
The aim is to replace the CoordReplace array by a bitfield. Until all drivers are converted, establish the bitfield in parallel to the CoordReplace array. v2: Fix bitmask logic. Reviewed-by: Brian Paul <brianp@vmware.com> Reviewed-by: Ian Romanick <ian.d.romanick@intel.com> Signed-off-by: Mathias Fröhlich <Mathias.Froehlich@web.de>
1700 lines
48 KiB
C
1700 lines
48 KiB
C
/**************************************************************************
|
|
*
|
|
* Copyright 2007 VMware, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
|
|
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
|
|
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
**************************************************************************/
|
|
|
|
/**
|
|
* \file ffvertex_prog.c
|
|
*
|
|
* Create a vertex program to execute the current fixed function T&L pipeline.
|
|
* \author Keith Whitwell
|
|
*/
|
|
|
|
|
|
#include "main/glheader.h"
|
|
#include "main/mtypes.h"
|
|
#include "main/macros.h"
|
|
#include "main/enums.h"
|
|
#include "main/ffvertex_prog.h"
|
|
#include "program/program.h"
|
|
#include "program/prog_cache.h"
|
|
#include "program/prog_instruction.h"
|
|
#include "program/prog_parameter.h"
|
|
#include "program/prog_print.h"
|
|
#include "program/prog_statevars.h"
|
|
|
|
|
|
/** Max of number of lights and texture coord units */
|
|
#define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
|
|
|
|
struct state_key {
|
|
unsigned light_color_material_mask:12;
|
|
unsigned light_global_enabled:1;
|
|
unsigned light_local_viewer:1;
|
|
unsigned light_twoside:1;
|
|
unsigned material_shininess_is_zero:1;
|
|
unsigned need_eye_coords:1;
|
|
unsigned normalize:1;
|
|
unsigned rescale_normals:1;
|
|
|
|
unsigned fog_source_is_depth:1;
|
|
unsigned fog_distance_mode:2;
|
|
unsigned separate_specular:1;
|
|
unsigned point_attenuated:1;
|
|
unsigned point_array:1;
|
|
unsigned texture_enabled_global:1;
|
|
unsigned fragprog_inputs_read:12;
|
|
|
|
GLbitfield64 varying_vp_inputs;
|
|
|
|
struct {
|
|
unsigned light_enabled:1;
|
|
unsigned light_eyepos3_is_zero:1;
|
|
unsigned light_spotcutoff_is_180:1;
|
|
unsigned light_attenuated:1;
|
|
unsigned texunit_really_enabled:1;
|
|
unsigned texmat_enabled:1;
|
|
unsigned coord_replace:1;
|
|
unsigned texgen_enabled:4;
|
|
unsigned texgen_mode0:4;
|
|
unsigned texgen_mode1:4;
|
|
unsigned texgen_mode2:4;
|
|
unsigned texgen_mode3:4;
|
|
} unit[NUM_UNITS];
|
|
};
|
|
|
|
|
|
#define TXG_NONE 0
|
|
#define TXG_OBJ_LINEAR 1
|
|
#define TXG_EYE_LINEAR 2
|
|
#define TXG_SPHERE_MAP 3
|
|
#define TXG_REFLECTION_MAP 4
|
|
#define TXG_NORMAL_MAP 5
|
|
|
|
static GLuint translate_texgen( GLboolean enabled, GLenum mode )
|
|
{
|
|
if (!enabled)
|
|
return TXG_NONE;
|
|
|
|
switch (mode) {
|
|
case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
|
|
case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
|
|
case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
|
|
case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
|
|
case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
|
|
default: return TXG_NONE;
|
|
}
|
|
}
|
|
|
|
#define FDM_EYE_RADIAL 0
|
|
#define FDM_EYE_PLANE 1
|
|
#define FDM_EYE_PLANE_ABS 2
|
|
|
|
static GLuint translate_fog_distance_mode( GLenum mode )
|
|
{
|
|
switch (mode) {
|
|
case GL_EYE_RADIAL_NV:
|
|
return FDM_EYE_RADIAL;
|
|
case GL_EYE_PLANE:
|
|
return FDM_EYE_PLANE;
|
|
default: /* shouldn't happen; fall through to a sensible default */
|
|
case GL_EYE_PLANE_ABSOLUTE_NV:
|
|
return FDM_EYE_PLANE_ABS;
|
|
}
|
|
}
|
|
|
|
static GLboolean check_active_shininess( struct gl_context *ctx,
|
|
const struct state_key *key,
|
|
GLuint side )
|
|
{
|
|
GLuint attr = MAT_ATTRIB_FRONT_SHININESS + side;
|
|
|
|
if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
|
|
(key->light_color_material_mask & (1 << attr)))
|
|
return GL_TRUE;
|
|
|
|
if (key->varying_vp_inputs & VERT_BIT_GENERIC(attr))
|
|
return GL_TRUE;
|
|
|
|
if (ctx->Light.Material.Attrib[attr][0] != 0.0F)
|
|
return GL_TRUE;
|
|
|
|
return GL_FALSE;
|
|
}
|
|
|
|
|
|
static void make_state_key( struct gl_context *ctx, struct state_key *key )
|
|
{
|
|
const struct gl_fragment_program *fp;
|
|
GLuint i;
|
|
|
|
memset(key, 0, sizeof(struct state_key));
|
|
fp = ctx->FragmentProgram._Current;
|
|
|
|
/* This now relies on texenvprogram.c being active:
|
|
*/
|
|
assert(fp);
|
|
|
|
key->need_eye_coords = ctx->_NeedEyeCoords;
|
|
|
|
key->fragprog_inputs_read = fp->Base.InputsRead;
|
|
key->varying_vp_inputs = ctx->varying_vp_inputs;
|
|
|
|
if (ctx->RenderMode == GL_FEEDBACK) {
|
|
/* make sure the vertprog emits color and tex0 */
|
|
key->fragprog_inputs_read |= (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
|
|
}
|
|
|
|
key->separate_specular = (ctx->Light.Model.ColorControl ==
|
|
GL_SEPARATE_SPECULAR_COLOR);
|
|
|
|
if (ctx->Light.Enabled) {
|
|
key->light_global_enabled = 1;
|
|
|
|
if (ctx->Light.Model.LocalViewer)
|
|
key->light_local_viewer = 1;
|
|
|
|
if (ctx->Light.Model.TwoSide)
|
|
key->light_twoside = 1;
|
|
|
|
if (ctx->Light.ColorMaterialEnabled) {
|
|
key->light_color_material_mask = ctx->Light._ColorMaterialBitmask;
|
|
}
|
|
|
|
for (i = 0; i < MAX_LIGHTS; i++) {
|
|
struct gl_light *light = &ctx->Light.Light[i];
|
|
|
|
if (light->Enabled) {
|
|
key->unit[i].light_enabled = 1;
|
|
|
|
if (light->EyePosition[3] == 0.0F)
|
|
key->unit[i].light_eyepos3_is_zero = 1;
|
|
|
|
if (light->SpotCutoff == 180.0F)
|
|
key->unit[i].light_spotcutoff_is_180 = 1;
|
|
|
|
if (light->ConstantAttenuation != 1.0F ||
|
|
light->LinearAttenuation != 0.0F ||
|
|
light->QuadraticAttenuation != 0.0F)
|
|
key->unit[i].light_attenuated = 1;
|
|
}
|
|
}
|
|
|
|
if (check_active_shininess(ctx, key, 0)) {
|
|
key->material_shininess_is_zero = 0;
|
|
}
|
|
else if (key->light_twoside &&
|
|
check_active_shininess(ctx, key, 1)) {
|
|
key->material_shininess_is_zero = 0;
|
|
}
|
|
else {
|
|
key->material_shininess_is_zero = 1;
