Files
third_party_mesa3d/src/mesa/drivers/dri/i965/brw_draw.c
Marek Olšák 238ee7b801 mesa: add Driver.DrawTransformFeedback
to remove some overhead from Driver.Draw.

Reviewed-by: Pierre-Eric Pelloux-Prayer <pierre-eric.pelloux-prayer@amd.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/7441>
2020-11-18 01:41:24 +00:00

1356 lines
46 KiB
C

/*
* Copyright 2003 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <sys/errno.h>
#include "main/arrayobj.h"
#include "main/blend.h"
#include "main/context.h"
#include "main/condrender.h"
#include "main/samplerobj.h"
#include "main/state.h"
#include "main/enums.h"
#include "main/macros.h"
#include "main/transformfeedback.h"
#include "main/framebuffer.h"
#include "main/varray.h"
#include "tnl/tnl.h"
#include "vbo/vbo.h"
#include "swrast/swrast.h"
#include "swrast_setup/swrast_setup.h"
#include "drivers/common/meta.h"
#include "util/bitscan.h"
#include "util/bitset.h"
#include "brw_blorp.h"
#include "brw_draw.h"
#include "brw_defines.h"
#include "compiler/brw_eu_defines.h"
#include "brw_context.h"
#include "brw_state.h"
#include "intel_batchbuffer.h"
#include "intel_buffers.h"
#include "intel_fbo.h"
#include "intel_mipmap_tree.h"
#include "intel_buffer_objects.h"
#define FILE_DEBUG_FLAG DEBUG_PRIMS
static const GLenum reduced_prim[GL_POLYGON+1] = {
[GL_POINTS] = GL_POINTS,
[GL_LINES] = GL_LINES,
[GL_LINE_LOOP] = GL_LINES,
[GL_LINE_STRIP] = GL_LINES,
[GL_TRIANGLES] = GL_TRIANGLES,
[GL_TRIANGLE_STRIP] = GL_TRIANGLES,
[GL_TRIANGLE_FAN] = GL_TRIANGLES,
[GL_QUADS] = GL_TRIANGLES,
[GL_QUAD_STRIP] = GL_TRIANGLES,
[GL_POLYGON] = GL_TRIANGLES
};
/* When the primitive changes, set a state bit and re-validate. Not
* the nicest and would rather deal with this by having all the
* programs be immune to the active primitive (ie. cope with all
* possibilities). That may not be realistic however.
*/
static void
brw_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
{
struct gl_context *ctx = &brw->ctx;
uint32_t hw_prim = get_hw_prim_for_gl_prim(prim->mode);
DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
/* Slight optimization to avoid the GS program when not needed:
*/
if (prim->mode == GL_QUAD_STRIP &&
ctx->Light.ShadeModel != GL_FLAT &&
ctx->Polygon.FrontMode == GL_FILL &&
ctx->Polygon.BackMode == GL_FILL)
hw_prim = _3DPRIM_TRISTRIP;
if (prim->mode == GL_QUADS && prim->count == 4 &&
ctx->Light.ShadeModel != GL_FLAT &&
ctx->Polygon.FrontMode == GL_FILL &&
ctx->Polygon.BackMode == GL_FILL) {
hw_prim = _3DPRIM_TRIFAN;
}
if (hw_prim != brw->primitive) {
brw->primitive = hw_prim;
brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
if (reduced_prim[prim->mode] != brw->reduced_primitive) {
brw->reduced_primitive = reduced_prim[prim->mode];
brw->ctx.NewDriverState |= BRW_NEW_REDUCED_PRIMITIVE;
}
}
}
static void
gen6_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
{
const struct gl_context *ctx = &brw->ctx;
uint32_t hw_prim;
DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
if (prim->mode == GL_PATCHES) {
hw_prim = _3DPRIM_PATCHLIST(ctx->TessCtrlProgram.patch_vertices);
} else {
hw_prim = get_hw_prim_for_gl_prim(prim->mode);
}
if (hw_prim != brw->primitive) {
brw->primitive = hw_prim;
brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
if (prim->mode == GL_PATCHES)
brw->ctx.NewDriverState |= BRW_NEW_PATCH_PRIMITIVE;
}
}
/**
* The hardware is capable of removing dangling vertices on its own; however,
* prior to Gen6, we sometimes convert quads into trifans (and quad strips
* into tristrips), since pre-Gen6 hardware requires a GS to render quads.
* This function manually trims dangling vertices from a draw call involving
* quads so that those dangling vertices won't get drawn when we convert to
* trifans/tristrips.
*/
static GLuint
trim(GLenum prim, GLuint length)
{
if (prim == GL_QUAD_STRIP)
return length > 3 ? (length - length % 2) : 0;
else if (prim == GL_QUADS)
return length - length % 4;
else
return length;
}
static void
brw_emit_prim(struct brw_context *brw,
const struct _mesa_prim *prim,
uint32_t hw_prim,
bool is_indexed,
GLuint num_instances, GLuint base_instance,
struct brw_transform_feedback_object *xfb_obj,
unsigned stream,
bool is_indirect,
GLsizeiptr indirect_offset)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
int verts_per_instance;
int vertex_access_type;
int indirect_flag;
DBG("PRIM: %s %d %d\n", _mesa_enum_to_string(prim->mode),
prim->start, prim->count);
int start_vertex_location = prim->start;
int base_vertex_location = prim->basevertex;
if (is_indexed) {
vertex_access_type = devinfo->gen >= 7 ?
GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM :
GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
start_vertex_location += brw->ib.start_vertex_offset;
base_vertex_location += brw->vb.start_vertex_bias;
} else {
vertex_access_type = devinfo->gen >= 7 ?
GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL :
GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
start_vertex_location += brw->vb.start_vertex_bias;
}
/* We only need to trim the primitive count on pre-Gen6. */
if (devinfo->gen < 6)
verts_per_instance = trim(prim->mode, prim->count);
else
verts_per_instance = prim->count;
/* If nothing to emit, just return. */
if (verts_per_instance == 0 && !is_indirect && !xfb_obj)
return;
/* If we're set to always flush, do it before and after the primitive emit.
* We want to catch both missed flushes that hurt instruction/state cache
* and missed flushes of the render cache as it heads to other parts of
* the besides the draw code.
*/
if (brw->always_flush_cache)
brw_emit_mi_flush(brw);
/* If indirect, emit a bunch of loads from the indirect BO. */
if (xfb_obj) {
indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT,
xfb_obj->prim_count_bo,
stream * sizeof(uint32_t));
BEGIN_BATCH(9);
OUT_BATCH(MI_LOAD_REGISTER_IMM | (9 - 2));
OUT_BATCH(GEN7_3DPRIM_INSTANCE_COUNT);
OUT_BATCH(num_instances);
OUT_BATCH(GEN7_3DPRIM_START_VERTEX);
OUT_BATCH(0);
OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
OUT_BATCH(0);
OUT_BATCH(GEN7_3DPRIM_START_INSTANCE);
OUT_BATCH(0);
ADVANCE_BATCH();
} else if (is_indirect) {
struct gl_buffer_object *indirect_buffer = brw->ctx.DrawIndirectBuffer;
struct brw_bo *bo = intel_bufferobj_buffer(brw,
intel_buffer_object(indirect_buffer),
indirect_offset, 5 * sizeof(GLuint), false);
indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, bo,
indirect_offset + 0);
brw_load_register_mem(brw, GEN7_3DPRIM_INSTANCE_COUNT, bo,
indirect_offset + 4);
brw_load_register_mem(brw, GEN7_3DPRIM_START_VERTEX, bo,
indirect_offset + 8);
if (is_indexed) {
brw_load_register_mem(brw, GEN7_3DPRIM_BASE_VERTEX, bo,
indirect_offset + 12);
brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
indirect_offset + 16);
} else {
brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
indirect_offset + 12);
brw_load_register_imm32(brw, GEN7_3DPRIM_BASE_VERTEX, 0);
}
} else {
indirect_flag = 0;
}
BEGIN_BATCH(devinfo->gen >= 7 ? 7 : 6);
if (devinfo->gen >= 7) {
const int predicate_enable =
(brw->predicate.state == BRW_PREDICATE_STATE_USE_BIT)
? GEN7_3DPRIM_PREDICATE_ENABLE : 0;
OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2) | indirect_flag | predicate_enable);
OUT_BATCH(hw_prim | vertex_access_type);
} else {
OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) |
hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT |
vertex_access_type);
}
OUT_BATCH(verts_per_instance);
OUT_BATCH(start_vertex_location);
OUT_BATCH(num_instances);
OUT_BATCH(base_instance);
OUT_BATCH(base_vertex_location);
ADVANCE_BATCH();
if (brw->always_flush_cache)
brw_emit_mi_flush(brw);
}
static void
brw_clear_buffers(struct brw_context *brw)
{
for (unsigned i = 0; i < brw->vb.nr_buffers; ++i) {
brw_bo_unreference(brw->vb.buffers[i].bo);
brw->vb.buffers[i].bo = NULL;
}
brw->vb.nr_buffers = 0;
for (unsigned i = 0; i < brw->vb.nr_enabled; ++i) {
brw->vb.enabled[i]->buffer = -1;
}
#ifndef NDEBUG
for (unsigned i = 0; i < VERT_ATTRIB_MAX; i++) {
assert(brw->vb.inputs[i].buffer == -1);
}
#endif
}
static uint8_t get_wa_flags(const struct gl_vertex_format *glformat)
{
uint8_t wa_flags = 0;
switch (glformat->Type) {
case GL_FIXED:
wa_flags = glformat->Size;
break;
case GL_INT_2_10_10_10_REV:
wa_flags |= BRW_ATTRIB_WA_SIGN;
/* fallthrough */
case GL_UNSIGNED_INT_2_10_10_10_REV:
if (glformat->Format == GL_BGRA)
wa_flags |= BRW_ATTRIB_WA_BGRA;
if (glformat->Normalized)
wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
else if (!glformat->Integer)
wa_flags |= BRW_ATTRIB_WA_SCALE;
break;
}
return wa_flags;
}
static void
brw_merge_inputs(struct brw_context *brw)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
const struct gl_context *ctx = &brw->ctx;
if (devinfo->gen < 8 && !devinfo->is_haswell) {
/* Prior to Haswell, the hardware can't natively support GL_FIXED or
* 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
*/
const struct gl_vertex_array_object *vao = ctx->Array._DrawVAO;
const uint64_t vs_inputs = ctx->VertexProgram._Current->info.inputs_read;
assert((vs_inputs & ~((uint64_t)VERT_BIT_ALL)) == 0);
unsigned vaomask = vs_inputs & _mesa_draw_array_bits(ctx);
while (vaomask) {
const gl_vert_attrib i = u_bit_scan(&vaomask);
const uint8_t wa_flags =
get_wa_flags(_mesa_draw_array_format(vao, i));
if (brw->vb.attrib_wa_flags[i] != wa_flags) {
brw->vb.attrib_wa_flags[i] = wa_flags;
brw->ctx.NewDriverState |= BRW_NEW_VS_ATTRIB_WORKAROUNDS;
}
}
unsigned currmask = vs_inputs & _mesa_draw_current_bits(ctx);
while (currmask) {
const gl_vert_attrib i = u_bit_scan(&currmask);
const uint8_t wa_flags =
get_wa_flags(_mesa_draw_current_format(ctx, i));
if (brw->vb.attrib_wa_flags[i] != wa_flags) {
brw->vb.attrib_wa_flags[i] = wa_flags;
brw->ctx.NewDriverState |= BRW_NEW_VS_ATTRIB_WORKAROUNDS;
}
}
}
}
/* Disable auxiliary buffers if a renderbuffer is also bound as a texture
* or shader image. This causes a self-dependency, where both rendering
* and sampling may concurrently read or write the CCS buffer, causing
* incorrect pixels.
