Files
third_party_mesa3d/src/vulkan/anv_compiler.cpp
Chad Versace 2c2233e328 vk: Prefix most filenames with anv
Jason started the task by creating anv_cmd_buffer.c and anv_cmd_emit.c.
This patch finishes the task by renaming all other files except
gen*_pack.h and glsl_scraper.py.
2015-07-17 20:25:38 -07:00

1210 lines
40 KiB
C++

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
#include <brw_context.h>
#include <brw_wm.h> /* brw_new_shader_program is here */
#include <brw_nir.h>
#include <brw_vs.h>
#include <brw_gs.h>
#include <brw_cs.h>
#include <mesa/main/shaderobj.h>
#include <mesa/main/fbobject.h>
#include <mesa/main/context.h>
#include <mesa/program/program.h>
#include <glsl/program.h>
/* XXX: We need this to keep symbols in nir.h from conflicting with the
* generated GEN command packing headers. We need to fix *both* to not
* define something as generic as LOAD.
*/
#undef LOAD
#include <glsl/nir/nir_spirv.h>
#define SPIR_V_MAGIC_NUMBER 0x07230203
static void
fail_if(int cond, const char *format, ...)
{
va_list args;
if (!cond)
return;
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
exit(1);
}
static VkResult
set_binding_table_layout(struct brw_stage_prog_data *prog_data,
struct anv_pipeline *pipeline, uint32_t stage)
{
uint32_t bias, count, k, *map;
struct anv_pipeline_layout *layout = pipeline->layout;
/* No layout is valid for shaders that don't bind any resources. */
if (pipeline->layout == NULL)
return VK_SUCCESS;
if (stage == VK_SHADER_STAGE_FRAGMENT)
bias = MAX_RTS;
else
bias = 0;
count = layout->stage[stage].surface_count;
prog_data->map_entries =
(uint32_t *) malloc(count * sizeof(prog_data->map_entries[0]));
if (prog_data->map_entries == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
k = bias;
map = prog_data->map_entries;
for (uint32_t i = 0; i < layout->num_sets; i++) {
prog_data->bind_map[i].index = map;
for (uint32_t j = 0; j < layout->set[i].layout->stage[stage].surface_count; j++)
*map++ = k++;
prog_data->bind_map[i].index_count =
layout->set[i].layout->stage[stage].surface_count;
}
return VK_SUCCESS;
}
static void
brw_vs_populate_key(struct brw_context *brw,
struct brw_vertex_program *vp,
struct brw_vs_prog_key *key)
{
struct gl_context *ctx = &brw->ctx;
/* BRW_NEW_VERTEX_PROGRAM */
struct gl_program *prog = (struct gl_program *) vp;
memset(key, 0, sizeof(*key));
/* Just upload the program verbatim for now. Always send it all
* the inputs it asks for, whether they are varying or not.
*/
key->base.program_string_id = vp->id;
brw_setup_vue_key_clip_info(brw, &key->base,
vp->program.Base.UsesClipDistanceOut);
/* _NEW_POLYGON */
if (brw->gen < 6) {
key->copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
ctx->Polygon.BackMode != GL_FILL);
}
if (prog->OutputsWritten & (VARYING_BIT_COL0 | VARYING_BIT_COL1 |
VARYING_BIT_BFC0 | VARYING_BIT_BFC1)) {
/* _NEW_LIGHT | _NEW_BUFFERS */
key->clamp_vertex_color = ctx->Light._ClampVertexColor;
}
/* _NEW_POINT */
if (brw->gen < 6 && ctx->Point.PointSprite) {
for (int i = 0; i < 8; i++) {
if (ctx->Point.CoordReplace[i])
key->point_coord_replace |= (1 << i);
}
}
/* _NEW_TEXTURE */
brw_populate_sampler_prog_key_data(ctx, prog, brw->vs.base.sampler_count,
&key->base.tex);
}
static bool
really_do_vs_prog(struct brw_context *brw,
struct gl_shader_program *prog,
struct brw_vertex_program *vp,
struct brw_vs_prog_key *key, struct anv_pipeline *pipeline)
{
GLuint program_size;
const GLuint *program;
struct brw_vs_compile c;
struct brw_vs_prog_data *prog_data = &pipeline->vs_prog_data;
struct brw_stage_prog_data *stage_prog_data = &prog_data->base.base;
void *mem_ctx;
struct gl_shader *vs = NULL;
if (prog)
vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];
memset(&c, 0, sizeof(c));
memcpy(&c.key, key, sizeof(*key));
memset(prog_data, 0, sizeof(*prog_data));
mem_ctx = ralloc_context(NULL);
c.vp = vp;
/* Allocate the references to the uniforms that will end up in the
* prog_data associated with the compiled program, and which will be freed
* by the state cache.
*/
int param_count;
if (vs) {
/* We add padding around uniform values below vec4 size, with the worst
* case being a float value that gets blown up to a vec4, so be
* conservative here.
*/
param_count = vs->num_uniform_components * 4;
} else {
param_count = vp->program.Base.Parameters->NumParameters * 4;
}
/* vec4_visitor::setup_uniform_clipplane_values() also uploads user clip
* planes as uniforms.