|
|
}
|
|
}
|
|
|
|
if (ctx->Transform.Normalize)
|
|
key->normalize = 1;
|
|
|
|
if (ctx->Transform.RescaleNormals)
|
|
key->rescale_normals = 1;
|
|
|
|
if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT) {
|
|
key->fog_source_is_depth = 1;
|
|
key->fog_distance_mode = translate_fog_distance_mode(ctx->Fog.FogDistanceMode);
|
|
}
|
|
|
|
if (ctx->Point._Attenuated)
|
|
key->point_attenuated = 1;
|
|
|
|
if (ctx->Array.VAO->VertexAttrib[VERT_ATTRIB_POINT_SIZE].Enabled)
|
|
key->point_array = 1;
|
|
|
|
if (ctx->Texture._TexGenEnabled ||
|
|
ctx->Texture._TexMatEnabled ||
|
|
ctx->Texture._MaxEnabledTexImageUnit != -1)
|
|
key->texture_enabled_global = 1;
|
|
|
|
for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
|
|
struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
|
|
|
|
if (texUnit->_Current)
|
|
key->unit[i].texunit_really_enabled = 1;
|
|
|
|
if (ctx->Point.PointSprite)
|
|
if (ctx->Point.CoordReplaceBits & (1u << i))
|
|
key->unit[i].coord_replace = 1;
|
|
|
|
if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
|
|
key->unit[i].texmat_enabled = 1;
|
|
|
|
if (texUnit->TexGenEnabled) {
|
|
key->unit[i].texgen_enabled = 1;
|
|
|
|
key->unit[i].texgen_mode0 =
|
|
translate_texgen( texUnit->TexGenEnabled & (1<<0),
|
|
texUnit->GenS.Mode );
|
|
key->unit[i].texgen_mode1 =
|
|
translate_texgen( texUnit->TexGenEnabled & (1<<1),
|
|
texUnit->GenT.Mode );
|
|
key->unit[i].texgen_mode2 =
|
|
translate_texgen( texUnit->TexGenEnabled & (1<<2),
|
|
texUnit->GenR.Mode );
|
|
key->unit[i].texgen_mode3 =
|
|
translate_texgen( texUnit->TexGenEnabled & (1<<3),
|
|
texUnit->GenQ.Mode );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* Very useful debugging tool - produces annotated listing of
|
|
* generated program with line/function references for each
|
|
* instruction back into this file:
|
|
*/
|
|
#define DISASSEM 0
|
|
|
|
|
|
/* Use uregs to represent registers internally, translate to Mesa's
|
|
* expected formats on emit.
|
|
*
|
|
* NOTE: These are passed by value extensively in this file rather
|
|
* than as usual by pointer reference. If this disturbs you, try
|
|
* remembering they are just 32bits in size.
|
|
*
|
|
* GCC is smart enough to deal with these dword-sized structures in
|
|
* much the same way as if I had defined them as dwords and was using
|
|
* macros to access and set the fields. This is much nicer and easier
|
|
* to evolve.
|
|
*/
|
|
struct ureg {
|
|
GLuint file:4;
|
|
GLint idx:9; /* relative addressing may be negative */
|
|
/* sizeof(idx) should == sizeof(prog_src_reg::Index) */
|
|
GLuint abs:1;
|
|
GLuint negate:1;
|
|
GLuint swz:12;
|
|
GLuint pad:5;
|
|
};
|
|
|
|
|
|
struct tnl_program {
|
|
const struct state_key *state;
|
|
struct gl_vertex_program *program;
|
|
GLuint max_inst; /** number of instructions allocated for program */
|
|
GLboolean mvp_with_dp4;
|
|
|
|
GLuint temp_in_use;
|
|
GLuint temp_reserved;
|
|
|
|
struct ureg eye_position;
|
|
struct ureg eye_position_z;
|
|
struct ureg eye_position_normalized;
|
|
struct ureg transformed_normal;
|
|
struct ureg identity;
|
|
|
|
GLuint materials;
|
|
GLuint color_materials;
|
|
};
|
|
|
|
|
|
static const struct ureg undef = {
|
|
PROGRAM_UNDEFINED,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0
|
|
};
|
|
|
|
/* Local shorthand:
|
|
*/
|
|
#define X SWIZZLE_X
|
|
#define Y SWIZZLE_Y
|
|
#define Z SWIZZLE_Z
|
|
#define W SWIZZLE_W
|
|
|
|
|
|
/* Construct a ureg:
|
|
*/
|
|
static struct ureg make_ureg(GLuint file, GLint idx)
|
|
{
|
|
struct ureg reg;
|
|
reg.file = file;
|
|
reg.idx = idx;
|
|
reg.abs = 0;
|
|
reg.negate = 0;
|
|
reg.swz = SWIZZLE_NOOP;
|
|
reg.pad = 0;
|
|
return reg;
|
|
}
|
|
|
|
|
|
|
|
static struct ureg absolute( struct ureg reg )
|
|
{
|
|
reg.abs = 1;
|
|
reg.negate = 0;
|
|
return reg;
|
|
}
|
|
|
|
|
|
static struct ureg negate( struct ureg reg )
|
|
{
|
|
reg.negate ^= 1;
|
|
return reg;
|
|
}
|
|
|
|
|
|
static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
|
|
{
|
|
reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
|
|
GET_SWZ(reg.swz, y),
|
|
GET_SWZ(reg.swz, z),
|
|
GET_SWZ(reg.swz, w));
|
|
return reg;
|
|
}
|
|
|
|
|
|
static struct ureg swizzle1( struct ureg reg, int x )
|
|
{
|
|
return swizzle(reg, x, x, x, x);
|
|
}
|
|
|
|
|
|
static struct ureg get_temp( struct tnl_program *p )
|
|
{
|
|
int bit = ffs( ~p->temp_in_use );
|
|
if (!bit) {
|
|
_mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
|
|
exit(1);
|
|
}
|
|
|
|
if ((GLuint) bit > p->program->Base.NumTemporaries)
|
|
p->program->Base.NumTemporaries = bit;
|
|
|
|
p->temp_in_use |= 1<<(bit-1);
|
|
return make_ureg(PROGRAM_TEMPORARY, bit-1);
|
|
}
|
|
|
|
|
|
static struct ureg reserve_temp( struct tnl_program *p )
|
|
{
|
|
struct ureg temp = get_temp( p );
|
|
p->temp_reserved |= 1<<temp.idx;
|
|
return temp;
|
|
}
|
|
|
|
|
|
static void release_temp( struct tnl_program *p, struct ureg reg )
|
|
{
|
|
if (reg.file == PROGRAM_TEMPORARY) {
|
|
p->temp_in_use &= ~(1<<reg.idx);
|
|
p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
|
|
}
|
|
}
|
|
|
|
static void release_temps( struct tnl_program *p )
|
|
{
|
|
p->temp_in_use = p->temp_reserved;
|
|
}
|
|
|
|
|
|
static struct ureg register_param5(struct tnl_program *p,
|
|
GLint s0,
|
|
GLint s1,
|
|
GLint s2,
|
|
GLint s3,
|
|
GLint s4)
|
|
{
|
|
gl_state_index tokens[STATE_LENGTH];
|
|
GLint idx;
|
|
tokens[0] = s0;
|
|
tokens[1] = s1;
|
|
tokens[2] = s2;
|
|
tokens[3] = s3;
|
|
tokens[4] = s4;
|
|
idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
|
|
return make_ureg(PROGRAM_STATE_VAR, idx);
|
|
}
|
|
|
|
|
|
#define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
|
|
#define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
|
|
#define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
|
|
#define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
|
|
|
|
|
|
|
|
/**
|
|
* \param input one of VERT_ATTRIB_x tokens.