*/
static bool
intel_disable_rb_aux_buffer(struct brw_context *brw,
bool *draw_aux_buffer_disabled,
struct intel_mipmap_tree *tex_mt,
unsigned min_level, unsigned num_levels,
const char *usage)
{
const struct gl_framebuffer *fb = brw->ctx.DrawBuffer;
bool found = false;
/* We only need to worry about color compression and fast clears. */
if (tex_mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
tex_mt->aux_usage != ISL_AUX_USAGE_CCS_E)
return false;
for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
const struct intel_renderbuffer *irb =
intel_renderbuffer(fb->_ColorDrawBuffers[i]);
if (irb && irb->mt->bo == tex_mt->bo &&
irb->mt_level >= min_level &&
irb->mt_level < min_level + num_levels) {
found = draw_aux_buffer_disabled[i] = true;
}
}
if (found) {
perf_debug("Disabling CCS because a renderbuffer is also bound %s.\n",
usage);
}
return found;
}
/** Implement the ASTC 5x5 sampler workaround
*
* Gen9 sampling hardware has a bug where an ASTC 5x5 compressed surface
* cannot live in the sampler cache at the same time as an aux compressed
* surface. In order to work around the bug we have to stall rendering with a
* CS and pixel scoreboard stall (implicit in the CS stall) and invalidate the
* texture cache whenever one of ASTC 5x5 or aux compressed may be in the
* sampler cache and we're about to render with something which samples from
* the other.
*
* In the case of a single shader which textures from both ASTC 5x5 and
* a texture which is CCS or HiZ compressed, we have to resolve the aux
* compressed texture prior to rendering. This second part is handled in
* brw_predraw_resolve_inputs() below.
*
* We have observed this issue to affect CCS and HiZ sampling but whether or
* not it also affects MCS is unknown. Because MCS has no concept of a
* resolve (and doing one would be stupid expensive), we choose to simply
* ignore the possibility and hope for the best.
*/
static void
gen9_apply_astc5x5_wa_flush(struct brw_context *brw,
enum gen9_astc5x5_wa_tex_type curr_mask)
{
assert(brw->screen->devinfo.gen == 9);
if (((brw->gen9_astc5x5_wa_tex_mask & GEN9_ASTC5X5_WA_TEX_TYPE_ASTC5x5) &&
(curr_mask & GEN9_ASTC5X5_WA_TEX_TYPE_AUX)) ||
((brw->gen9_astc5x5_wa_tex_mask & GEN9_ASTC5X5_WA_TEX_TYPE_AUX) &&
(curr_mask & GEN9_ASTC5X5_WA_TEX_TYPE_ASTC5x5))) {
brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
brw_emit_pipe_control_flush(brw, PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
}
brw->gen9_astc5x5_wa_tex_mask = curr_mask;
}
static enum gen9_astc5x5_wa_tex_type
gen9_astc5x5_wa_bits(mesa_format format, enum isl_aux_usage aux_usage)
{
if (aux_usage != ISL_AUX_USAGE_NONE &&
aux_usage != ISL_AUX_USAGE_MCS)
return GEN9_ASTC5X5_WA_TEX_TYPE_AUX;
if (format == MESA_FORMAT_RGBA_ASTC_5x5 ||
format == MESA_FORMAT_SRGB8_ALPHA8_ASTC_5x5)
return GEN9_ASTC5X5_WA_TEX_TYPE_ASTC5x5;
return 0;
}
/* Helper for the gen9 ASTC 5x5 workaround. This version exists for BLORP's
* use-cases where only a single texture is bound.
*/
void
gen9_apply_single_tex_astc5x5_wa(struct brw_context *brw,
mesa_format format,
enum isl_aux_usage aux_usage)
{
gen9_apply_astc5x5_wa_flush(brw, gen9_astc5x5_wa_bits(format, aux_usage));
}
static void
mark_textures_used_for_txf(BITSET_WORD *used_for_txf,
const struct gl_program *prog)
{
if (!prog)
return;
uint32_t mask = prog->info.textures_used_by_txf;
while (mask) {
int s = u_bit_scan(&mask);
BITSET_SET(used_for_txf, prog->SamplerUnits[s]);
}
}
/**
* \brief Resolve buffers before drawing.
*
* Resolve the depth buffer's HiZ buffer, resolve the depth buffer of each
* enabled depth texture, and flush the render cache for any dirty textures.
*/
void
brw_predraw_resolve_inputs(struct brw_context *brw, bool rendering,
bool *draw_aux_buffer_disabled)
{
struct gl_context *ctx = &brw->ctx;
struct intel_texture_object *tex_obj;
BITSET_DECLARE(used_for_txf, MAX_COMBINED_TEXTURE_IMAGE_UNITS);
memset(used_for_txf, 0, sizeof(used_for_txf));
if (rendering) {
mark_textures_used_for_txf(used_for_txf, ctx->VertexProgram._Current);
mark_textures_used_for_txf(used_for_txf, ctx->TessCtrlProgram._Current);
mark_textures_used_for_txf(used_for_txf, ctx->TessEvalProgram._Current);
mark_textures_used_for_txf(used_for_txf, ctx->GeometryProgram._Current);
mark_textures_used_for_txf(used_for_txf, ctx->FragmentProgram._Current);
} else {
mark_textures_used_for_txf(used_for_txf, ctx->ComputeProgram._Current);
}
int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
enum gen9_astc5x5_wa_tex_type astc5x5_wa_bits = 0;
if (brw->screen->devinfo.gen == 9) {
/* In order to properly implement the ASTC 5x5 workaround for an
* arbitrary draw or dispatch call, we have to walk the entire list of
* textures looking for ASTC 5x5. If there is any ASTC 5x5 in this draw
* call, all aux compressed textures must be resolved and have aux
* compression disabled while sampling.