*/
param_count += c.key.base.nr_userclip_plane_consts * 4;
/* Setting nr_params here NOT to the size of the param and pull_param
* arrays, but to the number of uniform components vec4_visitor
* needs. vec4_visitor::setup_uniforms() will set it back to a proper value.
*/
stage_prog_data->nr_params = ALIGN(param_count, 4) / 4;
if (vs) {
stage_prog_data->nr_params += vs->num_samplers;
}
GLbitfield64 outputs_written = vp->program.Base.OutputsWritten;
prog_data->inputs_read = vp->program.Base.InputsRead;
if (c.key.copy_edgeflag) {
outputs_written |= BITFIELD64_BIT(VARYING_SLOT_EDGE);
prog_data->inputs_read |= VERT_BIT_EDGEFLAG;
}
if (brw->gen < 6) {
/* Put dummy slots into the VUE for the SF to put the replaced
* point sprite coords in. We shouldn't need these dummy slots,
* which take up precious URB space, but it would mean that the SF
* doesn't get nice aligned pairs of input coords into output
* coords, which would be a pain to handle.
*/
for (int i = 0; i < 8; i++) {
if (c.key.point_coord_replace & (1 << i))
outputs_written |= BITFIELD64_BIT(VARYING_SLOT_TEX0 + i);
}
/* if back colors are written, allocate slots for front colors too */
if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC0))
outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL0);
if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC1))
outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL1);
}
/* In order for legacy clipping to work, we need to populate the clip
* distance varying slots whenever clipping is enabled, even if the vertex
* shader doesn't write to gl_ClipDistance.
*/
if (c.key.base.userclip_active) {
outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
}
brw_compute_vue_map(brw->intelScreen->devinfo,
&prog_data->base.vue_map, outputs_written);
\
set_binding_table_layout(&prog_data->base.base, pipeline,
VK_SHADER_STAGE_VERTEX);
/* Emit GEN4 code.
*/
program = brw_vs_emit(brw, prog, &c, prog_data, mem_ctx, &program_size);
if (program == NULL) {
ralloc_free(mem_ctx);
return false;
}
struct anv_state vs_state = anv_state_stream_alloc(&pipeline->program_stream,
program_size, 64);
memcpy(vs_state.map, program, program_size);
pipeline->vs_simd8 = vs_state.offset;
ralloc_free(mem_ctx);
return true;
}
void brw_wm_populate_key(struct brw_context *brw,
struct brw_fragment_program *fp,
struct brw_wm_prog_key *key)
{
struct gl_context *ctx = &brw->ctx;
struct gl_program *prog = (struct gl_program *) brw->fragment_program;
GLuint lookup = 0;
GLuint line_aa;
bool program_uses_dfdy = fp->program.UsesDFdy;
struct gl_framebuffer draw_buffer;
bool multisample_fbo;
memset(key, 0, sizeof(*key));
for (int i = 0; i < MAX_SAMPLERS; i++) {
/* Assume color sampler, no swizzling. */
key->tex.swizzles[i] = SWIZZLE_XYZW;
}
/* A non-zero framebuffer name indicates that the framebuffer was created by
* the user rather than the window system. */
draw_buffer.Name = 1;
draw_buffer.Visual.samples = 1;
draw_buffer._NumColorDrawBuffers = 1;
draw_buffer._NumColorDrawBuffers = 1;
draw_buffer.Width = 400;
draw_buffer.Height = 400;
ctx->DrawBuffer = &draw_buffer;
multisample_fbo = ctx->DrawBuffer->Visual.samples > 1;
/* Build the index for table lookup
*/
if (brw->gen < 6) {
/* _NEW_COLOR */
if (fp->program.UsesKill || ctx->Color.AlphaEnabled)
lookup |= IZ_PS_KILL_ALPHATEST_BIT;
if (fp->program.Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
/* _NEW_DEPTH */
if (ctx->Depth.Test)
lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
if (ctx->Depth.Test && ctx->Depth.Mask) /* ?? */
lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
/* _NEW_STENCIL | _NEW_BUFFERS */
if (ctx->Stencil._Enabled) {
lookup |= IZ_STENCIL_TEST_ENABLE_BIT;
if (ctx->Stencil.WriteMask[0] ||
ctx->Stencil.WriteMask[ctx->Stencil._BackFace])
lookup |= IZ_STENCIL_WRITE_ENABLE_BIT;
}
key->iz_lookup = lookup;
}
line_aa = AA_NEVER;
/* _NEW_LINE, _NEW_POLYGON, BRW_NEW_REDUCED_PRIMITIVE */
if (ctx->Line.SmoothFlag) {
if (brw->reduced_primitive == GL_LINES) {
line_aa = AA_ALWAYS;
}
else if (brw->reduced_primitive == GL_TRIANGLES) {
if (ctx->Polygon.FrontMode == GL_LINE) {
line_aa = AA_SOMETIMES;
if (ctx->Polygon.BackMode == GL_LINE ||
(ctx->Polygon.CullFlag &&
ctx->Polygon.CullFaceMode == GL_BACK))
line_aa = AA_ALWAYS;
}
else if (ctx->Polygon.BackMode == GL_LINE) {
line_aa = AA_SOMETIMES;
if ((ctx->Polygon.CullFlag &&
ctx->Polygon.CullFaceMode == GL_FRONT))
line_aa = AA_ALWAYS;
}
}
}
key->line_aa = line_aa;
/* _NEW_HINT */
key->high_quality_derivatives =
ctx->Hint.FragmentShaderDerivative == GL_NICEST;
if (brw->gen < 6)
key->stats_wm = brw->stats_wm;
/* _NEW_LIGHT */
key->flat_shade = (ctx->Light.ShadeModel == GL_FLAT);
/* _NEW_FRAG_CLAMP | _NEW_BUFFERS */
key->clamp_fragment_color = ctx->Color._ClampFragmentColor;
/* _NEW_TEXTURE */
brw_populate_sampler_prog_key_data(ctx, prog, brw->wm.base.sampler_count,
&key->tex);
/* _NEW_BUFFERS */
/*
* Include the draw buffer origin and height so that we can calculate
* fragment position values relative to the bottom left of the drawable,
* from the incoming screen origin relative position we get as part of our
* payload.