|
|
*/
|
|
static struct ureg register_input( struct tnl_program *p, GLuint input )
|
|
{
|
|
assert(input < VERT_ATTRIB_MAX);
|
|
|
|
if (p->state->varying_vp_inputs & VERT_BIT(input)) {
|
|
p->program->Base.InputsRead |= VERT_BIT(input);
|
|
return make_ureg(PROGRAM_INPUT, input);
|
|
}
|
|
else {
|
|
return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* \param input one of VARYING_SLOT_x tokens.
|
|
*/
|
|
static struct ureg register_output( struct tnl_program *p, GLuint output )
|
|
{
|
|
p->program->Base.OutputsWritten |= BITFIELD64_BIT(output);
|
|
return make_ureg(PROGRAM_OUTPUT, output);
|
|
}
|
|
|
|
|
|
static struct ureg register_const4f( struct tnl_program *p,
|
|
GLfloat s0,
|
|
GLfloat s1,
|
|
GLfloat s2,
|
|
GLfloat s3)
|
|
{
|
|
gl_constant_value values[4];
|
|
GLint idx;
|
|
GLuint swizzle;
|
|
values[0].f = s0;
|
|
values[1].f = s1;
|
|
values[2].f = s2;
|
|
values[3].f = s3;
|
|
idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
|
|
&swizzle );
|
|
assert(swizzle == SWIZZLE_NOOP);
|
|
return make_ureg(PROGRAM_CONSTANT, idx);
|
|
}
|
|
|
|
#define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
|
|
#define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
|
|
#define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
|
|
#define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
|
|
|
|
static GLboolean is_undef( struct ureg reg )
|
|
{
|
|
return reg.file == PROGRAM_UNDEFINED;
|
|
}
|
|
|
|
|
|
static struct ureg get_identity_param( struct tnl_program *p )
|
|
{
|
|
if (is_undef(p->identity))
|
|
p->identity = register_const4f(p, 0,0,0,1);
|
|
|
|
return p->identity;
|
|
}
|
|
|
|
static void register_matrix_param5( struct tnl_program *p,
|
|
GLint s0, /* modelview, projection, etc */
|
|
GLint s1, /* texture matrix number */
|
|
GLint s2, /* first row */
|
|
GLint s3, /* last row */
|
|
GLint s4, /* inverse, transpose, etc */
|
|
struct ureg *matrix )
|
|
{
|
|
GLint i;
|
|
|
|
/* This is a bit sad as the support is there to pull the whole
|
|
* matrix out in one go:
|
|
*/
|
|
for (i = 0; i <= s3 - s2; i++)
|
|
matrix[i] = register_param5( p, s0, s1, i, i, s4 );
|
|
}
|
|
|
|
|
|
static void emit_arg( struct prog_src_register *src,
|
|
struct ureg reg )
|
|
{
|
|
src->File = reg.file;
|
|
src->Index = reg.idx;
|
|
src->Swizzle = reg.swz;
|
|
src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
|
|
src->RelAddr = 0;
|
|
/* Check that bitfield sizes aren't exceeded */
|
|
assert(src->Index == reg.idx);
|
|
}
|
|
|
|
|
|
static void emit_dst( struct prog_dst_register *dst,
|
|
struct ureg reg, GLuint mask )
|
|
{
|
|
dst->File = reg.file;
|
|
dst->Index = reg.idx;
|
|
/* allow zero as a shorthand for xyzw */
|
|
dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
|
|
/* Check that bitfield sizes aren't exceeded */
|
|
assert(dst->Index == reg.idx);
|
|
}
|
|
|
|
|
|
static void debug_insn( struct prog_instruction *inst, const char *fn,
|
|
GLuint line )
|
|
{
|
|
if (DISASSEM) {
|
|
static const char *last_fn;
|
|
|
|
if (fn != last_fn) {
|
|
last_fn = fn;
|
|
printf("%s:\n", fn);
|
|
}
|
|
|
|
printf("%d:\t", line);
|
|
_mesa_print_instruction(inst);
|
|
}
|
|
}
|
|
|
|
|
|
static void emit_op3fn(struct tnl_program *p,
|
|
enum prog_opcode op,
|
|
struct ureg dest,
|
|
GLuint mask,
|
|
struct ureg src0,
|
|
struct ureg src1,
|
|
struct ureg src2,
|
|
const char *fn,
|
|
GLuint line)
|
|
{
|
|
GLuint nr;
|
|
struct prog_instruction *inst;
|
|
|
|
assert(p->program->Base.NumInstructions <= p->max_inst);
|
|
|
|
if (p->program->Base.NumInstructions == p->max_inst) {
|
|
/* need to extend the program's instruction array */
|
|
struct prog_instruction *newInst;
|
|
|
|
/* double the size */
|
|
p->max_inst *= 2;
|
|
|
|
newInst = _mesa_alloc_instructions(p->max_inst);
|
|
if (!newInst) {
|
|
_mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
|
|
return;
|
|
}
|
|
|
|
_mesa_copy_instructions(newInst,
|
|
p->program->Base.Instructions,
|
|
p->program->Base.NumInstructions);
|
|
|
|
_mesa_free_instructions(p->program->Base.Instructions,
|
|
p->program->Base.NumInstructions);
|
|
|
|
p->program->Base.Instructions = newInst;
|
|
}
|
|
|
|
nr = p->program->Base.NumInstructions++;
|
|
|
|
inst = &p->program->Base.Instructions[nr];
|
|
inst->Opcode = (enum prog_opcode) op;
|
|
|
|
emit_arg( &inst->SrcReg[0], src0 );
|
|
emit_arg( &inst->SrcReg[1], src1 );
|
|
emit_arg( &inst->SrcReg[2], src2 );
|
|
|
|
emit_dst( &inst->DstReg, dest, mask );
|
|
|
|
debug_insn(inst, fn, line);
|
|
}
|
|
|
|
|
|
#define emit_op3(p, op, dst, mask, src0, src1, src2) \
|
|
emit_op3fn(p, op, dst, mask, src0, src1, src2, __func__, __LINE__)
|
|
|
|
#define emit_op2(p, op, dst, mask, src0, src1) \
|
|
emit_op3fn(p, op, dst, mask, src0, src1, undef, __func__, __LINE__)
|
|
|
|
#define emit_op1(p, op, dst, mask, src0) \
|
|
emit_op3fn(p, op, dst, mask, src0, undef, undef, __func__, __LINE__)
|
|
|
|
|
|
static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
|
|
{
|
|
if (reg.file == PROGRAM_TEMPORARY &&
|
|
!(p->temp_reserved & (1<<reg.idx)))
|
|
return reg;
|
|
else {
|
|
struct ureg temp = get_temp(p);
|
|
emit_op1(p, OPCODE_MOV, temp, 0, reg);
|
|
return temp;
|
|
}
|
|
}
|
|
|
|
|
|
/* Currently no tracking performed of input/output/register size or
|
|
* active elements. Could be used to reduce these operations, as
|
|
* could the matrix type.