*/
for (int i = 0; i <= maxEnabledUnit; i++) {
if (!ctx->Texture.Unit[i]._Current)
continue;
tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
if (!tex_obj || !tex_obj->mt)
continue;
astc5x5_wa_bits |= gen9_astc5x5_wa_bits(tex_obj->_Format,
tex_obj->mt->aux_usage);
}
gen9_apply_astc5x5_wa_flush(brw, astc5x5_wa_bits);
}
/* Resolve depth buffer and render cache of each enabled texture. */
for (int i = 0; i <= maxEnabledUnit; i++) {
if (!ctx->Texture.Unit[i]._Current)
continue;
tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
if (!tex_obj || !tex_obj->mt)
continue;
struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, i);
enum isl_format view_format =
translate_tex_format(brw, tex_obj->_Format, sampler->sRGBDecode);
unsigned min_level, min_layer, num_levels, num_layers;
if (tex_obj->base.Immutable) {
min_level = tex_obj->base.MinLevel;
num_levels = MIN2(tex_obj->base.NumLevels, tex_obj->_MaxLevel + 1);
min_layer = tex_obj->base.MinLayer;
num_layers = tex_obj->base.Target != GL_TEXTURE_3D ?
tex_obj->base.NumLayers : INTEL_REMAINING_LAYERS;
} else {
min_level = tex_obj->base.BaseLevel;
num_levels = tex_obj->_MaxLevel - tex_obj->base.BaseLevel + 1;
min_layer = 0;
num_layers = INTEL_REMAINING_LAYERS;
}
if (rendering) {
intel_disable_rb_aux_buffer(brw, draw_aux_buffer_disabled,
tex_obj->mt, min_level, num_levels,
"for sampling");
}
intel_miptree_prepare_texture(brw, tex_obj->mt, view_format,
min_level, num_levels,
min_layer, num_layers,
astc5x5_wa_bits);
/* If any programs are using it with texelFetch, we may need to also do
* a prepare with an sRGB format to ensure texelFetch works "properly".
*/
if (BITSET_TEST(used_for_txf, i)) {
enum isl_format txf_format =
translate_tex_format(brw, tex_obj->_Format, GL_DECODE_EXT);
if (txf_format != view_format) {
intel_miptree_prepare_texture(brw, tex_obj->mt, txf_format,
min_level, num_levels,
min_layer, num_layers,
astc5x5_wa_bits);
}
}
brw_cache_flush_for_read(brw, tex_obj->mt->bo);
if (tex_obj->base.StencilSampling ||
tex_obj->mt->format == MESA_FORMAT_S_UINT8) {
intel_update_r8stencil(brw, tex_obj->mt);
}
if (intel_miptree_has_etc_shadow(brw, tex_obj->mt) &&
tex_obj->mt->shadow_needs_update) {
intel_miptree_update_etc_shadow_levels(brw, tex_obj->mt);
}
}
/* Resolve color for each active shader image. */
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
const struct gl_program *prog = ctx->_Shader->CurrentProgram[i];
if (unlikely(prog && prog->info.num_images)) {
for (unsigned j = 0; j < prog->info.num_images; j++) {
struct gl_image_unit *u =
&ctx->ImageUnits[prog->sh.ImageUnits[j]];
tex_obj = intel_texture_object(u->TexObj);
if (tex_obj && tex_obj->mt) {
if (rendering) {
intel_disable_rb_aux_buffer(brw, draw_aux_buffer_disabled,
tex_obj->mt, 0, ~0,
"as a shader image");
}
intel_miptree_prepare_image(brw, tex_obj->mt);
brw_cache_flush_for_read(brw, tex_obj->mt->bo);
}
}
}
}
}
static void
brw_predraw_resolve_framebuffer(struct brw_context *brw,
bool *draw_aux_buffer_disabled)
{
struct gl_context *ctx = &brw->ctx;
struct intel_renderbuffer *depth_irb;
/* Resolve the depth buffer's HiZ buffer. */
depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
if (depth_irb && depth_irb->mt) {
intel_miptree_prepare_depth(brw, depth_irb->mt,
depth_irb->mt_level,
depth_irb->mt_layer,
depth_irb->layer_count);
}
/* Resolve color buffers for non-coherent framebuffer fetch. */
if (!ctx->Extensions.EXT_shader_framebuffer_fetch &&
ctx->FragmentProgram._Current &&
ctx->FragmentProgram._Current->info.outputs_read) {
const struct gl_framebuffer *fb = ctx->DrawBuffer;
/* This is only used for non-coherent framebuffer fetch, so we don't
* need to worry about CCS_E and can simply pass 'false' below.
*/
assert(brw->screen->devinfo.gen < 9);
for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
const struct intel_renderbuffer *irb =
intel_renderbuffer(fb->_ColorDrawBuffers[i]);
if (irb) {
intel_miptree_prepare_texture(brw, irb->mt, irb->mt->surf.format,
irb->mt_level, 1,
irb->mt_layer, irb->layer_count,
brw->gen9_astc5x5_wa_tex_mask);
}
}
}
struct gl_framebuffer *fb = ctx->DrawBuffer;
for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
struct intel_renderbuffer *irb =
intel_renderbuffer(fb->_ColorDrawBuffers[i]);
if (irb == NULL || irb->mt == NULL)
continue;
mesa_format mesa_format =
_mesa_get_render_format(ctx, intel_rb_format(irb));
enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
bool blend_enabled = ctx->Color.BlendEnabled & (1 << i);
enum isl_aux_usage aux_usage =
intel_miptree_render_aux_usage(brw, irb->mt, isl_format,
blend_enabled,
draw_aux_buffer_disabled[i]);
if (brw->draw_aux_usage[i] != aux_usage) {
brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
brw->draw_aux_usage[i] = aux_usage;
}
intel_miptree_prepare_render(brw, irb->mt, irb->mt_level,
irb->mt_layer, irb->layer_count,
aux_usage);
brw_cache_flush_for_render(brw, irb->mt->bo,
isl_format, aux_usage);
}
}
/**
* \brief Call this after drawing to mark which buffers need resolving
*
* If the depth buffer was written to and if it has an accompanying HiZ
* buffer, then mark that it needs a depth resolve.