*
* This is only needed for the WM_WPOSXY opcode when the fragment program
* uses the gl_FragCoord input.
*
* We could avoid recompiling by including this as a constant referenced by
* our program, but if we were to do that it would also be nice to handle
* getting that constant updated at batchbuffer submit time (when we
* hold the lock and know where the buffer really is) rather than at emit
* time when we don't hold the lock and are just guessing. We could also
* just avoid using this as key data if the program doesn't use
* fragment.position.
*
* For DRI2 the origin_x/y will always be (0,0) but we still need the
* drawable height in order to invert the Y axis.
*/
if (fp->program.Base.InputsRead & VARYING_BIT_POS) {
key->drawable_height = ctx->DrawBuffer->Height;
}
if ((fp->program.Base.InputsRead & VARYING_BIT_POS) || program_uses_dfdy) {
key->render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
}
/* _NEW_BUFFERS */
key->nr_color_regions = ctx->DrawBuffer->_NumColorDrawBuffers;
/* _NEW_MULTISAMPLE, _NEW_COLOR, _NEW_BUFFERS */
key->replicate_alpha = ctx->DrawBuffer->_NumColorDrawBuffers > 1 &&
(ctx->Multisample.SampleAlphaToCoverage || ctx->Color.AlphaEnabled);
/* _NEW_BUFFERS _NEW_MULTISAMPLE */
/* Ignore sample qualifier while computing this flag. */
key->persample_shading =
_mesa_get_min_invocations_per_fragment(ctx, &fp->program, true) > 1;
if (key->persample_shading)
key->persample_2x = ctx->DrawBuffer->Visual.samples == 2;
key->compute_pos_offset =
_mesa_get_min_invocations_per_fragment(ctx, &fp->program, false) > 1 &&
fp->program.Base.SystemValuesRead & SYSTEM_BIT_SAMPLE_POS;
key->compute_sample_id =
multisample_fbo &&
ctx->Multisample.Enabled &&
(fp->program.Base.SystemValuesRead & SYSTEM_BIT_SAMPLE_ID);
/* BRW_NEW_VUE_MAP_GEOM_OUT */
if (brw->gen < 6 || _mesa_bitcount_64(fp->program.Base.InputsRead &
BRW_FS_VARYING_INPUT_MASK) > 16)
key->input_slots_valid = brw->vue_map_geom_out.slots_valid;
/* _NEW_COLOR | _NEW_BUFFERS */
/* Pre-gen6, the hardware alpha test always used each render
* target's alpha to do alpha test, as opposed to render target 0's alpha
* like GL requires. Fix that by building the alpha test into the
* shader, and we'll skip enabling the fixed function alpha test.
*/
if (brw->gen < 6 && ctx->DrawBuffer->_NumColorDrawBuffers > 1 && ctx->Color.AlphaEnabled) {
key->alpha_test_func = ctx->Color.AlphaFunc;
key->alpha_test_ref = ctx->Color.AlphaRef;
}
/* The unique fragment program ID */
key->program_string_id = fp->id;
ctx->DrawBuffer = NULL;
}
static uint8_t
computed_depth_mode(struct gl_fragment_program *fp)
{
if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
switch (fp->FragDepthLayout) {
case FRAG_DEPTH_LAYOUT_NONE:
case FRAG_DEPTH_LAYOUT_ANY:
return BRW_PSCDEPTH_ON;
case FRAG_DEPTH_LAYOUT_GREATER:
return BRW_PSCDEPTH_ON_GE;
case FRAG_DEPTH_LAYOUT_LESS:
return BRW_PSCDEPTH_ON_LE;
case FRAG_DEPTH_LAYOUT_UNCHANGED:
return BRW_PSCDEPTH_OFF;
}
}
return BRW_PSCDEPTH_OFF;
}
static bool
really_do_wm_prog(struct brw_context *brw,
struct gl_shader_program *prog,
struct brw_fragment_program *fp,
struct brw_wm_prog_key *key, struct anv_pipeline *pipeline)
{
struct gl_context *ctx = &brw->ctx;
void *mem_ctx = ralloc_context(NULL);
struct brw_wm_prog_data *prog_data = &pipeline->wm_prog_data;
struct gl_shader *fs = NULL;
unsigned int program_size;
const uint32_t *program;
if (prog)
fs = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
memset(prog_data, 0, sizeof(*prog_data));
/* key->alpha_test_func means simulating alpha testing via discards,
* so the shader definitely kills pixels.
