Files
third_party_mesa3d/src/mesa/main/texobj.c
2000-05-23 17:14:49 +00:00

633 lines
17 KiB
C

/*
* Mesa 3-D graphics library
* Version: 3.3
*
* Copyright (C) 1999-2000 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifdef PC_HEADER
#include "all.h"
#else
#include "glheader.h"
#include "colortab.h"
#include "context.h"
#include "enums.h"
#include "hash.h"
#include "mem.h"
#include "teximage.h"
#include "texstate.h"
#include "texobj.h"
#include "types.h"
#endif
/*
* Allocate a new texture object and add it to the linked list of texture
* objects. If name>0 then also insert the new texture object into the hash
* table.
* Input: shared - the shared GL state structure to contain the texture object
* name - integer name for the texture object
* dimensions - either 1, 2, 3 or 6 (cube map)
* Return: pointer to new texture object
*/
struct gl_texture_object *
gl_alloc_texture_object( struct gl_shared_state *shared, GLuint name,
GLuint dimensions)
{
struct gl_texture_object *obj;
ASSERT(dimensions <= 3 || dimensions == 6);
obj = CALLOC_STRUCT(gl_texture_object);
if (obj) {
/* init the non-zero fields */
obj->RefCount = 1;
obj->Name = name;
obj->Dimensions = dimensions;
obj->WrapS = GL_REPEAT;
obj->WrapT = GL_REPEAT;
obj->MinFilter = GL_NEAREST_MIPMAP_LINEAR;
obj->MagFilter = GL_LINEAR;
obj->MinLod = -1000.0;
obj->MaxLod = 1000.0;
obj->BaseLevel = 0;
obj->MaxLevel = 1000;
obj->MinMagThresh = 0.0F;
_mesa_init_colortable(&obj->Palette);
/* insert into linked list */
if (shared) {
_glthread_LOCK_MUTEX(shared->Mutex);
obj->Next = shared->TexObjectList;
shared->TexObjectList = obj;
_glthread_UNLOCK_MUTEX(shared->Mutex);
}
if (name > 0) {
/* insert into hash table */
_mesa_HashInsert(shared->TexObjects, name, obj);
}
}
return obj;
}
/*
* Deallocate a texture object struct and remove it from the given
* shared GL state.
* Input: shared - the shared GL state to which the object belongs
* t - the texture object to delete
*/
void gl_free_texture_object( struct gl_shared_state *shared,
struct gl_texture_object *t )
{
struct gl_texture_object *tprev, *tcurr;
assert(t);
/* Remove t from dirty list so we don't touch free'd memory later.
* Test for shared since Proxy texture aren't in global linked list.
*/
if (shared)
gl_remove_texobj_from_dirty_list( shared, t );
/* unlink t from the linked list */
if (shared) {
_glthread_LOCK_MUTEX(shared->Mutex);
tprev = NULL;
tcurr = shared->TexObjectList;
while (tcurr) {
if (tcurr==t) {
if (tprev) {
tprev->Next = t->Next;
}
else {
shared->TexObjectList = t->Next;
}
break;
}
tprev = tcurr;
tcurr = tcurr->Next;
}
_glthread_UNLOCK_MUTEX(shared->Mutex);
}
if (t->Name) {
/* remove from hash table */
_mesa_HashRemove(shared->TexObjects, t->Name);
}
_mesa_free_colortable_data(&t->Palette);
/* free texture images */
{
GLuint i;
for (i=0;i<MAX_TEXTURE_LEVELS;i++) {
if (t->Image[i]) {
_mesa_free_texture_image( t->Image[i] );
}
}
}
/* free this object */
FREE( t );
}
/*
* Examine a texture object to determine if it is complete or not.
* The t->Complete flag will be set to GL_TRUE or GL_FALSE accordingly.
