Files
third_party_mesa3d/src/glsl/ir_mat_op_to_vec.cpp
2010-07-12 19:50:49 -07:00

368 lines
9.9 KiB
C++

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file ir_mat_op_to_vec.cpp
*
* Breaks matrix operation expressions down to a series of vector operations.
*
* Generally this is how we have to codegen matrix operations for a
* GPU, so this gives us the chance to constant fold operations on a
* column or row.
*/
#include "ir.h"
#include "ir_expression_flattening.h"
#include "glsl_types.h"
class ir_mat_op_to_vec_visitor : public ir_hierarchical_visitor {
public:
ir_mat_op_to_vec_visitor()
{
this->made_progress = false;
}
ir_visitor_status visit_leave(ir_assignment *);
ir_rvalue *get_column(ir_variable *var, int col);
ir_rvalue *get_element(ir_variable *var, int col, int row);
void do_mul_mat_mat(ir_variable *result_var,
ir_variable *a_var, ir_variable *b_var);
void do_mul_mat_vec(ir_variable *result_var,
ir_variable *a_var, ir_variable *b_var);
void do_mul_vec_mat(ir_variable *result_var,
ir_variable *a_var, ir_variable *b_var);
void do_mul_mat_scalar(ir_variable *result_var,
ir_variable *a_var, ir_variable *b_var);
bool made_progress;
};
static bool
mat_op_to_vec_predicate(ir_instruction *ir)
{
ir_expression *expr = ir->as_expression();
unsigned int i;
if (!expr)
return false;
for (i = 0; i < expr->get_num_operands(); i++) {
if (expr->operands[i]->type->is_matrix())
return true;
}
return false;
}
bool
do_mat_op_to_vec(exec_list *instructions)
{
ir_mat_op_to_vec_visitor v;
/* Pull out any matrix expression to a separate assignment to a
* temp. This will make our handling of the breakdown to
* operations on the matrix's vector components much easier.
*/
do_expression_flattening(instructions, mat_op_to_vec_predicate);
visit_list_elements(&v, instructions);
return v.made_progress;
}
ir_rvalue *
ir_mat_op_to_vec_visitor::get_element(ir_variable *var, int col, int row)
{
ir_dereference *deref;
deref = new(base_ir) ir_dereference_variable(var);
if (var->type->is_matrix()) {
deref = new(base_ir) ir_dereference_array(var,
new(base_ir) ir_constant(col));
} else {
assert(col == 0);
}
return new(base_ir) ir_swizzle(deref, row, 0, 0, 0, 1);
}
ir_rvalue *
ir_mat_op_to_vec_visitor::get_column(ir_variable *var, int row)
{
ir_dereference *deref;
if (!var->type->is_matrix()) {
deref = new(base_ir) ir_dereference_variable(var);
} else {
deref = new(base_ir) ir_dereference_variable(var);
deref = new(base_ir) ir_dereference_array(deref,
new(base_ir) ir_constant(row));
}
return deref;
}
void
ir_mat_op_to_vec_visitor::do_mul_mat_mat(ir_variable *result_var,
ir_variable *a_var,
ir_variable *b_var)
{
int b_col, i;
ir_assignment *assign;
ir_expression *expr;
for (b_col = 0; b_col < b_var->type->matrix_columns; b_col++) {
ir_rvalue *a = get_column(a_var, 0);
ir_rvalue *b = get_element(b_var, b_col, 0);
/* first column */
expr = new(base_ir) ir_expression(ir_binop_mul,
a->type,
a,
b);
/* following columns */
for (i = 1; i < a_var->type->matrix_columns; i++) {
ir_expression *mul_expr;
a = get_column(a_var, i);
b = get_element(b_var, b_col, i);
mul_expr = new(base_ir) ir_expression(ir_binop_mul,
a->type,
a,
b);
expr = new(base_ir) ir_expression(ir_binop_add,
a->type,
expr,
mul_expr);
}
ir_rvalue *result = get_column(result_var, b_col);
assign = new(base_ir) ir_assignment(result,
expr,
NULL);
base_ir->insert_before(assign);
}
}
void
ir_mat_op_to_vec_visitor::do_mul_mat_vec(ir_variable *result_var,
ir_variable *a_var,
ir_variable *b_var)
{
int i;
ir_rvalue *a = get_column(a_var, 0);
ir_rvalue *b = get_element(b_var, 0, 0);
ir_assignment *assign;
ir_expression *expr;
/* first column */
expr = new(base_ir) ir_expression(ir_binop_mul,
result_var->type,
a,
b);
/* following columns */
for (i = 1; i < a_var->type->matrix_columns; i++) {
ir_expression *mul_expr;
