
return -1;
/* An explanation from the GLSL unrolling pass:
*
* Make sure that the calculated number of iterations satisfies the exit
* condition. This is needed to catch off-by-one errors and some types of
* ill-formed loops. For example, we need to detect that the following
* loop does not have a maximum iteration count.
*
* for (float x = 0.0; x != 0.9; x += 0.2);
*/
assert(nir_src_bit_size(alu->src[0].src) ==
nir_src_bit_size(alu->src[1].src));
unsigned bit_size = nir_src_bit_size(alu->src[0].src);
for (int bias = -1; bias <= 1; bias++) {
const int iter_bias = iter_int + bias;
if (test_iterations(iter_bias, step, limit, cond_alu->op, bit_size,
induction_base_type, initial,
limit_rhs, invert_cond)) {
return iter_bias > 0 ? iter_bias - trip_offset : iter_bias;
}
}
return -1;
}
/* Run through each of the terminators of the loop and try to infer a possible
* trip-count. We need to check them all, and set the lowest trip-count as the
* trip-count of our loop. If one of the terminators has an undecidable
* trip-count we can not safely assume anything about the duration of the
* loop.
*/
static void
find_trip_count(loop_info_state *state)
{
bool trip_count_known = true;
nir_loop_terminator *limiting_terminator = NULL;
int min_trip_count = -1;
list_for_each_entry(nir_loop_terminator, terminator,
&state->loop->info->loop_terminator_list,
loop_terminator_link) {
if (terminator->conditional_instr->type != nir_instr_type_alu) {
/* If we get here the loop is dead and will get cleaned up by the
* nir_opt_dead_cf pass.
*/
trip_count_known = false;
continue;
}
nir_alu_instr *alu = nir_instr_as_alu(terminator->conditional_instr);
nir_loop_variable *basic_ind = NULL;
nir_loop_variable *limit = NULL;
bool limit_rhs = true;
switch (alu->op) {
case nir_op_fge: case nir_op_ige: case nir_op_uge:
case nir_op_flt: case nir_op_ilt: case nir_op_ult:
case nir_op_feq: case nir_op_ieq:
case nir_op_fne: case nir_op_ine:
/* We assume that the limit is the "right" operand */
basic_ind = get_loop_var(alu->src[0].src.ssa, state);
limit = get_loop_var(alu->src[1].src.ssa, state);
if (basic_ind->type != basic_induction) {
/* We had it the wrong way, flip things around */
basic_ind = get_loop_var(alu->src[1].src.ssa, state);
limit = get_loop_var(alu->src[0].src.ssa, state);
limit_rhs = false;
}
/* The comparison has to have a basic induction variable
* and a constant for us to be able to find trip counts
*/
if (basic_ind->type != basic_induction || !is_var_constant(limit)) {
trip_count_known = false;
continue;
}
/* We have determined that we have the following constants:
* (With the typical int i = 0; i < x; i++; as an example)
* - Upper limit.
* - Starting value
* - Step / iteration size
* Thats all thats needed to calculate the trip-count
*/
nir_const_value initial_val =
nir_instr_as_load_const(basic_ind->ind->def_outside_loop->
def->parent_instr)->value;
nir_const_value step_val =
nir_instr_as_load_const(basic_ind->ind->invariant->def->
parent_instr)->value;
nir_const_value limit_val =
nir_instr_as_load_const(limit->def->parent_instr)->value;
int iterations = calculate_iterations(&initial_val, &step_val,
&limit_val,
basic_ind->ind->alu_def, alu,
limit_rhs,
terminator->continue_from_then);
/* Where we not able to calculate the iteration count */
if (iterations == -1) {
trip_count_known = false;
continue;
}
/* If this is the first run or we have found a smaller amount of
* iterations than previously (we have identified a more limiting
* terminator) set the trip count and limiting terminator.
*/
if (min_trip_count == -1 || iterations < min_trip_count) {
min_trip_count = iterations;
limiting_terminator = terminator;
}
break;
default:
trip_count_known = false;
}
}
state->loop->info->is_trip_count_known = trip_count_known;
if (min_trip_count > -1)
state->loop->info->trip_count = min_trip_count;
state->loop->info->limiting_terminator = limiting_terminator;
}
/* Checks if we should force the loop to be unrolled regardless of size
* due to array access heuristics.
*/
static bool
force_unroll_array_access_var(loop_info_state *state, nir_shader *ns,
nir_deref_var *variable)
{
nir_deref *tail = &variable->deref;
while (tail->child != NULL) {
tail = tail->child;
if (tail->deref_type == nir_deref_type_array) {
nir_deref_array *deref_array = nir_deref_as_array(tail);
if (deref_array->deref_array_type != nir_deref_array_type_indirect)
continue;
nir_loop_variable *array_index =
get_loop_var(deref_array->indirect.ssa, state);
if (array_index->type != basic_induction)
continue;
/* If an array is indexed by a loop induction variable, and the
* array size is exactly the number of loop iterations, this is
* probably a simple for-loop trying to access each element in
* turn; the application may expect it to be unrolled.