*/
void
_mesa_test_texobj_completeness( const GLcontext *ctx,
struct gl_texture_object *t )
{
t->Complete = GL_TRUE; /* be optimistic */
/* Always need level zero image */
if (!t->Image[0]) {
t->Complete = GL_FALSE;
return;
}
/* Compute number of mipmap levels */
if (t->Dimensions==1) {
t->P = t->Image[0]->WidthLog2;
}
else if (t->Dimensions == 2 || t->Dimensions == 6) {
t->P = MAX2(t->Image[0]->WidthLog2, t->Image[0]->HeightLog2);
}
else if (t->Dimensions==3) {
GLint max = MAX2(t->Image[0]->WidthLog2, t->Image[0]->HeightLog2);
max = MAX2(max, (GLint)(t->Image[0]->DepthLog2));
t->P = max;
}
/* Compute M (see the 1.2 spec) used during mipmapping */
t->M = (GLfloat) (MIN2(t->MaxLevel, t->P) - t->BaseLevel);
if (t->MinFilter!=GL_NEAREST && t->MinFilter!=GL_LINEAR) {
/*
* Mipmapping: determine if we have a complete set of mipmaps
*/
GLint i;
GLint minLevel = t->BaseLevel;
GLint maxLevel = MIN2(t->P, ctx->Const.MaxTextureLevels-1);
maxLevel = MIN2(maxLevel, t->MaxLevel);
if (minLevel > maxLevel) {
t->Complete = GL_FALSE;
return;
}
/* Test dimension-independent attributes */
for (i = minLevel; i <= maxLevel; i++) {
if (t->Image[i]) {
if (t->Image[i]->Format != t->Image[0]->Format) {
t->Complete = GL_FALSE;
return;
}
if (t->Image[i]->Border != t->Image[0]->Border) {
t->Complete = GL_FALSE;
return;
}
}
}
/* Test things which depend on number of texture image dimensions */
if (t->Dimensions==1) {
/* Test 1-D mipmaps */
GLuint width = t->Image[0]->Width2;
for (i=1; i<ctx->Const.MaxTextureLevels; i++) {
if (width>1) {
width /= 2;
}
if (i >= minLevel && i <= maxLevel) {
if (!t->Image[i]) {
t->Complete = GL_FALSE;
return;
}
if (t->Image[i]->Width2 != width ) {
t->Complete = GL_FALSE;
return;
}
}
if (width==1) {
return; /* found smallest needed mipmap, all done! */
}
}
}
else if (t->Dimensions==2) {
/* Test 2-D mipmaps */
GLuint width = t->Image[0]->Width2;
GLuint height = t->Image[0]->Height2;
for (i=1; i<ctx->Const.MaxTextureLevels; i++) {
if (width>1) {
width /= 2;
}
if (height>1) {
height /= 2;
}
if (i >= minLevel && i <= maxLevel) {
if (!t->Image[i]) {
t->Complete = GL_FALSE;
return;
}
if (t->Image[i]->Width2 != width) {
t->Complete = GL_FALSE;
return;
}
if (t->Image[i]->Height2 != height) {
t->Complete = GL_FALSE;
return;
}
if (width==1 && height==1) {
return; /* found smallest needed mipmap, all done! */
}
}
}
}
else if (t->Dimensions==3) {
/* Test 3-D mipmaps */
GLuint width = t->Image[0]->Width2;
GLuint height = t->Image[0]->Height2;
GLuint depth = t->Image[0]->Depth2;
for (i=1; i<ctx->Const.MaxTextureLevels; i++) {
if (width>1) {
width /= 2;
}
if (height>1) {
height /= 2;
}
if (depth>1) {
depth /= 2;
}
if (i >= minLevel && i <= maxLevel) {
if (!t->Image[i]) {
t->Complete = GL_FALSE;
return;
}
if (t->Image[i]->Width2 != width) {
t->Complete = GL_FALSE;
return;
}
if (t->Image[i]->Height2 != height) {
t->Complete = GL_FALSE;
return;
}
if (t->Image[i]->Depth2 != depth) {
t->Complete = GL_FALSE;
return;
}
}
if (width==1 && height==1 && depth==1) {
return; /* found smallest needed mipmap, all done! */
}
}
}
else {
/* Dimensions = ??? */
gl_problem(NULL, "Bug in gl_test_texture_object_completeness\n");
}
}
}
_glthread_DECLARE_STATIC_MUTEX(GenTexturesLock);
/*
* Execute glGenTextures
*/
void
_mesa_GenTextures( GLsizei n, GLuint *texName )
{
GET_CURRENT_CONTEXT(ctx);
GLuint first;
GLint i;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glGenTextures");
if (n<0) {
gl_error( ctx, GL_INVALID_VALUE, "glGenTextures" );
return;
}
/*
* This must be atomic (generation and allocation of texture IDs)
*/
_glthread_LOCK_MUTEX(GenTexturesLock);
first = _mesa_HashFindFreeKeyBlock(ctx->Shared->TexObjects, n);
/* Return the texture names */
for (i=0;i<n;i++) {
texName[i] = first + i;
}
/* Allocate new, empty texture objects */
for (i=0;i<n;i++) {
GLuint name = first + i;
GLuint dims = 0;
(void) gl_alloc_texture_object(ctx->Shared, name, dims);
}
_glthread_UNLOCK_MUTEX(GenTexturesLock);
}
/*
* Execute glDeleteTextures
*/
void
_mesa_DeleteTextures( GLsizei n, const GLuint *texName)
{
GET_CURRENT_CONTEXT(ctx);
GLint i;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glDeleteTextures");
for (i=0;i<n;i++) {
struct gl_texture_object *t;
if (texName[i]>0) {
t = (struct gl_texture_object *)
_mesa_HashLookup(ctx->Shared->TexObjects, texName[i]);
if (t) {
/* First check if this texture is currently bound.
