Files
third_party_mesa3d/src/vulkan/anv_pipeline.c
Chad Versace 2484d1a01f anv/pipeline: Fix requirement for depthstencil state
The Vulkan spec allows VkGraphicsPipelineCreateInfo::pDepthStencilState
to be NULL when the pipeline's subpass contains no depthstencil
attachment (see spec quote below). anv_pipeline_init_dynamic_state()
required it unconditionally.

This path fixes anv_pipeline_init_dynamic_state() to access
pDepthStencilState only when there is a depthstencil attachment.

From the Vulkan spec (20 Oct 2015, git-aa308cb)

   pDepthStencilState [...] may only be NULL if renderPass and subpass
   specify a subpass that has no depth/stencil attachment.
2015-10-20 11:29:16 -07:00

625 lines
22 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
// Shader functions
VkResult anv_CreateShaderModule(
VkDevice _device,
const VkShaderModuleCreateInfo* pCreateInfo,
VkShaderModule* pShaderModule)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_shader_module *module;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
module = anv_device_alloc(device, sizeof(*module) + pCreateInfo->codeSize, 8,
VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
if (module == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
module->nir = NULL;
module->size = pCreateInfo->codeSize;
memcpy(module->data, pCreateInfo->pCode, module->size);
*pShaderModule = anv_shader_module_to_handle(module);
return VK_SUCCESS;
}
void anv_DestroyShaderModule(
VkDevice _device,
VkShaderModule _module)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_shader_module, module, _module);
anv_device_free(device, module);
}
VkResult anv_CreateShader(
VkDevice _device,
const VkShaderCreateInfo* pCreateInfo,
VkShader* pShader)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_shader_module, module, pCreateInfo->module);
struct anv_shader *shader;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_CREATE_INFO);
assert(pCreateInfo->flags == 0);
const char *name = pCreateInfo->pName ? pCreateInfo->pName : "main";
size_t name_len = strlen(name);
if (strcmp(name, "main") != 0) {
anv_finishme("Multiple shaders per module not really supported");
}
shader = anv_device_alloc(device, sizeof(*shader) + name_len + 1, 8,
VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
if (shader == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
shader->module = module;
memcpy(shader->entrypoint, name, name_len + 1);
*pShader = anv_shader_to_handle(shader);
return VK_SUCCESS;
}
void anv_DestroyShader(
VkDevice _device,
VkShader _shader)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_shader, shader, _shader);
anv_device_free(device, shader);
}
VkResult anv_CreatePipelineCache(
VkDevice device,
const VkPipelineCacheCreateInfo* pCreateInfo,
VkPipelineCache* pPipelineCache)
{
pPipelineCache->handle = 1;
stub_return(VK_SUCCESS);
}
void anv_DestroyPipelineCache(
VkDevice _device,
VkPipelineCache _cache)
{
}
size_t anv_GetPipelineCacheSize(
VkDevice device,
VkPipelineCache pipelineCache)
{
stub_return(0);
}
VkResult anv_GetPipelineCacheData(
VkDevice device,
VkPipelineCache pipelineCache,
void* pData)
{
stub_return(VK_UNSUPPORTED);
}
VkResult anv_MergePipelineCaches(
VkDevice device,
VkPipelineCache destCache,
uint32_t srcCacheCount,
const VkPipelineCache* pSrcCaches)
{
stub_return(VK_UNSUPPORTED);
}
void anv_DestroyPipeline(
VkDevice _device,
VkPipeline _pipeline)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
anv_compiler_free(pipeline);
anv_reloc_list_finish(&pipeline->batch_relocs, pipeline->device);
anv_state_stream_finish(&pipeline->program_stream);
anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
anv_device_free(pipeline->device, pipeline);
}
static const uint32_t vk_to_gen_primitive_type[] = {
[VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST_ADJ] = _3DPRIM_LINELIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_ADJ] = _3DPRIM_LINESTRIP_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_ADJ] = _3DPRIM_TRILIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_ADJ] = _3DPRIM_TRISTRIP_ADJ,
[VK_PRIMITIVE_TOPOLOGY_PATCH] = _3DPRIM_PATCHLIST_1