*/
prog_data->uses_kill = fp->program.UsesKill || key->alpha_test_func;
prog_data->computed_depth_mode = computed_depth_mode(&fp->program);
/* Allocate the references to the uniforms that will end up in the
* prog_data associated with the compiled program, and which will be freed
* by the state cache.
*/
int param_count;
if (fs) {
param_count = fs->num_uniform_components;
} else {
param_count = fp->program.Base.Parameters->NumParameters * 4;
}
/* The backend also sometimes adds params for texture size. */
param_count += 2 * ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits;
prog_data->base.param =
rzalloc_array(NULL, const gl_constant_value *, param_count);
prog_data->base.pull_param =
rzalloc_array(NULL, const gl_constant_value *, param_count);
prog_data->base.nr_params = param_count;
prog_data->barycentric_interp_modes =
brw_compute_barycentric_interp_modes(brw, key->flat_shade,
key->persample_shading,
&fp->program);
set_binding_table_layout(&prog_data->base, pipeline,
VK_SHADER_STAGE_FRAGMENT);
/* This needs to come after shader time and pull constant entries, but we
* don't have those set up now, so just put it after the layout entries.
*/
prog_data->binding_table.render_target_start = 0;
program = brw_wm_fs_emit(brw, mem_ctx, key, prog_data,
&fp->program, prog, &program_size);
if (program == NULL) {
ralloc_free(mem_ctx);
return false;
}
struct anv_state ps_state = anv_state_stream_alloc(&pipeline->program_stream,
program_size, 64);
memcpy(ps_state.map, program, program_size);
if (prog_data->no_8)
pipeline->ps_simd8 = NO_KERNEL;
else
pipeline->ps_simd8 = ps_state.offset;
if (prog_data->no_8 || prog_data->prog_offset_16) {
pipeline->ps_simd16 = ps_state.offset + prog_data->prog_offset_16;
} else {
pipeline->ps_simd16 = NO_KERNEL;
}
ralloc_free(mem_ctx);
return true;
}
static void
brw_gs_populate_key(struct brw_context *brw,
struct anv_pipeline *pipeline,
struct brw_geometry_program *gp,
struct brw_gs_prog_key *key)
{
struct gl_context *ctx = &brw->ctx;
struct brw_stage_state *stage_state = &brw->gs.base;
struct gl_program *prog = &gp->program.Base;
memset(key, 0, sizeof(*key));
key->base.program_string_id = gp->id;
brw_setup_vue_key_clip_info(brw, &key->base,
gp->program.Base.UsesClipDistanceOut);
/* _NEW_TEXTURE */
brw_populate_sampler_prog_key_data(ctx, prog, stage_state->sampler_count,
&key->base.tex);
struct brw_vs_prog_data *prog_data = &pipeline->vs_prog_data;
/* BRW_NEW_VUE_MAP_VS */
key->input_varyings = prog_data->base.vue_map.slots_valid;
}
static bool
really_do_gs_prog(struct brw_context *brw,
struct gl_shader_program *prog,
struct brw_geometry_program *gp,
struct brw_gs_prog_key *key, struct anv_pipeline *pipeline)
{
struct brw_gs_compile_output output;
/* FIXME: We pass the bind map to the compile in the output struct. Need
* something better. */
set_binding_table_layout(&output.prog_data.base.base,
pipeline, VK_SHADER_STAGE_GEOMETRY);
brw_compile_gs_prog(brw, prog, gp, key, &output);
struct anv_state gs_state = anv_state_stream_alloc(&pipeline->program_stream,
output.program_size, 64);
memcpy(gs_state.map, output.program, output.program_size);
pipeline->gs_vec4 = gs_state.offset;
pipeline->gs_vertex_count = gp->program.VerticesIn;
ralloc_free(output.mem_ctx);
return true;
}
static bool
brw_codegen_cs_prog(struct brw_context *brw,
struct gl_shader_program *prog,
struct brw_compute_program *cp,
struct brw_cs_prog_key *key, struct anv_pipeline *pipeline)
{
struct gl_context *ctx = &brw->ctx;
const GLuint *program;
void *mem_ctx = ralloc_context(NULL);
GLuint program_size;
struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
struct gl_shader *cs = prog->_LinkedShaders[MESA_SHADER_COMPUTE];
assert (cs);
memset(prog_data, 0, sizeof(*prog_data));
set_binding_table_layout(&prog_data->base, pipeline, VK_SHADER_STAGE_COMPUTE);
/* Allocate the references to the uniforms that will end up in the
* prog_data associated with the compiled program, and which will be freed
* by the state cache.