* If so, unbind it and decrement the reference count.
*/
GLuint u;
for (u = 0; u < MAX_TEXTURE_UNITS; u++) {
struct gl_texture_unit *unit = &ctx->Texture.Unit[u];
GLuint d;
for (d = 1 ; d <= 3 ; d++) {
if (unit->CurrentD[d] == t) {
unit->CurrentD[d] = ctx->Shared->DefaultD[d];
ctx->Shared->DefaultD[d]->RefCount++;
t->RefCount--;
ASSERT( t->RefCount >= 0 );
}
}
}
/* Decrement reference count and delete if zero */
t->RefCount--;
ASSERT( t->RefCount >= 0 );
if (t->RefCount == 0) {
if (ctx->Driver.DeleteTexture)
(*ctx->Driver.DeleteTexture)( ctx, t );
gl_free_texture_object(ctx->Shared, t);
}
}
}
}
}
/*
* Execute glBindTexture
*/
void
_mesa_BindTexture( GLenum target, GLuint texName )
{
GET_CURRENT_CONTEXT(ctx);
GLuint unit = ctx->Texture.CurrentUnit;
struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
struct gl_texture_object *oldTexObj;
struct gl_texture_object *newTexObj;
GLuint dim;
if (MESA_VERBOSE & (VERBOSE_API|VERBOSE_TEXTURE))
fprintf(stderr, "glBindTexture %s %d\n",
gl_lookup_enum_by_nr(target), (GLint) texName);
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glBindTexture");
switch (target) {
case GL_TEXTURE_1D:
dim = 1;
oldTexObj = texUnit->CurrentD[1];
break;
case GL_TEXTURE_2D:
dim = 2;
oldTexObj = texUnit->CurrentD[2];
break;
case GL_TEXTURE_3D:
dim = 3;
oldTexObj = texUnit->CurrentD[3];
break;
case GL_TEXTURE_CUBE_MAP_ARB:
if (ctx->Extensions.HaveTextureCubeMap) {
dim = 6;
oldTexObj = texUnit->CurrentCubeMap;
break;
}
/* fallthrough */
default:
gl_error( ctx, GL_INVALID_ENUM, "glBindTexture(target)" );
return;
}
if (oldTexObj->Name == texName)
return;
if (texName == 0) {
if (target == GL_TEXTURE_CUBE_MAP_ARB)
newTexObj = ctx->Shared->DefaultCubeMap;
else
newTexObj = ctx->Shared->DefaultD[dim];
}
else {
struct _mesa_HashTable *hash = ctx->Shared->TexObjects;
newTexObj = (struct gl_texture_object *) _mesa_HashLookup(hash, texName);
if (!newTexObj)
newTexObj = gl_alloc_texture_object(ctx->Shared, texName, dim);
if (newTexObj->Dimensions != dim) {
if (newTexObj->Dimensions) {
/* the named texture object's dimensions don't match the target */
gl_error( ctx, GL_INVALID_OPERATION, "glBindTexture" );
return;
}
newTexObj->Dimensions = dim;
}
}
newTexObj->RefCount++;
switch (target) {
case GL_TEXTURE_1D:
texUnit->CurrentD[1] = newTexObj;
break;
case GL_TEXTURE_2D:
texUnit->CurrentD[2] = newTexObj;
break;
case GL_TEXTURE_3D:
texUnit->CurrentD[3] = newTexObj;
break;
case GL_TEXTURE_CUBE_MAP_ARB:
texUnit->CurrentCubeMap = newTexObj;
break;
default:
gl_problem(ctx, "bad target in BindTexture");
}
/* If we've changed the CurrentD[123] texture object then update the
* ctx->Texture.Current pointer to point to the new texture object.