|
|
*/
|
|
static void emit_matrix_transform_vec4( struct tnl_program *p,
|
|
struct ureg dest,
|
|
const struct ureg *mat,
|
|
struct ureg src)
|
|
{
|
|
emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
|
|
emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
|
|
emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
|
|
emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
|
|
}
|
|
|
|
|
|
/* This version is much easier to implement if writemasks are not
|
|
* supported natively on the target or (like SSE), the target doesn't
|
|
* have a clean/obvious dotproduct implementation.
|
|
*/
|
|
static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
|
|
struct ureg dest,
|
|
const struct ureg *mat,
|
|
struct ureg src)
|
|
{
|
|
struct ureg tmp;
|
|
|
|
if (dest.file != PROGRAM_TEMPORARY)
|
|
tmp = get_temp(p);
|
|
else
|
|
tmp = dest;
|
|
|
|
emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
|
|
emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
|
|
emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
|
|
emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
|
|
|
|
if (dest.file != PROGRAM_TEMPORARY)
|
|
release_temp(p, tmp);
|
|
}
|
|
|
|
|
|
static void emit_matrix_transform_vec3( struct tnl_program *p,
|
|
struct ureg dest,
|
|
const struct ureg *mat,
|
|
struct ureg src)
|
|
{
|
|
emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
|
|
emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
|
|
emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
|
|
}
|
|
|
|
|
|
static void emit_normalize_vec3( struct tnl_program *p,
|
|
struct ureg dest,
|
|
struct ureg src )
|
|
{
|
|
struct ureg tmp = get_temp(p);
|
|
emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
|
|
emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
|
|
emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
|
|
release_temp(p, tmp);
|
|
}
|
|
|
|
|
|
static void emit_passthrough( struct tnl_program *p,
|
|
GLuint input,
|
|
GLuint output )
|
|
{
|
|
struct ureg out = register_output(p, output);
|
|
emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
|
|
}
|
|
|
|
|
|
static struct ureg get_eye_position( struct tnl_program *p )
|
|
{
|
|
if (is_undef(p->eye_position)) {
|
|
struct ureg pos = register_input( p, VERT_ATTRIB_POS );
|
|
struct ureg modelview[4];
|
|
|
|
p->eye_position = reserve_temp(p);
|
|
|
|
if (p->mvp_with_dp4) {
|
|
register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
|
|
0, modelview );
|
|
|
|
emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
|
|
}
|
|
else {
|
|
register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
|
|
STATE_MATRIX_TRANSPOSE, modelview );
|
|
|
|
emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
|
|
}
|
|
}
|
|
|
|
return p->eye_position;
|
|
}
|
|
|
|
|
|
static struct ureg get_eye_position_z( struct tnl_program *p )
|
|
{
|
|
if (!is_undef(p->eye_position))
|
|
return swizzle1(p->eye_position, Z);
|
|
|
|
if (is_undef(p->eye_position_z)) {
|
|
struct ureg pos = register_input( p, VERT_ATTRIB_POS );
|
|
struct ureg modelview[4];
|
|
|
|
p->eye_position_z = reserve_temp(p);
|
|
|
|
register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
|
|
0, modelview );
|
|
|
|
emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
|
|
}
|
|
|
|
return p->eye_position_z;
|
|
}
|
|
|
|
|
|
static struct ureg get_eye_position_normalized( struct tnl_program *p )
|
|
{
|
|
if (is_undef(p->eye_position_normalized)) {
|
|
struct ureg eye = get_eye_position(p);
|
|
p->eye_position_normalized = reserve_temp(p);
|
|
emit_normalize_vec3(p, p->eye_position_normalized, eye);
|
|
}
|
|
|
|
return p->eye_position_normalized;
|
|
}
|
|
|
|
|
|
static struct ureg get_transformed_normal( struct tnl_program *p )
|
|
{
|
|
if (is_undef(p->transformed_normal) &&
|
|
!p->state->need_eye_coords &&
|
|
!p->state->normalize &&
|
|
!(p->state->need_eye_coords == p->state->rescale_normals))
|
|
{
|
|
p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
|
|
}
|
|
else if (is_undef(p->transformed_normal))
|
|
{
|
|
struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
|
|
struct ureg mvinv[3];
|
|
struct ureg transformed_normal = reserve_temp(p);
|
|
|
|
if (p->state->need_eye_coords) {
|
|
register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
|
|
STATE_MATRIX_INVTRANS, mvinv );
|
|
|
|
/* Transform to eye space:
|
|
*/
|
|
emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
|
|
normal = transformed_normal;
|
|
}
|
|
|
|
/* Normalize/Rescale:
|
|
*/
|
|
if (p->state->normalize) {
|
|
emit_normalize_vec3( p, transformed_normal, normal );
|
|
normal = transformed_normal;
|
|
}
|
|
else if (p->state->need_eye_coords == p->state->rescale_normals) {
|
|
/* This is already adjusted for eye/non-eye rendering:
|
|
*/
|
|
struct ureg rescale = register_param2(p, STATE_INTERNAL,
|
|
STATE_NORMAL_SCALE);
|
|
|
|
emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
|
|
normal = transformed_normal;
|
|
}
|
|
|
|
assert(normal.file == PROGRAM_TEMPORARY);
|
|
p->transformed_normal = normal;
|
|
}
|
|
|
|
return p->transformed_normal;
|
|
}
|
|
|
|
|
|
static void build_hpos( struct tnl_program *p )
|
|
{
|
|
struct ureg pos = register_input( p, VERT_ATTRIB_POS );
|
|
struct ureg hpos = register_output( p, VARYING_SLOT_POS );
|
|
struct ureg mvp[4];
|
|
|
|
if (p->mvp_with_dp4) {
|
|
register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
|
|
0, mvp );
|
|
emit_matrix_transform_vec4( p, hpos, mvp, pos );
|
|
}
|
|
else {
|
|
register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
|
|
STATE_MATRIX_TRANSPOSE, mvp );
|
|
emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
|
|
}
|
|
}
|
|
|
|
|
|
static GLuint material_attrib( GLuint side, GLuint property )
|
|
{
|
|
return (property - STATE_AMBIENT) * 2 + side;
|
|
}
|
|
|
|
|
|
/**
|
|
* Get a bitmask of which material values vary on a per-vertex basis.