*/
int param_count = cs->num_uniform_components;
/* The backend also sometimes adds params for texture size. */
param_count += 2 * ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits;
prog_data->base.param =
rzalloc_array(NULL, const gl_constant_value *, param_count);
prog_data->base.pull_param =
rzalloc_array(NULL, const gl_constant_value *, param_count);
prog_data->base.nr_params = param_count;
program = brw_cs_emit(brw, mem_ctx, key, prog_data,
&cp->program, prog, &program_size);
if (program == NULL) {
ralloc_free(mem_ctx);
return false;
}
if (unlikely(INTEL_DEBUG & DEBUG_CS))
fprintf(stderr, "\n");
struct anv_state cs_state = anv_state_stream_alloc(&pipeline->program_stream,
program_size, 64);
memcpy(cs_state.map, program, program_size);
pipeline->cs_simd = cs_state.offset;
ralloc_free(mem_ctx);
return true;
}
static void
brw_cs_populate_key(struct brw_context *brw,
struct brw_compute_program *bcp, struct brw_cs_prog_key *key)
{
memset(key, 0, sizeof(*key));
/* The unique compute program ID */
key->program_string_id = bcp->id;
}
static void
fail_on_compile_error(int status, const char *msg)
{
int source, line, column;
char error[256];
if (status)
return;
if (sscanf(msg, "%d:%d(%d): error: %255[^\n]", &source, &line, &column, error) == 4)
fail_if(!status, "%d:%s\n", line, error);
else
fail_if(!status, "%s\n", msg);
}
struct anv_compiler {
struct anv_device *device;
struct intel_screen *screen;
struct brw_context *brw;
struct gl_pipeline_object pipeline;
};
extern "C" {
struct anv_compiler *
anv_compiler_create(struct anv_device *device)
{
const struct brw_device_info *devinfo = &device->info;
struct anv_compiler *compiler;
struct gl_context *ctx;
compiler = rzalloc(NULL, struct anv_compiler);
if (compiler == NULL)
return NULL;
compiler->screen = rzalloc(compiler, struct intel_screen);
if (compiler->screen == NULL)
goto fail;
compiler->brw = rzalloc(compiler, struct brw_context);
if (compiler->brw == NULL)
goto fail;
compiler->device = device;
compiler->brw->optionCache.info = NULL;
compiler->brw->bufmgr = NULL;
compiler->brw->gen = devinfo->gen;
compiler->brw->is_g4x = devinfo->is_g4x;
compiler->brw->is_baytrail = devinfo->is_baytrail;
compiler->brw->is_haswell = devinfo->is_haswell;
compiler->brw->is_cherryview = devinfo->is_cherryview;
/* We need this at least for CS, which will check brw->max_cs_threads
* against the work group size. */
compiler->brw->max_vs_threads = devinfo->max_vs_threads;
compiler->brw->max_hs_threads = devinfo->max_hs_threads;
compiler->brw->max_ds_threads = devinfo->max_ds_threads;
compiler->brw->max_gs_threads = devinfo->max_gs_threads;
compiler->brw->max_wm_threads = devinfo->max_wm_threads;
compiler->brw->max_cs_threads = devinfo->max_cs_threads;
compiler->brw->urb.size = devinfo->urb.size;
compiler->brw->urb.min_vs_entries = devinfo->urb.min_vs_entries;
compiler->brw->urb.max_vs_entries = devinfo->urb.max_vs_entries;
compiler->brw->urb.max_hs_entries = devinfo->urb.max_hs_entries;
compiler->brw->urb.max_ds_entries = devinfo->urb.max_ds_entries;
compiler->brw->urb.max_gs_entries = devinfo->urb.max_gs_entries;
compiler->brw->intelScreen = compiler->screen;
compiler->screen->devinfo = &device->info;
brw_process_intel_debug_variable(compiler->screen);
compiler->screen->compiler = brw_compiler_create(compiler, &device->info);
ctx = &compiler->brw->ctx;
_mesa_init_shader_object_functions(&ctx->Driver);
_mesa_init_constants(&ctx->Const, API_OPENGL_CORE);
brw_initialize_context_constants(compiler->brw);
intelInitExtensions(ctx);
/* Set dd::NewShader */
brwInitFragProgFuncs(&ctx->Driver);
ctx->_Shader = &compiler->pipeline;
compiler->brw->precompile = false;
return compiler;
fail:
ralloc_free(compiler);
return NULL;
}
void
anv_compiler_destroy(struct anv_compiler *compiler)
{
_mesa_free_errors_data(&compiler->brw->ctx);
ralloc_free(compiler);
}
/* From gen7_urb.c */
/* FIXME: Add to struct intel_device_info */
static const int gen8_push_size = 32 * 1024;
static void
gen7_compute_urb_partition(struct anv_pipeline *pipeline)
{
const struct brw_device_info *devinfo = &pipeline->device->info;
bool vs_present = pipeline->vs_simd8 != NO_KERNEL;
unsigned vs_size = vs_present ? pipeline->vs_prog_data.base.urb_entry_size : 1;
unsigned vs_entry_size_bytes = vs_size * 64;
bool gs_present = pipeline->gs_vec4 != NO_KERNEL;
unsigned gs_size = gs_present ? pipeline->gs_prog_data.base.urb_entry_size : 1;
unsigned gs_entry_size_bytes = gs_size * 64;
/* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
*
* VS Number of URB Entries must be divisible by 8 if the VS URB Entry
* Allocation Size is less than 9 512-bit URB entries.
*
* Similar text exists for GS.