};
static void
anv_pipeline_init_dynamic_state(struct anv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
uint32_t states = ANV_DYNAMIC_STATE_DIRTY_MASK;
ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
pipeline->dynamic_state = default_dynamic_state;
if (pCreateInfo->pDynamicState) {
/* Remove all of the states that are marked as dynamic */
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++)
states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
}
struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
typed_memcpy(dynamic->viewport.viewports,
pCreateInfo->pViewportState->pViewports,
pCreateInfo->pViewportState->viewportCount);
}
dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
typed_memcpy(dynamic->scissor.scissors,
pCreateInfo->pViewportState->pScissors,
pCreateInfo->pViewportState->scissorCount);
}
if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
assert(pCreateInfo->pRasterState);
dynamic->line_width = pCreateInfo->pRasterState->lineWidth;
}
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
assert(pCreateInfo->pRasterState);
dynamic->depth_bias.bias = pCreateInfo->pRasterState->depthBias;
dynamic->depth_bias.clamp = pCreateInfo->pRasterState->depthBiasClamp;
dynamic->depth_bias.slope_scaled =
pCreateInfo->pRasterState->slopeScaledDepthBias;
}
if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) {
assert(pCreateInfo->pColorBlendState);
typed_memcpy(dynamic->blend_constants,
pCreateInfo->pColorBlendState->blendConst, 4);
}
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* anv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* From the Vulkan spec (20 Oct 2015, git-aa308cb):
*
* pDepthStencilState [...] may only be NULL if renderPass and subpass
* specify a subpass that has no depth/stencil attachment.
*/
if (subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
assert(pCreateInfo->pDepthStencilState);
dynamic->depth_bounds.min =
pCreateInfo->pDepthStencilState->minDepthBounds;
dynamic->depth_bounds.max =
pCreateInfo->pDepthStencilState->maxDepthBounds;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
assert(pCreateInfo->pDepthStencilState);
dynamic->stencil_compare_mask.front =
pCreateInfo->pDepthStencilState->front.stencilCompareMask;
dynamic->stencil_compare_mask.back =
pCreateInfo->pDepthStencilState->back.stencilCompareMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
assert(pCreateInfo->pDepthStencilState);
dynamic->stencil_write_mask.front =
pCreateInfo->pDepthStencilState->front.stencilWriteMask;
dynamic->stencil_write_mask.back =
pCreateInfo->pDepthStencilState->back.stencilWriteMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
assert(pCreateInfo->pDepthStencilState);
dynamic->stencil_reference.front =
pCreateInfo->pDepthStencilState->front.stencilReference;
dynamic->stencil_reference.back =
pCreateInfo->pDepthStencilState->back.stencilReference;
}
}
pipeline->dynamic_state_mask = states;
}
static void
anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
{
struct anv_render_pass *renderpass = NULL;
struct anv_subpass *subpass = NULL;
/* Assert that all required members of VkGraphicsPipelineCreateInfo are
* present, as explained by the Vulkan (20 Oct 2015, git-aa308cb), Section
* 4.2 Graphics Pipeline.
*/
assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
renderpass = anv_render_pass_from_handle(info->renderPass);
assert(renderpass);
if (renderpass != &anv_meta_dummy_renderpass) {
assert(info->subpass < renderpass->subpass_count);
subpass = &renderpass->subpasses[info->subpass];
}
assert(info->stageCount >= 1);
assert(info->pVertexInputState);
assert(info->pInputAssemblyState);
assert(info->pViewportState);
assert(info->pRasterState);
assert(info->pMultisampleState);
if (subpass && subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED)
assert(info->pDepthStencilState);
if (subpass && subpass->color_count > 0)
assert(info->pColorBlendState);
for (uint32_t i = 0; i < info->stageCount; ++i) {
switch (info->pStages[i].stage) {
case VK_SHADER_STAGE_TESS_CONTROL:
case VK_SHADER_STAGE_TESS_EVALUATION:
assert(info->pTessellationState);