|
|
*/
|
|
static void set_material_flags( struct tnl_program *p )
|
|
{
|
|
p->color_materials = 0;
|
|
p->materials = 0;
|
|
|
|
if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
|
|
p->materials =
|
|
p->color_materials = p->state->light_color_material_mask;
|
|
}
|
|
|
|
p->materials |= (p->state->varying_vp_inputs >> VERT_ATTRIB_GENERIC0);
|
|
}
|
|
|
|
|
|
static struct ureg get_material( struct tnl_program *p, GLuint side,
|
|
GLuint property )
|
|
{
|
|
GLuint attrib = material_attrib(side, property);
|
|
|
|
if (p->color_materials & (1<<attrib))
|
|
return register_input(p, VERT_ATTRIB_COLOR0);
|
|
else if (p->materials & (1<<attrib)) {
|
|
/* Put material values in the GENERIC slots -- they are not used
|
|
* for anything in fixed function mode.
|
|
*/
|
|
return register_input( p, attrib + VERT_ATTRIB_GENERIC0 );
|
|
}
|
|
else
|
|
return register_param3( p, STATE_MATERIAL, side, property );
|
|
}
|
|
|
|
#define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
|
|
MAT_BIT_FRONT_AMBIENT | \
|
|
MAT_BIT_FRONT_DIFFUSE) << (side))
|
|
|
|
|
|
/**
|
|
* Either return a precalculated constant value or emit code to
|
|
* calculate these values dynamically in the case where material calls
|
|
* are present between begin/end pairs.
|
|
*
|
|
* Probably want to shift this to the program compilation phase - if
|
|
* we always emitted the calculation here, a smart compiler could
|
|
* detect that it was constant (given a certain set of inputs), and
|
|
* lift it out of the main loop. That way the programs created here
|
|
* would be independent of the vertex_buffer details.
|
|
*/
|
|
static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
|
|
{
|
|
if (p->materials & SCENE_COLOR_BITS(side)) {
|
|
struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
|
|
struct ureg material_emission = get_material(p, side, STATE_EMISSION);
|
|
struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
|
|
struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
|
|
struct ureg tmp = make_temp(p, material_diffuse);
|
|
emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
|
|
material_ambient, material_emission);
|
|
return tmp;
|
|
}
|
|
else
|
|
return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
|
|
}
|
|
|
|
|
|
static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
|
|
GLuint side, GLuint property )
|
|
{
|
|
GLuint attrib = material_attrib(side, property);
|
|
if (p->materials & (1<<attrib)) {
|
|
struct ureg light_value =
|
|
register_param3(p, STATE_LIGHT, light, property);
|
|
struct ureg material_value = get_material(p, side, property);
|
|
struct ureg tmp = get_temp(p);
|
|
emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
|
|
return tmp;
|
|
}
|
|
else
|
|
return register_param4(p, STATE_LIGHTPROD, light, side, property);
|
|
}
|
|
|
|
|
|
static struct ureg calculate_light_attenuation( struct tnl_program *p,
|
|
GLuint i,
|
|
struct ureg VPpli,
|
|
struct ureg dist )
|
|
{
|
|
struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
|
|
STATE_ATTENUATION);
|
|
struct ureg att = undef;
|
|
|
|
/* Calculate spot attenuation:
|
|
*/
|
|
if (!p->state->unit[i].light_spotcutoff_is_180) {
|
|
struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
|
|
STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
|
|
struct ureg spot = get_temp(p);
|
|
struct ureg slt = get_temp(p);
|
|
|
|
att = get_temp(p);
|
|
|
|
emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
|
|
emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
|
|
emit_op2(p, OPCODE_POW, spot, 0, absolute(spot), swizzle1(attenuation, W));
|
|
emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
|
|
|
|
release_temp(p, spot);
|
|
release_temp(p, slt);
|
|
}
|
|
|
|
/* Calculate distance attenuation(See formula (2.4) at glspec 2.1 page 62):
|
|
*
|
|
* Skip the calucation when _dist_ is undefined(light_eyepos3_is_zero)
|
|
*/
|
|
if (p->state->unit[i].light_attenuated && !is_undef(dist)) {
|
|
if (is_undef(att))
|
|
att = get_temp(p);
|
|
/* 1/d,d,d,1/d */
|
|
emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
|
|
/* 1,d,d*d,1/d */
|
|
emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
|
|
/* 1/dist-atten */
|
|
emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
|
|
|
|
if (!p->state->unit[i].light_spotcutoff_is_180) {
|
|
/* dist-atten */
|
|
emit_op1(p, OPCODE_RCP, dist, 0, dist);
|
|
/* spot-atten * dist-atten */
|
|
emit_op2(p, OPCODE_MUL, att, 0, dist, att);
|
|
}
|
|
else {
|
|
/* dist-atten */
|
|
emit_op1(p, OPCODE_RCP, att, 0, dist);
|
|
}
|
|
}
|
|
|
|
return att;
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute:
|
|
* lit.y = MAX(0, dots.x)
|
|
* lit.z = SLT(0, dots.x)
|
|
*/
|
|
static void emit_degenerate_lit( struct tnl_program *p,
|
|
struct ureg lit,
|
|
struct ureg dots )
|
|
{
|
|
struct ureg id = get_identity_param(p); /* id = {0,0,0,1} */
|
|
|
|
/* Note that lit.x & lit.w will not be examined. Note also that
|
|
* dots.xyzw == dots.xxxx.
|
|
*/
|
|
|
|
/* MAX lit, id, dots;
|
|
*/
|
|
emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
|
|
|
|
/* result[2] = (in > 0 ? 1 : 0)
|
|
* SLT lit.z, id.z, dots; # lit.z = (0 < dots.z) ? 1 : 0
|
|
*/
|
|
emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
|
|
}
|
|
|
|
|
|
/* Need to add some addtional parameters to allow lighting in object
|
|
* space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
|
|
* space lighting.
|
|
*/
|
|
static void build_lighting( struct tnl_program *p )
|
|
{
|
|
const GLboolean twoside = p->state->light_twoside;
|
|
const GLboolean separate = p->state->separate_specular;
|
|
GLuint nr_lights = 0, count = 0;
|
|
struct ureg normal = get_transformed_normal(p);
|
|
struct ureg lit = get_temp(p);
|
|
struct ureg dots = get_temp(p);
|
|
struct ureg _col0 = undef, _col1 = undef;
|
|
struct ureg _bfc0 = undef, _bfc1 = undef;
|
|
GLuint i;
|
|
|
|
/*
|
|
* NOTE:
|
|
* dots.x = dot(normal, VPpli)
|
|
* dots.y = dot(normal, halfAngle)
|
|
* dots.z = back.shininess
|
|
* dots.w = front.shininess
|
|
*/
|
|
|
|
for (i = 0; i < MAX_LIGHTS; i++)
|
|
if (p->state->unit[i].light_enabled)
|
|
nr_lights++;
|
|
|
|
set_material_flags(p);
|
|
|
|
{
|
|
if (!p->state->material_shininess_is_zero) {
|
|
struct ureg shininess = get_material(p, 0, STATE_SHININESS);
|
|
emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
|
|
release_temp(p, shininess);
|
|
}
|
|
|
|
_col0 = make_temp(p, get_scenecolor(p, 0));
|
|
if (separate)
|
|
_col1 = make_temp(p, get_identity_param(p));
|
|
else
|
|
_col1 = _col0;
|
|
}
|
|
|
|
if (twoside) {
|
|
if (!p->state->material_shininess_is_zero) {
|
|
/* Note that we negate the back-face specular exponent here.