*
* If the stencil buffer was written to then mark that it may need to be
* copied to an R8 texture.
*
* If the color buffer is a multisample window system buffer, then
* mark that it needs a downsample.
*
* Also mark any render targets which will be textured as needing a render
* cache flush.
*/
static void
brw_postdraw_set_buffers_need_resolve(struct brw_context *brw)
{
struct gl_context *ctx = &brw->ctx;
struct gl_framebuffer *fb = ctx->DrawBuffer;
struct intel_renderbuffer *front_irb = NULL;
struct intel_renderbuffer *back_irb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL);
struct gl_renderbuffer_attachment *depth_att = &fb->Attachment[BUFFER_DEPTH];
if (_mesa_is_front_buffer_drawing(fb))
front_irb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
if (front_irb)
front_irb->need_downsample = true;
if (back_irb)
back_irb->need_downsample = true;
if (depth_irb) {
bool depth_written = brw_depth_writes_enabled(brw);
if (depth_att->Layered) {
intel_miptree_finish_depth(brw, depth_irb->mt,
depth_irb->mt_level,
depth_irb->mt_layer,
depth_irb->layer_count,
depth_written);
} else {
intel_miptree_finish_depth(brw, depth_irb->mt,
depth_irb->mt_level,
depth_irb->mt_layer, 1,
depth_written);
}
if (depth_written)
brw_depth_cache_add_bo(brw, depth_irb->mt->bo);
}
if (stencil_irb && brw->stencil_write_enabled) {
struct intel_mipmap_tree *stencil_mt =
stencil_irb->mt->stencil_mt != NULL ?
stencil_irb->mt->stencil_mt : stencil_irb->mt;
brw_depth_cache_add_bo(brw, stencil_mt->bo);
intel_miptree_finish_write(brw, stencil_mt, stencil_irb->mt_level,
stencil_irb->mt_layer,
stencil_irb->layer_count, ISL_AUX_USAGE_NONE);
}
for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
struct intel_renderbuffer *irb =
intel_renderbuffer(fb->_ColorDrawBuffers[i]);
if (!irb)
continue;
mesa_format mesa_format =
_mesa_get_render_format(ctx, intel_rb_format(irb));
enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
enum isl_aux_usage aux_usage = brw->draw_aux_usage[i];
brw_render_cache_add_bo(brw, irb->mt->bo, isl_format, aux_usage);
intel_miptree_finish_render(brw, irb->mt, irb->mt_level,
irb->mt_layer, irb->layer_count,
aux_usage);
}
}
static void
intel_renderbuffer_move_temp_back(struct brw_context *brw,
struct intel_renderbuffer *irb)
{
if (irb->align_wa_mt == NULL)
return;
brw_cache_flush_for_read(brw, irb->align_wa_mt->bo);
intel_miptree_copy_slice(brw, irb->align_wa_mt, 0, 0,
irb->mt,
irb->Base.Base.TexImage->Level, irb->mt_layer);
intel_miptree_reference(&irb->align_wa_mt, NULL);
/* Finally restore the x,y to correspond to full miptree. */
intel_renderbuffer_set_draw_offset(irb);
/* Make sure render surface state gets re-emitted with updated miptree. */
brw->NewGLState |= _NEW_BUFFERS;
}
static void
brw_postdraw_reconcile_align_wa_slices(struct brw_context *brw)
{
struct gl_context *ctx = &brw->ctx;
struct gl_framebuffer *fb = ctx->DrawBuffer;
struct intel_renderbuffer *depth_irb =
intel_get_renderbuffer(fb, BUFFER_DEPTH);
struct intel_renderbuffer *stencil_irb =
intel_get_renderbuffer(fb, BUFFER_STENCIL);
if (depth_irb && depth_irb->align_wa_mt)
intel_renderbuffer_move_temp_back(brw, depth_irb);
if (stencil_irb && stencil_irb->align_wa_mt)
intel_renderbuffer_move_temp_back(brw, stencil_irb);
for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
struct intel_renderbuffer *irb =
intel_renderbuffer(fb->_ColorDrawBuffers[i]);
if (!irb || irb->align_wa_mt == NULL)
continue;
intel_renderbuffer_move_temp_back(brw, irb);
}
}
static void
brw_prepare_drawing(struct gl_context *ctx,
const struct _mesa_index_buffer *ib,
bool index_bounds_valid,
GLuint min_index,
GLuint max_index)
{
struct brw_context *brw = brw_context(ctx);
if (ctx->NewState)
_mesa_update_state(ctx);
/* We have to validate the textures *before* checking for fallbacks;
* otherwise, the software fallback won't be able to rely on the
* texture state, the firstLevel and lastLevel fields won't be
* set in the intel texture object (they'll both be 0), and the
* software fallback will segfault if it attempts to access any
* texture level other than level 0.
*/
brw_validate_textures(brw);
/* Find the highest sampler unit used by each shader program. A bit-count
* won't work since ARB programs use the texture unit number as the sampler
* index.