*/
unsigned vs_granularity = (vs_size < 9) ? 8 : 1;
unsigned gs_granularity = (gs_size < 9) ? 8 : 1;
/* URB allocations must be done in 8k chunks. */
unsigned chunk_size_bytes = 8192;
/* Determine the size of the URB in chunks. */
unsigned urb_chunks = devinfo->urb.size * 1024 / chunk_size_bytes;
/* Reserve space for push constants */
unsigned push_constant_bytes = gen8_push_size;
unsigned push_constant_chunks =
push_constant_bytes / chunk_size_bytes;
/* Initially, assign each stage the minimum amount of URB space it needs,
* and make a note of how much additional space it "wants" (the amount of
* additional space it could actually make use of).
*/
/* VS has a lower limit on the number of URB entries */
unsigned vs_chunks =
ALIGN(devinfo->urb.min_vs_entries * vs_entry_size_bytes,
chunk_size_bytes) / chunk_size_bytes;
unsigned vs_wants =
ALIGN(devinfo->urb.max_vs_entries * vs_entry_size_bytes,
chunk_size_bytes) / chunk_size_bytes - vs_chunks;
unsigned gs_chunks = 0;
unsigned gs_wants = 0;
if (gs_present) {
/* There are two constraints on the minimum amount of URB space we can
* allocate:
*
* (1) We need room for at least 2 URB entries, since we always operate
* the GS in DUAL_OBJECT mode.
*
* (2) We can't allocate less than nr_gs_entries_granularity.
*/
gs_chunks = ALIGN(MAX2(gs_granularity, 2) * gs_entry_size_bytes,
chunk_size_bytes) / chunk_size_bytes;
gs_wants =
ALIGN(devinfo->urb.max_gs_entries * gs_entry_size_bytes,
chunk_size_bytes) / chunk_size_bytes - gs_chunks;
}
/* There should always be enough URB space to satisfy the minimum
* requirements of each stage.
*/
unsigned total_needs = push_constant_chunks + vs_chunks + gs_chunks;
assert(total_needs <= urb_chunks);
/* Mete out remaining space (if any) in proportion to "wants". */
unsigned total_wants = vs_wants + gs_wants;
unsigned remaining_space = urb_chunks - total_needs;
if (remaining_space > total_wants)
remaining_space = total_wants;
if (remaining_space > 0) {
unsigned vs_additional = (unsigned)
round(vs_wants * (((double) remaining_space) / total_wants));
vs_chunks += vs_additional;
remaining_space -= vs_additional;
gs_chunks += remaining_space;
}
/* Sanity check that we haven't over-allocated. */
assert(push_constant_chunks + vs_chunks + gs_chunks <= urb_chunks);
/* Finally, compute the number of entries that can fit in the space
* allocated to each stage.
*/
unsigned nr_vs_entries = vs_chunks * chunk_size_bytes / vs_entry_size_bytes;
unsigned nr_gs_entries = gs_chunks * chunk_size_bytes / gs_entry_size_bytes;
/* Since we rounded up when computing *_wants, this may be slightly more
* than the maximum allowed amount, so correct for that.
*/
nr_vs_entries = MIN2(nr_vs_entries, devinfo->urb.max_vs_entries);
nr_gs_entries = MIN2(nr_gs_entries, devinfo->urb.max_gs_entries);
/* Ensure that we program a multiple of the granularity. */
nr_vs_entries = ROUND_DOWN_TO(nr_vs_entries, vs_granularity);
nr_gs_entries = ROUND_DOWN_TO(nr_gs_entries, gs_granularity);
/* Finally, sanity check to make sure we have at least the minimum number
* of entries needed for each stage.
*/
assert(nr_vs_entries >= devinfo->urb.min_vs_entries);
if (gs_present)
assert(nr_gs_entries >= 2);
/* Lay out the URB in the following order:
* - push constants
* - VS
* - GS
*/
pipeline->urb.vs_start = push_constant_chunks;
pipeline->urb.vs_size = vs_size;
pipeline->urb.nr_vs_entries = nr_vs_entries;
pipeline->urb.gs_start = push_constant_chunks + vs_chunks;
pipeline->urb.gs_size = gs_size;
pipeline->urb.nr_gs_entries = nr_gs_entries;
}
static const struct {
uint32_t token;
gl_shader_stage stage;
const char *name;
} stage_info[] = {
{ GL_VERTEX_SHADER, MESA_SHADER_VERTEX, "vertex" },
{ GL_TESS_CONTROL_SHADER, (gl_shader_stage)-1,"tess control" },
{ GL_TESS_EVALUATION_SHADER, (gl_shader_stage)-1, "tess evaluation" },
{ GL_GEOMETRY_SHADER, MESA_SHADER_GEOMETRY, "geometry" },
{ GL_FRAGMENT_SHADER, MESA_SHADER_FRAGMENT, "fragment" },
{ GL_COMPUTE_SHADER, MESA_SHADER_COMPUTE, "compute" },
};
struct spirv_header{
uint32_t magic;
uint32_t version;
uint32_t gen_magic;
};
static const char *
src_as_glsl(const char *data)
{
const struct spirv_header *as_spirv = (const struct spirv_header *)data;