*/
texUnit->Current = texUnit->CurrentD[texUnit->CurrentDimension];
/* Check if we may have to use a new triangle rasterizer */
if ((ctx->IndirectTriangles & DD_SW_RASTERIZE) &&
( oldTexObj->WrapS != newTexObj->WrapS
|| oldTexObj->WrapT != newTexObj->WrapT
|| oldTexObj->WrapR != newTexObj->WrapR
|| oldTexObj->MinFilter != newTexObj->MinFilter
|| oldTexObj->MagFilter != newTexObj->MagFilter
|| (oldTexObj->Image[0] && newTexObj->Image[0] &&
(oldTexObj->Image[0]->Format!=newTexObj->Image[0]->Format))))
{
ctx->NewState |= (NEW_RASTER_OPS | NEW_TEXTURING);
}
if (oldTexObj->Complete != newTexObj->Complete)
ctx->NewState |= NEW_TEXTURING;
/* Pass BindTexture call to device driver */
if (ctx->Driver.BindTexture) {
(*ctx->Driver.BindTexture)( ctx, target, newTexObj );
}
if (oldTexObj->Name > 0) {
/* never delete default (id=0) texture objects */
oldTexObj->RefCount--;
if (oldTexObj->RefCount <= 0) {
if (ctx->Driver.DeleteTexture) {
(*ctx->Driver.DeleteTexture)( ctx, oldTexObj );
}
gl_free_texture_object(ctx->Shared, oldTexObj);
}
}
}
/*
* Execute glPrioritizeTextures
*/
void
_mesa_PrioritizeTextures( GLsizei n, const GLuint *texName,
const GLclampf *priorities )
{
GET_CURRENT_CONTEXT(ctx);
GLint i;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glPrioritizeTextures");
if (n<0) {
gl_error( ctx, GL_INVALID_VALUE, "glPrioritizeTextures" );
return;
}
for (i=0;i<n;i++) {
struct gl_texture_object *t;
if (texName[i]>0) {
t = (struct gl_texture_object *)
_mesa_HashLookup(ctx->Shared->TexObjects, texName[i]);
if (t) {
t->Priority = CLAMP( priorities[i], 0.0F, 1.0F );
if (ctx->Driver.PrioritizeTexture)
ctx->Driver.PrioritizeTexture( ctx, t, t->Priority );
}
}
}
}
/*
* Execute glAreTexturesResident
*/
GLboolean
_mesa_AreTexturesResident( GLsizei n, const GLuint *texName,
GLboolean *residences )
{
GET_CURRENT_CONTEXT(ctx);
GLboolean resident = GL_TRUE;
GLint i;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH_WITH_RETVAL(ctx,
"glAreTexturesResident",
GL_FALSE);
if (n<0) {
gl_error( ctx, GL_INVALID_VALUE, "glAreTexturesResident(n)" );
return GL_FALSE;
}
for (i=0;i<n;i++) {
struct gl_texture_object *t;
if (texName[i]==0) {
gl_error( ctx, GL_INVALID_VALUE, "glAreTexturesResident(textures)" );
return GL_FALSE;
}
t = (struct gl_texture_object *)
_mesa_HashLookup(ctx->Shared->TexObjects, texName[i]);
if (t) {
if (ctx->Driver.IsTextureResident)
residences[i] = ctx->Driver.IsTextureResident( ctx, t );
else
residences[i] = GL_TRUE;
}
else {
gl_error( ctx, GL_INVALID_VALUE, "glAreTexturesResident(textures)" );
return GL_FALSE;
}
}
return resident;
}
/*
* Execute glIsTexture
*/
GLboolean
_mesa_IsTexture( GLuint texture )
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH_WITH_RETVAL(ctx, "glIsTextures",
GL_FALSE);
if (texture>0 && _mesa_HashLookup(ctx->Shared->TexObjects, texture)) {
return GL_TRUE;
}
else {
return GL_FALSE;
}
}