*/
brw->wm.base.sampler_count =
util_last_bit(ctx->FragmentProgram._Current->info.textures_used);
brw->gs.base.sampler_count = ctx->GeometryProgram._Current ?
util_last_bit(ctx->GeometryProgram._Current->info.textures_used) : 0;
brw->tes.base.sampler_count = ctx->TessEvalProgram._Current ?
util_last_bit(ctx->TessEvalProgram._Current->info.textures_used) : 0;
brw->tcs.base.sampler_count = ctx->TessCtrlProgram._Current ?
util_last_bit(ctx->TessCtrlProgram._Current->info.textures_used) : 0;
brw->vs.base.sampler_count =
util_last_bit(ctx->VertexProgram._Current->info.textures_used);
intel_prepare_render(brw);
/* This workaround has to happen outside of brw_upload_render_state()
* because it may flush the batchbuffer for a blit, affecting the state
* flags.
*/
brw_workaround_depthstencil_alignment(brw, 0);
/* Resolves must occur after updating renderbuffers, updating context state,
* and finalizing textures but before setting up any hardware state for
* this draw call.
*/
bool draw_aux_buffer_disabled[MAX_DRAW_BUFFERS] = { };
brw_predraw_resolve_inputs(brw, true, draw_aux_buffer_disabled);
brw_predraw_resolve_framebuffer(brw, draw_aux_buffer_disabled);
/* Bind all inputs, derive varying and size information:
*/
brw_clear_buffers(brw);
brw_merge_inputs(brw);
brw->ib.ib = ib;
brw->ctx.NewDriverState |= BRW_NEW_INDICES;
brw->vb.index_bounds_valid = index_bounds_valid;
brw->vb.min_index = min_index;
brw->vb.max_index = max_index;
brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
}
static void
brw_finish_drawing(struct gl_context *ctx)
{
struct brw_context *brw = brw_context(ctx);
if (brw->always_flush_batch)
intel_batchbuffer_flush(brw);
brw_program_cache_check_size(brw);
brw_postdraw_reconcile_align_wa_slices(brw);
brw_postdraw_set_buffers_need_resolve(brw);
if (brw->draw.draw_params_count_bo) {
brw_bo_unreference(brw->draw.draw_params_count_bo);
brw->draw.draw_params_count_bo = NULL;
}
if (brw->draw.draw_params_bo) {
brw_bo_unreference(brw->draw.draw_params_bo);
brw->draw.draw_params_bo = NULL;
}
if (brw->draw.derived_draw_params_bo) {
brw_bo_unreference(brw->draw.derived_draw_params_bo);
brw->draw.derived_draw_params_bo = NULL;
}
}
/**
* Implement workarounds for preemption:
* - WaDisableMidObjectPreemptionForGSLineStripAdj
* - WaDisableMidObjectPreemptionForTrifanOrPolygon
* - WaDisableMidObjectPreemptionForLineLoop
* - WA#0798
*/
static void
gen9_emit_preempt_wa(struct brw_context *brw,
const struct _mesa_prim *prim, GLuint num_instances)
{
bool object_preemption = true;
ASSERTED const struct gen_device_info *devinfo = &brw->screen->devinfo;
/* Only apply these workarounds for gen9 */
assert(devinfo->gen == 9);
/* WaDisableMidObjectPreemptionForGSLineStripAdj
*
* WA: Disable mid-draw preemption when draw-call is a linestrip_adj and
* GS is enabled.
*/
if (brw->primitive == _3DPRIM_LINESTRIP_ADJ && brw->gs.enabled)
object_preemption = false;
/* WaDisableMidObjectPreemptionForTrifanOrPolygon
*
* TriFan miscompare in Execlist Preemption test. Cut index that is on a
* previous context. End the previous, the resume another context with a
* tri-fan or polygon, and the vertex count is corrupted. If we prempt
* again we will cause corruption.
*
* WA: Disable mid-draw preemption when draw-call has a tri-fan.
*/
if (brw->primitive == _3DPRIM_TRIFAN)
object_preemption = false;
/* WaDisableMidObjectPreemptionForLineLoop
*
* VF Stats Counters Missing a vertex when preemption enabled.
*
* WA: Disable mid-draw preemption when the draw uses a lineloop
* topology.
*/
if (brw->primitive == _3DPRIM_LINELOOP)
object_preemption = false;
/* WA#0798
*
* VF is corrupting GAFS data when preempted on an instance boundary and
* replayed with instancing enabled.
*
* WA: Disable preemption when using instanceing.
*/
if (num_instances > 1)
object_preemption = false;
brw_enable_obj_preemption(brw, object_preemption);
}
/* May fail if out of video memory for texture or vbo upload, or on
* fallback conditions.
*/
static void
brw_draw_single_prim(struct gl_context *ctx,
const struct _mesa_prim *prim,
unsigned prim_id,
bool is_indexed,
GLuint num_instances, GLuint base_instance,
struct brw_transform_feedback_object *xfb_obj,
unsigned stream,
GLsizeiptr indirect_offset)
{
struct brw_context *brw = brw_context(ctx);
const struct gen_device_info *devinfo = &brw->screen->devinfo;
bool fail_next;
bool is_indirect = brw->draw.draw_indirect_data != NULL;
/* Flag BRW_NEW_DRAW_CALL on every draw. This allows us to have
* atoms that happen on every draw call.
*/
brw->ctx.NewDriverState |= BRW_NEW_DRAW_CALL;
/* Flush the batch if the batch/state buffers are nearly full. We can
* grow them if needed, but this is not free, so we'd like to avoid it.