|
|
* The negation will be un-done later in the back-face code below.
|
|
*/
|
|
struct ureg shininess = get_material(p, 1, STATE_SHININESS);
|
|
emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
|
|
negate(swizzle1(shininess,X)));
|
|
release_temp(p, shininess);
|
|
}
|
|
|
|
_bfc0 = make_temp(p, get_scenecolor(p, 1));
|
|
if (separate)
|
|
_bfc1 = make_temp(p, get_identity_param(p));
|
|
else
|
|
_bfc1 = _bfc0;
|
|
}
|
|
|
|
/* If no lights, still need to emit the scenecolor.
|
|
*/
|
|
{
|
|
struct ureg res0 = register_output( p, VARYING_SLOT_COL0 );
|
|
emit_op1(p, OPCODE_MOV, res0, 0, _col0);
|
|
}
|
|
|
|
if (separate) {
|
|
struct ureg res1 = register_output( p, VARYING_SLOT_COL1 );
|
|
emit_op1(p, OPCODE_MOV, res1, 0, _col1);
|
|
}
|
|
|
|
if (twoside) {
|
|
struct ureg res0 = register_output( p, VARYING_SLOT_BFC0 );
|
|
emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
|
|
}
|
|
|
|
if (twoside && separate) {
|
|
struct ureg res1 = register_output( p, VARYING_SLOT_BFC1 );
|
|
emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
|
|
}
|
|
|
|
if (nr_lights == 0) {
|
|
release_temps(p);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < MAX_LIGHTS; i++) {
|
|
if (p->state->unit[i].light_enabled) {
|
|
struct ureg half = undef;
|
|
struct ureg att = undef, VPpli = undef;
|
|
struct ureg dist = undef;
|
|
|
|
count++;
|
|
if (p->state->unit[i].light_eyepos3_is_zero) {
|
|
VPpli = register_param3(p, STATE_INTERNAL,
|
|
STATE_LIGHT_POSITION_NORMALIZED, i);
|
|
} else {
|
|
struct ureg Ppli = register_param3(p, STATE_INTERNAL,
|
|
STATE_LIGHT_POSITION, i);
|
|
struct ureg V = get_eye_position(p);
|
|
|
|
VPpli = get_temp(p);
|
|
dist = get_temp(p);
|
|
|
|
/* Calculate VPpli vector
|
|
*/
|
|
emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
|
|
|
|
/* Normalize VPpli. The dist value also used in
|
|
* attenuation below.
|
|
*/
|
|
emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
|
|
emit_op1(p, OPCODE_RSQ, dist, 0, dist);
|
|
emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
|
|
}
|
|
|
|
/* Calculate attenuation:
|
|
*/
|
|
att = calculate_light_attenuation(p, i, VPpli, dist);
|
|
release_temp(p, dist);
|
|
|
|
/* Calculate viewer direction, or use infinite viewer:
|
|
*/
|
|
if (!p->state->material_shininess_is_zero) {
|
|
if (p->state->light_local_viewer) {
|
|
struct ureg eye_hat = get_eye_position_normalized(p);
|
|
half = get_temp(p);
|
|
emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
|
|
emit_normalize_vec3(p, half, half);
|
|
} else if (p->state->unit[i].light_eyepos3_is_zero) {
|
|
half = register_param3(p, STATE_INTERNAL,
|
|
STATE_LIGHT_HALF_VECTOR, i);
|
|
} else {
|
|
struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
|
|
half = get_temp(p);
|
|
emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
|
|
emit_normalize_vec3(p, half, half);
|
|
}
|
|
}
|
|
|
|
/* Calculate dot products:
|
|
*/
|
|
if (p->state->material_shininess_is_zero) {
|
|
emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
|
|
}
|
|
else {
|
|
emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
|
|
emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
|
|
}
|
|
|
|
/* Front face lighting:
|
|
*/
|
|
{
|
|
struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
|
|
struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
|
|
struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
|
|
struct ureg res0, res1;
|
|
GLuint mask0, mask1;
|
|
|
|
if (count == nr_lights) {
|
|
if (separate) {
|
|
mask0 = WRITEMASK_XYZ;
|
|
mask1 = WRITEMASK_XYZ;
|
|
res0 = register_output( p, VARYING_SLOT_COL0 );
|
|
res1 = register_output( p, VARYING_SLOT_COL1 );
|
|
}
|
|
else {
|
|
mask0 = 0;
|
|
mask1 = WRITEMASK_XYZ;
|
|
res0 = _col0;
|
|
res1 = register_output( p, VARYING_SLOT_COL0 );
|
|
}
|
|
}
|
|
else {
|
|
mask0 = 0;
|
|
mask1 = 0;
|
|
res0 = _col0;
|
|
res1 = _col1;
|
|
}
|
|
|
|
if (!is_undef(att)) {
|
|
/* light is attenuated by distance */
|
|
emit_op1(p, OPCODE_LIT, lit, 0, dots);
|
|
emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
|
|
emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
|
|
}
|
|
else if (!p->state->material_shininess_is_zero) {
|
|
/* there's a non-zero specular term */
|
|
emit_op1(p, OPCODE_LIT, lit, 0, dots);
|
|
emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
|
|
}
|
|
else {
|
|
/* no attenutation, no specular */
|
|
emit_degenerate_lit(p, lit, dots);
|
|
emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
|
|
}
|
|
|
|
emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
|
|
emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
|
|
|
|
release_temp(p, ambient);
|
|
release_temp(p, diffuse);
|
|
release_temp(p, specular);
|
|
}
|
|
|
|
/* Back face lighting:
|
|
*/
|
|
if (twoside) {
|
|
struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
|
|
struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
|
|
struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
|
|
struct ureg res0, res1;
|
|
GLuint mask0, mask1;
|
|
|
|
if (count == nr_lights) {
|
|
if (separate) {
|
|
mask0 = WRITEMASK_XYZ;
|
|
mask1 = WRITEMASK_XYZ;
|
|
res0 = register_output( p, VARYING_SLOT_BFC0 );
|
|
res1 = register_output( p, VARYING_SLOT_BFC1 );
|
|
}
|
|
else {
|
|
mask0 = 0;
|
|
mask1 = WRITEMASK_XYZ;
|
|
res0 = _bfc0;
|
|
res1 = register_output( p, VARYING_SLOT_BFC0 );
|
|
}
|
|
}
|
|
else {
|
|
res0 = _bfc0;
|
|
res1 = _bfc1;
|
|
mask0 = 0;
|
|
mask1 = 0;
|
|
}
|
|
|
|
/* For the back face we need to negate the X and Y component
|
|
* dot products. dots.Z has the negated back-face specular
|
|
* exponent. We swizzle that into the W position. This
|
|
* negation makes the back-face specular term positive again.