/* Check alignment */
if ((intptr_t)data & 0x3) {
return data;
}
if (as_spirv->magic == SPIR_V_MAGIC_NUMBER) {
/* LunarG back-door */
if (as_spirv->version == 0)
return data + 12;
else
return NULL;
} else {
return data;
}
}
static void
anv_compile_shader_glsl(struct anv_compiler *compiler,
struct gl_shader_program *program,
struct anv_pipeline *pipeline, uint32_t stage)
{
struct brw_context *brw = compiler->brw;
struct gl_shader *shader;
int name = 0;
shader = brw_new_shader(&brw->ctx, name, stage_info[stage].token);
fail_if(shader == NULL, "failed to create %s shader\n", stage_info[stage].name);
shader->Source = strdup(src_as_glsl(pipeline->shaders[stage]->module->data));
_mesa_glsl_compile_shader(&brw->ctx, shader, false, false);
fail_on_compile_error(shader->CompileStatus, shader->InfoLog);
program->Shaders[program->NumShaders] = shader;
program->NumShaders++;
}
static void
setup_nir_io(struct gl_program *prog,
nir_shader *shader)
{
foreach_list_typed(nir_variable, var, node, &shader->inputs) {
prog->InputsRead |= BITFIELD64_BIT(var->data.location);
}
foreach_list_typed(nir_variable, var, node, &shader->outputs) {
prog->OutputsWritten |= BITFIELD64_BIT(var->data.location);
}
}
static void
anv_compile_shader_spirv(struct anv_compiler *compiler,
struct gl_shader_program *program,
struct anv_pipeline *pipeline, uint32_t stage)
{
struct brw_context *brw = compiler->brw;
struct anv_shader *shader = pipeline->shaders[stage];
struct gl_shader *mesa_shader;
int name = 0;
mesa_shader = brw_new_shader(&brw->ctx, name, stage_info[stage].token);
fail_if(mesa_shader == NULL,
"failed to create %s shader\n", stage_info[stage].name);
switch (stage) {
case VK_SHADER_STAGE_VERTEX:
mesa_shader->Program = &rzalloc(mesa_shader, struct brw_vertex_program)->program.Base;
break;
case VK_SHADER_STAGE_GEOMETRY:
mesa_shader->Program = &rzalloc(mesa_shader, struct brw_geometry_program)->program.Base;
break;
case VK_SHADER_STAGE_FRAGMENT:
mesa_shader->Program = &rzalloc(mesa_shader, struct brw_fragment_program)->program.Base;
break;
case VK_SHADER_STAGE_COMPUTE:
mesa_shader->Program = &rzalloc(mesa_shader, struct brw_compute_program)->program.Base;
break;
}
mesa_shader->Program->Parameters =
rzalloc(mesa_shader, struct gl_program_parameter_list);
mesa_shader->Type = stage_info[stage].token;
mesa_shader->Stage = stage_info[stage].stage;
assert(shader->module->size % 4 == 0);
struct gl_shader_compiler_options *glsl_options =
&compiler->screen->compiler->glsl_compiler_options[stage_info[stage].stage];
mesa_shader->Program->nir =
spirv_to_nir((uint32_t *)shader->module->data, shader->module->size / 4,
glsl_options->NirOptions);
nir_validate_shader(mesa_shader->Program->nir);
brw_process_nir(mesa_shader->Program->nir,
compiler->screen->devinfo,
NULL, mesa_shader->Stage);
setup_nir_io(mesa_shader->Program, mesa_shader->Program->nir);
fail_if(mesa_shader->Program->nir == NULL,
"failed to translate SPIR-V to NIR\n");
program->Shaders[program->NumShaders] = mesa_shader;
program->NumShaders++;
}
static void
add_compiled_stage(struct anv_pipeline *pipeline, uint32_t stage,
struct brw_stage_prog_data *prog_data)
{
struct brw_device_info *devinfo = &pipeline->device->info;
uint32_t max_threads[] = {
[VK_SHADER_STAGE_VERTEX] = devinfo->max_vs_threads,
[VK_SHADER_STAGE_TESS_CONTROL] = 0,
[VK_SHADER_STAGE_TESS_EVALUATION] = 0,
[VK_SHADER_STAGE_GEOMETRY] = devinfo->max_gs_threads,
[VK_SHADER_STAGE_FRAGMENT] = devinfo->max_wm_threads,
[VK_SHADER_STAGE_COMPUTE] = devinfo->max_cs_threads,
};
pipeline->prog_data[stage] = prog_data;
pipeline->active_stages |= 1 << stage;
pipeline->scratch_start[stage] = pipeline->total_scratch;
pipeline->total_scratch =
align_u32(pipeline->total_scratch, 1024) +
prog_data->total_scratch * max_threads[stage];
}
int
anv_compiler_run(struct anv_compiler *compiler, struct anv_pipeline *pipeline)
{
struct gl_shader_program *program;
int name = 0;
struct brw_context *brw = compiler->brw;
pipeline->writes_point_size = false;
/* When we free the pipeline, we detect stages based on the NULL status
* of various prog_data pointers. Make them NULL by default.