*/
intel_batchbuffer_require_space(brw, 1500);
brw_require_statebuffer_space(brw, 2400);
intel_batchbuffer_save_state(brw);
fail_next = intel_batchbuffer_saved_state_is_empty(brw);
if (brw->num_instances != num_instances ||
brw->basevertex != prim->basevertex ||
brw->baseinstance != base_instance) {
brw->num_instances = num_instances;
brw->basevertex = prim->basevertex;
brw->baseinstance = base_instance;
if (prim_id > 0) { /* For i == 0 we just did this before the loop */
brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
brw_clear_buffers(brw);
}
}
/* Determine if we need to flag BRW_NEW_VERTICES for updating the
* gl_BaseVertexARB or gl_BaseInstanceARB values. For indirect draw, we
* always flag if the shader uses one of the values. For direct draws,
* we only flag if the values change.
*/
const int new_firstvertex =
is_indexed ? prim->basevertex : prim->start;
const int new_baseinstance = base_instance;
const struct brw_vs_prog_data *vs_prog_data =
brw_vs_prog_data(brw->vs.base.prog_data);
if (prim_id > 0) {
const bool uses_draw_parameters =
vs_prog_data->uses_firstvertex ||
vs_prog_data->uses_baseinstance;
if ((uses_draw_parameters && is_indirect) ||
(vs_prog_data->uses_firstvertex &&
brw->draw.params.firstvertex != new_firstvertex) ||
(vs_prog_data->uses_baseinstance &&
brw->draw.params.gl_baseinstance != new_baseinstance))
brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
}
brw->draw.params.firstvertex = new_firstvertex;
brw->draw.params.gl_baseinstance = new_baseinstance;
brw_bo_unreference(brw->draw.draw_params_bo);
if (is_indirect) {
/* Point draw_params_bo at the indirect buffer. */
brw->draw.draw_params_bo =
intel_buffer_object(ctx->DrawIndirectBuffer)->buffer;
brw_bo_reference(brw->draw.draw_params_bo);
brw->draw.draw_params_offset =
indirect_offset + (is_indexed ? 12 : 8);
} else {
/* Set draw_params_bo to NULL so brw_prepare_vertices knows it
* has to upload gl_BaseVertex and such if they're needed.
*/
brw->draw.draw_params_bo = NULL;
brw->draw.draw_params_offset = 0;
}
/* gl_DrawID always needs its own vertex buffer since it's not part of
* the indirect parameter buffer. Same for is_indexed_draw, which shares
* the buffer with gl_DrawID. If the program uses gl_DrawID, we need to
* flag BRW_NEW_VERTICES. For the first iteration, we don't have valid
* vs_prog_data, but we always flag BRW_NEW_VERTICES before the loop.
*/
if (prim_id > 0 && vs_prog_data->uses_drawid)
brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
brw->draw.derived_params.gl_drawid = prim->draw_id;
brw->draw.derived_params.is_indexed_draw = is_indexed ? ~0 : 0;
brw_bo_unreference(brw->draw.derived_draw_params_bo);
brw->draw.derived_draw_params_bo = NULL;
brw->draw.derived_draw_params_offset = 0;
if (devinfo->gen < 6)
brw_set_prim(brw, prim);
else
gen6_set_prim(brw, prim);
retry:
/* Note that before the loop, brw->ctx.NewDriverState was set to != 0, and
* that the state updated in the loop outside of this block is that in
* *_set_prim or intel_batchbuffer_flush(), which only impacts
* brw->ctx.NewDriverState.
*/
if (brw->ctx.NewDriverState) {
brw->batch.no_wrap = true;
brw_upload_render_state(brw);
}
if (devinfo->gen == 9)
gen9_emit_preempt_wa(brw, prim, num_instances);
brw_emit_prim(brw, prim, brw->primitive, is_indexed, num_instances,
base_instance, xfb_obj, stream, is_indirect,
indirect_offset);
brw->batch.no_wrap = false;
if (!brw_batch_has_aperture_space(brw, 0)) {
if (!fail_next) {
intel_batchbuffer_reset_to_saved(brw);
intel_batchbuffer_flush(brw);
fail_next = true;
goto retry;
} else {
int ret = intel_batchbuffer_flush(brw);
WARN_ONCE(ret == -ENOSPC,
"i965: Single primitive emit exceeded "
"available aperture space\n");
}
}
/* Now that we know we haven't run out of aperture space, we can safely
* reset the dirty bits.
*/
if (brw->ctx.NewDriverState)
brw_render_state_finished(brw);
return;
}
void
brw_draw_prims(struct gl_context *ctx,
const struct _mesa_prim *prims,
GLuint nr_prims,
const struct _mesa_index_buffer *ib,
GLboolean index_bounds_valid,
GLuint min_index,
GLuint max_index,
GLuint num_instances,
GLuint base_instance)
{
unsigned i;
struct brw_context *brw = brw_context(ctx);
int predicate_state = brw->predicate.state;
if (!brw_check_conditional_render(brw))
return;
/* Handle primitive restart if needed */
if (brw_handle_primitive_restart(ctx, prims, nr_prims, ib, num_instances,
base_instance)) {
/* The draw was handled, so we can exit now */
return;
}
/* Do GL_SELECT and GL_FEEDBACK rendering using swrast, even though it
* won't support all the extensions we support.
*/
if (ctx->RenderMode != GL_RENDER) {
perf_debug("%s render mode not supported in hardware\n",
_mesa_enum_to_string(ctx->RenderMode));
_swsetup_Wakeup(ctx);
_tnl_wakeup(ctx);
_tnl_draw(ctx, prims, nr_prims, ib, index_bounds_valid, min_index,
max_index, num_instances, base_instance);
return;
}
/* If we're going to have to upload any of the user's vertex arrays, then
* get the minimum and maximum of their index buffer so we know what range
* to upload.
*/
if (!index_bounds_valid && _mesa_draw_user_array_bits(ctx) != 0) {
perf_debug("Scanning index buffer to compute index buffer bounds. "
"Use glDrawRangeElements() to avoid this.\n");
vbo_get_minmax_indices(ctx, prims, ib, &min_index, &max_index, nr_prims);
index_bounds_valid = true;
}
brw_prepare_drawing(ctx, ib, index_bounds_valid, min_index, max_index);
/* Try drawing with the hardware, but don't do anything else if we can't
* manage it. swrast doesn't support our featureset, so we can't fall back
* to it.