|
|
*/
|
|
dots = negate(swizzle(dots,X,Y,W,Z));
|
|
|
|
if (!is_undef(att)) {
|
|
emit_op1(p, OPCODE_LIT, lit, 0, dots);
|
|
emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
|
|
emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
|
|
}
|
|
else if (!p->state->material_shininess_is_zero) {
|
|
emit_op1(p, OPCODE_LIT, lit, 0, dots);
|
|
emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
|
|
}
|
|
else {
|
|
emit_degenerate_lit(p, lit, dots);
|
|
emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
|
|
}
|
|
|
|
emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
|
|
emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
|
|
/* restore dots to its original state for subsequent lights
|
|
* by negating and swizzling again.
|
|
*/
|
|
dots = negate(swizzle(dots,X,Y,W,Z));
|
|
|
|
release_temp(p, ambient);
|
|
release_temp(p, diffuse);
|
|
release_temp(p, specular);
|
|
}
|
|
|
|
release_temp(p, half);
|
|
release_temp(p, VPpli);
|
|
release_temp(p, att);
|
|
}
|
|
}
|
|
|
|
release_temps( p );
|
|
}
|
|
|
|
|
|
static void build_fog( struct tnl_program *p )
|
|
{
|
|
struct ureg fog = register_output(p, VARYING_SLOT_FOGC);
|
|
struct ureg input;
|
|
|
|
if (p->state->fog_source_is_depth) {
|
|
|
|
switch (p->state->fog_distance_mode) {
|
|
case FDM_EYE_RADIAL: /* Z = sqrt(Xe*Xe + Ye*Ye + Ze*Ze) */
|
|
input = get_eye_position(p);
|
|
emit_op2(p, OPCODE_DP3, fog, WRITEMASK_X, input, input);
|
|
emit_op1(p, OPCODE_RSQ, fog, WRITEMASK_X, fog);
|
|
emit_op1(p, OPCODE_RCP, fog, WRITEMASK_X, fog);
|
|
break;
|
|
case FDM_EYE_PLANE: /* Z = Ze */
|
|
input = get_eye_position_z(p);
|
|
emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input);
|
|
break;
|
|
case FDM_EYE_PLANE_ABS: /* Z = abs(Ze) */
|
|
input = get_eye_position_z(p);
|
|
emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
|
|
break;
|
|
default:
|
|
assert(!"Bad fog mode in build_fog()");
|
|
break;
|
|
}
|
|
|
|
}
|
|
else {
|
|
input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
|
|
emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
|
|
}
|
|
|
|
emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
|
|
}
|
|
|
|
|
|
static void build_reflect_texgen( struct tnl_program *p,
|
|
struct ureg dest,
|
|
GLuint writemask )
|
|
{
|
|
struct ureg normal = get_transformed_normal(p);
|
|
struct ureg eye_hat = get_eye_position_normalized(p);
|
|
struct ureg tmp = get_temp(p);
|
|
|
|
/* n.u */
|
|
emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
|
|
/* 2n.u */
|
|
emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
|
|
/* (-2n.u)n + u */
|
|
emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
|
|
|
|
release_temp(p, tmp);
|
|
}
|
|
|
|
|
|
static void build_sphere_texgen( struct tnl_program *p,
|
|
struct ureg dest,
|
|
GLuint writemask )
|
|
{
|
|
struct ureg normal = get_transformed_normal(p);
|
|
struct ureg eye_hat = get_eye_position_normalized(p);
|
|
struct ureg tmp = get_temp(p);
|
|
struct ureg half = register_scalar_const(p, .5);
|
|
struct ureg r = get_temp(p);
|
|
struct ureg inv_m = get_temp(p);
|
|
struct ureg id = get_identity_param(p);
|
|
|
|
/* Could share the above calculations, but it would be
|
|
* a fairly odd state for someone to set (both sphere and
|
|
* reflection active for different texture coordinate
|
|
* components. Of course - if two texture units enable
|
|
* reflect and/or sphere, things start to tilt in favour
|
|
* of seperating this out:
|
|
*/
|
|
|
|
/* n.u */
|
|
emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
|
|
/* 2n.u */
|
|
emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
|
|
/* (-2n.u)n + u */
|
|
emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
|
|
/* r + 0,0,1 */
|
|
emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
|
|
/* rx^2 + ry^2 + (rz+1)^2 */
|
|
emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
|
|
/* 2/m */
|
|
emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
|
|
/* 1/m */
|
|
emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
|
|
/* r/m + 1/2 */
|
|
emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
|
|
|
|
release_temp(p, tmp);
|
|
release_temp(p, r);
|
|
release_temp(p, inv_m);
|
|
}
|
|
|
|
|
|
static void build_texture_transform( struct tnl_program *p )
|
|
{
|
|
GLuint i, j;
|
|
|
|
for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
|
|
|
|
if (!(p->state->fragprog_inputs_read & VARYING_BIT_TEX(i)))
|
|
continue;
|
|
|
|
if (p->state->unit[i].coord_replace)
|
|
continue;
|
|
|
|
if (p->state->unit[i].texgen_enabled ||
|
|
p->state->unit[i].texmat_enabled) {
|
|
|
|
GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
|
|
struct ureg out = register_output(p, VARYING_SLOT_TEX0 + i);
|
|
struct ureg out_texgen = undef;
|
|
|
|
if (p->state->unit[i].texgen_enabled) {
|
|
GLuint copy_mask = 0;
|
|
GLuint sphere_mask = 0;
|
|
GLuint reflect_mask = 0;
|
|
GLuint normal_mask = 0;
|
|
GLuint modes[4];
|
|
|
|
if (texmat_enabled)
|
|
out_texgen = get_temp(p);
|
|
else
|
|
out_texgen = out;
|
|
|
|
modes[0] = p->state->unit[i].texgen_mode0;
|
|
modes[1] = p->state->unit[i].texgen_mode1;
|
|
modes[2] = p->state->unit[i].texgen_mode2;
|
|
modes[3] = p->state->unit[i].texgen_mode3;
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
switch (modes[j]) {
|
|
case TXG_OBJ_LINEAR: {
|
|
struct ureg obj = register_input(p, VERT_ATTRIB_POS);
|
|
struct ureg plane =
|
|
register_param3(p, STATE_TEXGEN, i,
|
|
STATE_TEXGEN_OBJECT_S + j);
|
|
|
|
emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
|
|
obj, plane );
|
|
break;
|
|
}
|
|
case TXG_EYE_LINEAR: {
|
|
struct ureg eye = get_eye_position(p);
|
|
struct ureg plane =
|
|
register_param3(p, STATE_TEXGEN, i,
|
|
STATE_TEXGEN_EYE_S + j);
|
|
|
|
emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
|
|
eye, plane );
|
|
break;
|
|
}
|
|
case TXG_SPHERE_MAP:
|
|
sphere_mask |= WRITEMASK_X << j;
|
|
break;
|
|
case TXG_REFLECTION_MAP:
|
|
reflect_mask |= WRITEMASK_X << j;
|
|
break;
|
|
case TXG_NORMAL_MAP:
|
|
normal_mask |= WRITEMASK_X << j;
|
|
break;
|
|
case TXG_NONE:
|
|
copy_mask |= WRITEMASK_X << j;
|
|
}
|
|
}
|
|
|
|
if (sphere_mask) {
|
|
build_sphere_texgen(p, out_texgen, sphere_mask);
|
|
}
|
|
|
|
if (reflect_mask) {
|
|
build_reflect_texgen(p, out_texgen, reflect_mask);
|
|
}
|
|
|
|
if (normal_mask) {
|
|
struct ureg normal = get_transformed_normal(p);
|
|
emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
|
|
}
|
|
|
|
if (copy_mask) {
|
|
struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
|
|
emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
|
|
}
|
|
}
|
|
|
|
if (texmat_enabled) {
|
|
struct ureg texmat[4];
|
|
struct ureg in = (!is_undef(out_texgen) ?