*/
memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data));
memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start));
brw->use_rep_send = pipeline->use_repclear;
brw->no_simd8 = pipeline->use_repclear;
program = brw->ctx.Driver.NewShaderProgram(name);
program->Shaders = (struct gl_shader **)
calloc(VK_SHADER_STAGE_NUM, sizeof(struct gl_shader *));
fail_if(program == NULL || program->Shaders == NULL,
"failed to create program\n");
bool all_spirv = true;
for (unsigned i = 0; i < VK_SHADER_STAGE_NUM; i++) {
if (pipeline->shaders[i] == NULL)
continue;
/* You need at least this much for "void main() { }" anyway */
assert(pipeline->shaders[i]->module->size >= 12);
if (src_as_glsl(pipeline->shaders[i]->module->data)) {
all_spirv = false;
break;
}
assert(pipeline->shaders[i]->module->size % 4 == 0);
}
if (all_spirv) {
for (unsigned i = 0; i < VK_SHADER_STAGE_NUM; i++) {
if (pipeline->shaders[i])
anv_compile_shader_spirv(compiler, program, pipeline, i);
}
for (unsigned i = 0; i < program->NumShaders; i++) {
struct gl_shader *shader = program->Shaders[i];
program->_LinkedShaders[shader->Stage] = shader;
}
} else {
for (unsigned i = 0; i < VK_SHADER_STAGE_NUM; i++) {
if (pipeline->shaders[i])
anv_compile_shader_glsl(compiler, program, pipeline, i);
}
_mesa_glsl_link_shader(&brw->ctx, program);
fail_on_compile_error(program->LinkStatus,
program->InfoLog);
}
bool success;
pipeline->active_stages = 0;
pipeline->total_scratch = 0;
if (pipeline->shaders[VK_SHADER_STAGE_VERTEX]) {
struct brw_vs_prog_key vs_key;
struct gl_vertex_program *vp = (struct gl_vertex_program *)
program->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
struct brw_vertex_program *bvp = brw_vertex_program(vp);
brw_vs_populate_key(brw, bvp, &vs_key);
success = really_do_vs_prog(brw, program, bvp, &vs_key, pipeline);
fail_if(!success, "do_wm_prog failed\n");
add_compiled_stage(pipeline, VK_SHADER_STAGE_VERTEX,
&pipeline->vs_prog_data.base.base);
if (vp->Base.OutputsWritten & VARYING_SLOT_PSIZ)
pipeline->writes_point_size = true;
} else {
memset(&pipeline->vs_prog_data, 0, sizeof(pipeline->vs_prog_data));
pipeline->vs_simd8 = NO_KERNEL;
}
if (pipeline->shaders[VK_SHADER_STAGE_GEOMETRY]) {
struct brw_gs_prog_key gs_key;
struct gl_geometry_program *gp = (struct gl_geometry_program *)
program->_LinkedShaders[MESA_SHADER_GEOMETRY]->Program;
struct brw_geometry_program *bgp = brw_geometry_program(gp);
brw_gs_populate_key(brw, pipeline, bgp, &gs_key);
success = really_do_gs_prog(brw, program, bgp, &gs_key, pipeline);
fail_if(!success, "do_gs_prog failed\n");
add_compiled_stage(pipeline, VK_SHADER_STAGE_GEOMETRY,
&pipeline->gs_prog_data.base.base);
if (gp->Base.OutputsWritten & VARYING_SLOT_PSIZ)
pipeline->writes_point_size = true;
} else {
pipeline->gs_vec4 = NO_KERNEL;
}
if (pipeline->shaders[VK_SHADER_STAGE_FRAGMENT]) {
struct brw_wm_prog_key wm_key;
struct gl_fragment_program *fp = (struct gl_fragment_program *)
program->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program;
struct brw_fragment_program *bfp = brw_fragment_program(fp);
brw_wm_populate_key(brw, bfp, &wm_key);
success = really_do_wm_prog(brw, program, bfp, &wm_key, pipeline);
fail_if(!success, "do_wm_prog failed\n");
add_compiled_stage(pipeline, VK_SHADER_STAGE_FRAGMENT,
&pipeline->wm_prog_data.base);
}
if (pipeline->shaders[VK_SHADER_STAGE_COMPUTE]) {
struct brw_cs_prog_key cs_key;
struct gl_compute_program *cp = (struct gl_compute_program *)
program->_LinkedShaders[MESA_SHADER_COMPUTE]->Program;
struct brw_compute_program *bcp = brw_compute_program(cp);
brw_cs_populate_key(brw, bcp, &cs_key);
success = brw_codegen_cs_prog(brw, program, bcp, &cs_key, pipeline);
fail_if(!success, "brw_codegen_cs_prog failed\n");
add_compiled_stage(pipeline, VK_SHADER_STAGE_COMPUTE,
&pipeline->cs_prog_data.base);
}
/* XXX: Deleting the shader is broken with our current SPIR-V hacks. We
* need to fix this ASAP.
*/
if (!all_spirv)
brw->ctx.Driver.DeleteShaderProgram(&brw->ctx, program);
struct anv_device *device = compiler->device;
while (device->scratch_block_pool.bo.size < pipeline->total_scratch)
anv_block_pool_alloc(&device->scratch_block_pool);
gen7_compute_urb_partition(pipeline);
return 0;
}
/* This badly named function frees the struct anv_pipeline data that the compiler
* allocates. Currently just the prog_data structs.
*/
void
anv_compiler_free(struct anv_pipeline *pipeline)
{
for (uint32_t stage = 0; stage < VK_SHADER_STAGE_NUM; stage++) {
if (pipeline->prog_data[stage]) {
free(pipeline->prog_data[stage]->map_entries);
ralloc_free(pipeline->prog_data[stage]->param);
ralloc_free(pipeline->prog_data[stage]->pull_param);
}
}
}
}