*/
for (i = 0; i < nr_prims; i++) {
/* Implementation of ARB_indirect_parameters via predicates */
if (brw->draw.draw_params_count_bo) {
brw_emit_pipe_control_flush(brw, PIPE_CONTROL_FLUSH_ENABLE);
/* Upload the current draw count from the draw parameters buffer to
* MI_PREDICATE_SRC0.
*/
brw_load_register_mem(brw, MI_PREDICATE_SRC0,
brw->draw.draw_params_count_bo,
brw->draw.draw_params_count_offset);
/* Zero the top 32-bits of MI_PREDICATE_SRC0 */
brw_load_register_imm32(brw, MI_PREDICATE_SRC0 + 4, 0);
/* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
brw_load_register_imm64(brw, MI_PREDICATE_SRC1, prims[i].draw_id);
BEGIN_BATCH(1);
if (i == 0 && brw->predicate.state != BRW_PREDICATE_STATE_USE_BIT) {
OUT_BATCH(GEN7_MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
MI_PREDICATE_COMBINEOP_SET |
MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
} else {
OUT_BATCH(GEN7_MI_PREDICATE |
MI_PREDICATE_LOADOP_LOAD | MI_PREDICATE_COMBINEOP_XOR |
MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
}
ADVANCE_BATCH();
brw->predicate.state = BRW_PREDICATE_STATE_USE_BIT;
}
brw_draw_single_prim(ctx, &prims[i], i, ib != NULL, num_instances,
base_instance, NULL, 0,
brw->draw.draw_indirect_offset +
brw->draw.draw_indirect_stride * i);
}
brw_finish_drawing(ctx);
brw->predicate.state = predicate_state;
}
static void
brw_draw_transform_feedback(struct gl_context *ctx, GLenum mode,
unsigned num_instances, unsigned stream,
struct gl_transform_feedback_object *gl_xfb_obj)
{
struct brw_context *brw = brw_context(ctx);
struct brw_transform_feedback_object *xfb_obj =
(struct brw_transform_feedback_object *) gl_xfb_obj;
if (!brw_check_conditional_render(brw))
return;
/* Do GL_SELECT and GL_FEEDBACK rendering using swrast, even though it
* won't support all the extensions we support.
*/
if (ctx->RenderMode != GL_RENDER) {
perf_debug("%s render mode not supported in hardware\n",
_mesa_enum_to_string(ctx->RenderMode));
/* swrast doesn't support DrawTransformFeedback. Nothing to do. */
return;
}
brw_prepare_drawing(ctx, NULL, false, 0, ~0);
struct _mesa_prim prim;
memset(&prim, 0, sizeof(prim));
prim.begin = 1;
prim.end = 1;
prim.mode = mode;
/* Try drawing with the hardware, but don't do anything else if we can't
* manage it. swrast doesn't support our featureset, so we can't fall back
* to it.
*/
brw_draw_single_prim(ctx, &prim, 0, false, num_instances, 0, xfb_obj,
stream, 0);
brw_finish_drawing(ctx);
}
void
brw_draw_indirect_prims(struct gl_context *ctx,
GLuint mode,
struct gl_buffer_object *indirect_data,
GLsizeiptr indirect_offset,
unsigned draw_count,
unsigned stride,
struct gl_buffer_object *indirect_params,
GLsizeiptr indirect_params_offset,
const struct _mesa_index_buffer *ib)
{
struct brw_context *brw = brw_context(ctx);
struct _mesa_prim *prim;
GLsizei i;
prim = calloc(draw_count, sizeof(*prim));
if (prim == NULL) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "gl%sDraw%sIndirect%s",
(draw_count > 1) ? "Multi" : "",
ib ? "Elements" : "Arrays",
indirect_params ? "CountARB" : "");
return;
}
brw->draw.draw_indirect_stride = stride;
brw->draw.draw_indirect_offset = indirect_offset;
prim[0].begin = 1;
prim[draw_count - 1].end = 1;
for (i = 0; i < draw_count; ++i) {
prim[i].mode = mode;
prim[i].draw_id = i;
}
if (indirect_params) {
brw->draw.draw_params_count_bo =
intel_buffer_object(indirect_params)->buffer;
brw_bo_reference(brw->draw.draw_params_count_bo);
brw->draw.draw_params_count_offset = indirect_params_offset;
}
brw->draw.draw_indirect_data = indirect_data;
brw_draw_prims(ctx, prim, draw_count, ib, false, 0, ~0, 0, 0);
brw->draw.draw_indirect_data = NULL;
free(prim);
}
void
brw_init_draw_functions(struct dd_function_table *functions)
{
/* Register our drawing function:
*/
functions->Draw = brw_draw_prims;
functions->DrawTransformFeedback = brw_draw_transform_feedback;
functions->DrawIndirect = brw_draw_indirect_prims;
}
void
brw_draw_init(struct brw_context *brw)
{
for (int i = 0; i < VERT_ATTRIB_MAX; i++)
brw->vb.inputs[i].buffer = -1;
brw->vb.nr_buffers = 0;
brw->vb.nr_enabled = 0;
}
void
brw_draw_destroy(struct brw_context *brw)
{
unsigned i;
for (i = 0; i < brw->vb.nr_buffers; i++) {
brw_bo_unreference(brw->vb.buffers[i].bo);
brw->vb.buffers[i].bo = NULL;
}
brw->vb.nr_buffers = 0;
for (i = 0; i < brw->vb.nr_enabled; i++) {
brw->vb.enabled[i]->buffer = -1;
}
brw->vb.nr_enabled = 0;
brw_bo_unreference(brw->ib.bo);
brw->ib.bo = NULL;
}