|
|
out_texgen :
|
|
register_input(p, VERT_ATTRIB_TEX0+i));
|
|
if (p->mvp_with_dp4) {
|
|
register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
|
|
0, texmat );
|
|
emit_matrix_transform_vec4( p, out, texmat, in );
|
|
}
|
|
else {
|
|
register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
|
|
STATE_MATRIX_TRANSPOSE, texmat );
|
|
emit_transpose_matrix_transform_vec4( p, out, texmat, in );
|
|
}
|
|
}
|
|
|
|
release_temps(p);
|
|
}
|
|
else {
|
|
emit_passthrough(p, VERT_ATTRIB_TEX0+i, VARYING_SLOT_TEX0+i);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Point size attenuation computation.
|
|
*/
|
|
static void build_atten_pointsize( struct tnl_program *p )
|
|
{
|
|
struct ureg eye = get_eye_position_z(p);
|
|
struct ureg state_size = register_param2(p, STATE_INTERNAL, STATE_POINT_SIZE_CLAMPED);
|
|
struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
|
|
struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
|
|
struct ureg ut = get_temp(p);
|
|
|
|
/* dist = |eyez| */
|
|
emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
|
|
/* p1 + dist * (p2 + dist * p3); */
|
|
emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
|
|
swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
|
|
emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
|
|
ut, swizzle1(state_attenuation, X));
|
|
|
|
/* 1 / sqrt(factor) */
|
|
emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
|
|
|
|
#if 0
|
|
/* out = pointSize / sqrt(factor) */
|
|
emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
|
|
#else
|
|
/* this is a good place to clamp the point size since there's likely
|
|
* no hardware registers to clamp point size at rasterization time.
|
|
*/
|
|
emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
|
|
emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
|
|
emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
|
|
#endif
|
|
|
|
release_temp(p, ut);
|
|
}
|
|
|
|
|
|
/**
|
|
* Pass-though per-vertex point size, from user's point size array.
|
|
*/
|
|
static void build_array_pointsize( struct tnl_program *p )
|
|
{
|
|
struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
|
|
struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
|
|
emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
|
|
}
|
|
|
|
|
|
static void build_tnl_program( struct tnl_program *p )
|
|
{
|
|
/* Emit the program, starting with the modelview, projection transforms:
|
|
*/
|
|
build_hpos(p);
|
|
|
|
/* Lighting calculations:
|
|
*/
|
|
if (p->state->fragprog_inputs_read & (VARYING_BIT_COL0|VARYING_BIT_COL1)) {
|
|
if (p->state->light_global_enabled)
|
|
build_lighting(p);
|
|
else {
|
|
if (p->state->fragprog_inputs_read & VARYING_BIT_COL0)
|
|
emit_passthrough(p, VERT_ATTRIB_COLOR0, VARYING_SLOT_COL0);
|
|
|
|
if (p->state->fragprog_inputs_read & VARYING_BIT_COL1)
|
|
emit_passthrough(p, VERT_ATTRIB_COLOR1, VARYING_SLOT_COL1);
|
|
}
|
|
}
|
|
|
|
if (p->state->fragprog_inputs_read & VARYING_BIT_FOGC)
|
|
build_fog(p);
|
|
|
|
if (p->state->fragprog_inputs_read & VARYING_BITS_TEX_ANY)
|
|
build_texture_transform(p);
|
|
|
|
if (p->state->point_attenuated)
|
|
build_atten_pointsize(p);
|
|
else if (p->state->point_array)
|
|
build_array_pointsize(p);
|
|
|
|
/* Finish up:
|
|
*/
|
|
emit_op1(p, OPCODE_END, undef, 0, undef);
|
|
|
|
/* Disassemble:
|
|
*/
|
|
if (DISASSEM) {
|
|
printf ("\n");
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
create_new_program( const struct state_key *key,
|
|
struct gl_vertex_program *program,
|
|
GLboolean mvp_with_dp4,
|
|
GLuint max_temps)
|
|
{
|
|
struct tnl_program p;
|
|
|
|
memset(&p, 0, sizeof(p));
|
|
p.state = key;
|
|
p.program = program;
|
|
p.eye_position = undef;
|
|
p.eye_position_z = undef;
|
|
p.eye_position_normalized = undef;
|
|
p.transformed_normal = undef;
|
|
p.identity = undef;
|
|
p.temp_in_use = 0;
|
|
p.mvp_with_dp4 = mvp_with_dp4;
|
|
|
|
if (max_temps >= sizeof(int) * 8)
|
|
p.temp_reserved = 0;
|
|
else
|
|
p.temp_reserved = ~((1<<max_temps)-1);
|
|
|
|
/* Start by allocating 32 instructions.
|
|
* If we need more, we'll grow the instruction array as needed.
|
|
*/
|
|
p.max_inst = 32;
|
|
p.program->Base.Instructions = _mesa_alloc_instructions(p.max_inst);
|
|
p.program->Base.String = NULL;
|
|
p.program->Base.NumInstructions =
|
|
p.program->Base.NumTemporaries =
|
|
p.program->Base.NumParameters =
|
|
p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
|
|
p.program->Base.Parameters = _mesa_new_parameter_list();
|
|
p.program->Base.InputsRead = 0;
|
|
p.program->Base.OutputsWritten = 0;
|
|
|
|
build_tnl_program( &p );
|
|
}
|
|
|
|
|
|
/**
|
|
* Return a vertex program which implements the current fixed-function
|
|
* transform/lighting/texgen operations.
|
|
*/
|
|
struct gl_vertex_program *
|
|
_mesa_get_fixed_func_vertex_program(struct gl_context *ctx)
|
|
{
|
|
struct gl_vertex_program *prog;
|
|
struct state_key key;
|
|
|
|
/* Grab all the relevant state and put it in a single structure:
|
|
*/
|
|
make_state_key(ctx, &key);
|
|
|
|
/* Look for an already-prepared program for this state:
|
|
*/
|
|
prog = gl_vertex_program(
|
|
_mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key)));
|
|
|
|
if (!prog) {
|
|
/* OK, we'll have to build a new one */
|
|
if (0)
|
|
printf("Build new TNL program\n");
|
|
|
|
prog = gl_vertex_program(ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0));
|
|
if (!prog)
|
|
return NULL;
|
|
|
|
create_new_program( &key, prog,
|
|
ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS,
|
|
ctx->Const.Program[MESA_SHADER_VERTEX].MaxTemps );
|
|
|
|
if (ctx->Driver.ProgramStringNotify)
|
|
ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
|
|
&prog->Base );
|
|
|
|
_mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
|
|
&key, sizeof(key), &prog->Base);
|
|
}
|
|
|
|
return prog;
|
|
}
|