*/
if (glsl_get_length(variable->deref.type) ==
state->loop->info->trip_count) {
state->loop->info->force_unroll = true;
return state->loop->info->force_unroll;
}
if (variable->var->data.mode & state->indirect_mask) {
state->loop->info->force_unroll = true;
return state->loop->info->force_unroll;
}
}
}
return false;
}
static bool
force_unroll_array_access(loop_info_state *state, nir_shader *ns,
nir_deref_instr *deref)
{
for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
if (d->deref_type != nir_deref_type_array)
continue;
assert(d->arr.index.is_ssa);
nir_loop_variable *array_index = get_loop_var(d->arr.index.ssa, state);
if (array_index->type != basic_induction)
continue;
nir_deref_instr *parent = nir_deref_instr_parent(d);
assert(glsl_type_is_array(parent->type) ||
glsl_type_is_matrix(parent->type));
if (glsl_get_length(parent->type) == state->loop->info->trip_count) {
state->loop->info->force_unroll = true;
return true;
}
if (deref->mode & state->indirect_mask) {
state->loop->info->force_unroll = true;
return true;
}
}
return false;
}
static bool
force_unroll_heuristics(loop_info_state *state, nir_shader *ns,
nir_block *block)
{
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
/* Check for arrays variably-indexed by a loop induction variable.
* Unrolling the loop may convert that access into constant-indexing.
*/
if (intrin->intrinsic == nir_intrinsic_load_var ||
intrin->intrinsic == nir_intrinsic_store_var ||
intrin->intrinsic == nir_intrinsic_copy_var) {
unsigned num_vars =
nir_intrinsic_infos[intrin->intrinsic].num_variables;
for (unsigned i = 0; i < num_vars; i++) {
if (force_unroll_array_access_var(state, ns, intrin->variables[i]))
return true;
}
}
if (intrin->intrinsic == nir_intrinsic_load_deref ||
intrin->intrinsic == nir_intrinsic_store_deref ||
intrin->intrinsic == nir_intrinsic_copy_deref) {
if (force_unroll_array_access(state, ns,
nir_src_as_deref(intrin->src[0])))
return true;
if (intrin->intrinsic == nir_intrinsic_copy_deref &&
force_unroll_array_access(state, ns,
nir_src_as_deref(intrin->src[1])))
return true;
}
}
return false;
}
static void
get_loop_info(loop_info_state *state, nir_function_impl *impl)
{
/* Initialize all variables to "outside_loop". This also marks defs
* invariant and constant if they are nir_instr_type_load_consts
*/
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block)
nir_foreach_ssa_def(instr, initialize_ssa_def, state);
}
/* Add all entries in the outermost part of the loop to the processing list
* Mark the entries in conditionals or in nested loops accordingly
*/
foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
switch (node->type) {
case nir_cf_node_block:
init_loop_block(nir_cf_node_as_block(node), state, false);
break;
case nir_cf_node_if:
nir_foreach_block_in_cf_node(block, node)
init_loop_block(block, state, true);
break;
case nir_cf_node_loop:
nir_foreach_block_in_cf_node(block, node) {
init_loop_block(block, state, true);
}
break;
case nir_cf_node_function:
break;
}
}
/* Induction analysis needs invariance information so get that first */
compute_invariance_information(state);
/* We have invariance information so try to find induction variables */
if (!compute_induction_information(state))
return;
/* Try to find all simple terminators of the loop. If we can't find any,
* or we find possible terminators that have side effects then bail.
*/
if (!find_loop_terminators(state)) {
list_for_each_entry_safe(nir_loop_terminator, terminator,
&state->loop->info->loop_terminator_list,
loop_terminator_link) {
list_del(&terminator->loop_terminator_link);
ralloc_free(terminator);
}
return;
}
/* Run through each of the terminators and try to compute a trip-count */
find_trip_count(state);
nir_shader *ns = impl->function->shader;
foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
if (node->type == nir_cf_node_block) {
if (force_unroll_heuristics(state, ns, nir_cf_node_as_block(node)))
break;
} else {
nir_foreach_block_in_cf_node(block, node) {
if (force_unroll_heuristics(state, ns, block))
break;
}
}
}
}
static loop_info_state *
initialize_loop_info_state(nir_loop *loop, void *mem_ctx,
nir_function_impl *impl)
{
loop_info_state *state = rzalloc(mem_ctx, loop_info_state);
state->loop_vars = rzalloc_array(mem_ctx, nir_loop_variable,
impl->ssa_alloc);
state->loop = loop;
list_inithead(&state->process_list);
if (loop->info)
ralloc_free(loop->info);
loop->info = rzalloc(loop, nir_loop_info);
list_inithead(&loop->info->loop_terminator_list);
return state;
}
static void
process_loops(nir_cf_node *cf_node, nir_variable_mode indirect_mask)
{
switch (cf_node->type) {
case nir_cf_node_block:
return;
case nir_cf_node_if: {
nir_if *if_stmt = nir_cf_node_as_if(cf_node);
foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->then_list)
process_loops(nested_node, indirect_mask);
foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->else_list)
process_loops(nested_node, indirect_mask);
return;
}
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(cf_node);
foreach_list_typed(nir_cf_node, nested_node, node, &loop->body)
process_loops(nested_node, indirect_mask);
break;
}
default:
unreachable("unknown cf node type");
}
nir_loop *loop = nir_cf_node_as_loop(cf_node);
nir_function_impl *impl = nir_cf_node_get_function(cf_node);
void *mem_ctx = ralloc_context(NULL);
loop_info_state *state = initialize_loop_info_state(loop, mem_ctx, impl);
state->indirect_mask = indirect_mask;
get_loop_info(state, impl);
ralloc_free(mem_ctx);
}
void
nir_loop_analyze_impl(nir_function_impl *impl,
nir_variable_mode indirect_mask)
{
nir_index_ssa_defs(impl);
foreach_list_typed(nir_cf_node, node, node, &impl->body)
process_loops(node, indirect_mask);
}