break;
default:
break;
}
}
}
VkResult
anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct anv_graphics_pipeline_create_info *extra)
{
VkResult result;
anv_validate {
anv_pipeline_validate_create_info(pCreateInfo);
}
pipeline->device = device;
pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
result = anv_reloc_list_init(&pipeline->batch_relocs, device);
if (result != VK_SUCCESS) {
anv_device_free(device, pipeline);
return result;
}
pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
pipeline->batch.relocs = &pipeline->batch_relocs;
anv_state_stream_init(&pipeline->program_stream,
&device->instruction_block_pool);
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
pipeline->shaders[pCreateInfo->pStages[i].stage] =
anv_shader_from_handle(pCreateInfo->pStages[i].shader);
}
anv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
if (pCreateInfo->pTessellationState)
anv_finishme("VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO");
if (pCreateInfo->pMultisampleState &&
pCreateInfo->pMultisampleState->rasterSamples > 1)
anv_finishme("VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO");
pipeline->use_repclear = extra && extra->use_repclear;
anv_compiler_run(device->compiler, pipeline);
const struct brw_wm_prog_data *wm_prog_data = &pipeline->wm_prog_data;
pipeline->ps_ksp2 = 0;
pipeline->ps_grf_start2 = 0;
if (pipeline->ps_simd8 != NO_KERNEL) {
pipeline->ps_ksp0 = pipeline->ps_simd8;
pipeline->ps_grf_start0 = wm_prog_data->base.dispatch_grf_start_reg;
if (pipeline->ps_simd16 != NO_KERNEL) {
pipeline->ps_ksp2 = pipeline->ps_simd16;
pipeline->ps_grf_start2 = wm_prog_data->dispatch_grf_start_reg_16;
}
} else if (pipeline->ps_simd16 != NO_KERNEL) {
pipeline->ps_ksp0 = pipeline->ps_simd16;
pipeline->ps_grf_start0 = wm_prog_data->dispatch_grf_start_reg_16;
} else {
unreachable("no ps shader");
}
const VkPipelineVertexInputStateCreateInfo *vi_info =
pCreateInfo->pVertexInputState;
pipeline->vb_used = 0;
for (uint32_t i = 0; i < vi_info->bindingCount; i++) {
const VkVertexInputBindingDescription *desc =
&vi_info->pVertexBindingDescriptions[i];
pipeline->vb_used |= 1 << desc->binding;
pipeline->binding_stride[desc->binding] = desc->strideInBytes;
/* Step rate is programmed per vertex element (attribute), not
* binding. Set up a map of which bindings step per instance, for
* reference by vertex element setup. */
switch (desc->stepRate) {
default:
case VK_VERTEX_INPUT_STEP_RATE_VERTEX:
pipeline->instancing_enable[desc->binding] = false;
break;
case VK_VERTEX_INPUT_STEP_RATE_INSTANCE:
pipeline->instancing_enable[desc->binding] = true;
break;
}
}
const VkPipelineInputAssemblyStateCreateInfo *ia_info =
pCreateInfo->pInputAssemblyState;
pipeline->primitive_restart = ia_info->primitiveRestartEnable;
pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
if (extra && extra->use_rectlist)
pipeline->topology = _3DPRIM_RECTLIST;
return VK_SUCCESS;
}
VkResult
anv_graphics_pipeline_create(
VkDevice _device,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct anv_graphics_pipeline_create_info *extra,
VkPipeline *pPipeline)
{
ANV_FROM_HANDLE(anv_device, device, _device);
switch (device->info.gen) {
case 7:
return gen7_graphics_pipeline_create(_device, pCreateInfo, extra, pPipeline);
case 8:
return gen8_graphics_pipeline_create(_device, pCreateInfo, extra, pPipeline);
default:
unreachable("unsupported gen\n");
}
}
VkResult anv_CreateGraphicsPipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
VkPipeline* pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
result = anv_graphics_pipeline_create(_device, &pCreateInfos[i],
NULL, &pPipelines[i]);
if (result != VK_SUCCESS) {
for (unsigned j = 0; j < i; j++) {
anv_DestroyPipeline(_device, pPipelines[j]);
}
return result;
}
}
return VK_SUCCESS;
}
static VkResult anv_compute_pipeline_create(
VkDevice _device,
const VkComputePipelineCreateInfo* pCreateInfo,
VkPipeline* pPipeline)
{
ANV_FROM_HANDLE(anv_device, device, _device);
switch (device->info.gen) {
case 7:
return gen7_compute_pipeline_create(_device, pCreateInfo, pPipeline);
case 8:
return gen8_compute_pipeline_create(_device, pCreateInfo, pPipeline);
default:
unreachable("unsupported gen\n");
}
}
VkResult anv_CreateComputePipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkComputePipelineCreateInfo* pCreateInfos,
VkPipeline* pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
result = anv_compute_pipeline_create(_device, &pCreateInfos[i],
&pPipelines[i]);
if (result != VK_SUCCESS) {
for (unsigned j = 0; j < i; j++) {
anv_DestroyPipeline(_device, pPipelines[j]);
}
return result;
}
}
return VK_SUCCESS;
}
// Pipeline layout functions
VkResult anv_CreatePipelineLayout(
VkDevice _device,
const VkPipelineLayoutCreateInfo* pCreateInfo,
VkPipelineLayout* pPipelineLayout)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_pipeline_layout l, *layout;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
l.num_sets = pCreateInfo->descriptorSetCount;
unsigned dynamic_offset_count = 0;
memset(l.stage, 0, sizeof(l.stage));
for (uint32_t set = 0; set < pCreateInfo->descriptorSetCount; set++) {
ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout,
pCreateInfo->pSetLayouts[set]);
l.set[set].layout = set_layout;
l.set[set].dynamic_offset_start = dynamic_offset_count;
for (uint32_t b = 0; b < set_layout->binding_count; b++) {
if (set_layout->binding[b].dynamic_offset_index >= 0)
dynamic_offset_count += set_layout->binding[b].array_size;
}
for (VkShaderStage s = 0; s < VK_SHADER_STAGE_NUM; s++) {
l.set[set].stage[s].surface_start = l.stage[s].surface_count;
l.set[set].stage[s].sampler_start = l.stage[s].sampler_count;
for (uint32_t b = 0; b < set_layout->binding_count; b++) {
unsigned array_size = set_layout->binding[b].array_size;
if (set_layout->binding[b].stage[s].surface_index >= 0) {
l.stage[s].surface_count += array_size;
if (set_layout->binding[b].dynamic_offset_index >= 0)
l.stage[s].has_dynamic_offsets = true;
}
if (set_layout->binding[b].stage[s].sampler_index >= 0)
l.stage[s].sampler_count += array_size;
}
}
}
unsigned num_bindings = 0;
for (VkShaderStage s = 0; s < VK_SHADER_STAGE_NUM; s++)
num_bindings += l.stage[s].surface_count + l.stage[s].sampler_count;
size_t size = sizeof(*layout) + num_bindings * sizeof(layout->entries[0]);
layout = anv_device_alloc(device, size, 8, VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
if (layout == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
/* Now we can actually build our surface and sampler maps */
struct anv_pipeline_binding *entry = layout->entries;
for (VkShaderStage s = 0; s < VK_SHADER_STAGE_NUM; s++) {
l.stage[s].surface_to_descriptor = entry;
entry += l.stage[s].surface_count;
l.stage[s].sampler_to_descriptor = entry;
entry += l.stage[s].sampler_count;
int surface = 0;
int sampler = 0;
for (uint32_t set = 0; set < pCreateInfo->descriptorSetCount; set++) {
struct anv_descriptor_set_layout *set_layout = l.set[set].layout;
unsigned set_offset = 0;
for (uint32_t b = 0; b < set_layout->binding_count; b++) {
unsigned array_size = set_layout->binding[b].array_size;
if (set_layout->binding[b].stage[s].surface_index >= 0) {
assert(surface == l.set[set].stage[s].surface_start +
set_layout->binding[b].stage[s].surface_index);
for (unsigned i = 0; i < array_size; i++) {
l.stage[s].surface_to_descriptor[surface + i].set = set;
l.stage[s].surface_to_descriptor[surface + i].offset = set_offset + i;
}
surface += array_size;
}
if (set_layout->binding[b].stage[s].sampler_index >= 0) {
assert(sampler == l.set[set].stage[s].sampler_start +
set_layout->binding[b].stage[s].sampler_index);
for (unsigned i = 0; i < array_size; i++) {
l.stage[s].sampler_to_descriptor[sampler + i].set = set;
l.stage[s].sampler_to_descriptor[sampler + i].offset = set_offset + i;
}
sampler += array_size;
}
set_offset += array_size;
}
}
}
/* Finally, we're done setting it up, copy into the allocated version */
*layout = l;
*pPipelineLayout = anv_pipeline_layout_to_handle(layout);
return VK_SUCCESS;
}
void anv_DestroyPipelineLayout(
VkDevice _device,
VkPipelineLayout _pipelineLayout)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, _pipelineLayout);
anv_device_free(device, pipeline_layout);
}