a = get_column(a_var, i);
b = get_element(b_var, 0, i);
mul_expr = new(base_ir) ir_expression(ir_binop_mul,
result_var->type,
a,
b);
expr = new(base_ir) ir_expression(ir_binop_add,
result_var->type,
expr,
mul_expr);
}
ir_rvalue *result = new(base_ir) ir_dereference_variable(result_var);
assign = new(base_ir) ir_assignment(result,
expr,
NULL);
base_ir->insert_before(assign);
}
void
ir_mat_op_to_vec_visitor::do_mul_vec_mat(ir_variable *result_var,
ir_variable *a_var,
ir_variable *b_var)
{
int i;
for (i = 0; i < b_var->type->matrix_columns; i++) {
ir_rvalue *a = new(base_ir) ir_dereference_variable(a_var);
ir_rvalue *b = get_column(b_var, i);
ir_rvalue *result;
ir_expression *column_expr;
ir_assignment *column_assign;
result = new(base_ir) ir_dereference_variable(result_var);
result = new(base_ir) ir_swizzle(result, i, 0, 0, 0, 1);
column_expr = new(base_ir) ir_expression(ir_binop_dot,
result->type,
a,
b);
column_assign = new(base_ir) ir_assignment(result,
column_expr,
NULL);
base_ir->insert_before(column_assign);
}
}
void
ir_mat_op_to_vec_visitor::do_mul_mat_scalar(ir_variable *result_var,
ir_variable *a_var,
ir_variable *b_var)
{
int i;
for (i = 0; i < a_var->type->matrix_columns; i++) {
ir_rvalue *a = get_column(a_var, i);
ir_rvalue *b = new(base_ir) ir_dereference_variable(b_var);
ir_rvalue *result = get_column(result_var, i);
ir_expression *column_expr;
ir_assignment *column_assign;
column_expr = new(base_ir) ir_expression(ir_binop_mul,
result->type,
a,
b);
column_assign = new(base_ir) ir_assignment(result,
column_expr,
NULL);
base_ir->insert_before(column_assign);
}
}
ir_visitor_status
ir_mat_op_to_vec_visitor::visit_leave(ir_assignment *assign)
{
ir_expression *expr = assign->rhs->as_expression();
bool found_matrix = false;
unsigned int i, matrix_columns = 1;
ir_variable *op_var[2];
if (!expr)
return visit_continue;
for (i = 0; i < expr->get_num_operands(); i++) {
if (expr->operands[i]->type->is_matrix()) {
found_matrix = true;
matrix_columns = expr->operands[i]->type->matrix_columns;
break;
}
}
if (!found_matrix)
return visit_continue;
ir_dereference_variable *lhs_deref = assign->lhs->as_dereference_variable();
assert(lhs_deref);
ir_variable *result_var = lhs_deref->var;
/* Store the expression operands in temps so we can use them
* multiple times.
*/
for (i = 0; i < expr->get_num_operands(); i++) {
ir_assignment *assign;
op_var[i] = new(base_ir) ir_variable(expr->operands[i]->type,
"mat_op_to_vec");
base_ir->insert_before(op_var[i]);
lhs_deref = new(base_ir) ir_dereference_variable(op_var[i]);
assign = new(base_ir) ir_assignment(lhs_deref,
expr->operands[i],
NULL);
base_ir->insert_before(assign);
}
/* OK, time to break down this matrix operation. */
switch (expr->operation) {
case ir_binop_add:
case ir_binop_sub:
case ir_binop_div:
case ir_binop_mod:
/* For most operations, the matrix version is just going
* column-wise through and applying the operation to each column
* if available.
*/
for (i = 0; i < matrix_columns; i++) {
ir_rvalue *op0 = get_column(op_var[0], i);
ir_rvalue *op1 = get_column(op_var[1], i);
ir_rvalue *result = get_column(result_var, i);
ir_expression *column_expr;
ir_assignment *column_assign;
column_expr = new(base_ir) ir_expression(expr->operation,
result->type,
op0,
op1);
column_assign = new(base_ir) ir_assignment(result,
column_expr,
NULL);
base_ir->insert_before(column_assign);
}
break;
case ir_binop_mul:
if (op_var[0]->type->is_matrix()) {
if (op_var[1]->type->is_matrix()) {
do_mul_mat_mat(result_var, op_var[0], op_var[1]);
} else if (op_var[1]->type->is_vector()) {
do_mul_mat_vec(result_var, op_var[0], op_var[1]);
} else {
assert(op_var[1]->type->is_scalar());
do_mul_mat_scalar(result_var, op_var[0], op_var[1]);
}
} else {
assert(op_var[1]->type->is_matrix());
if (op_var[0]->type->is_vector()) {
do_mul_vec_mat(result_var, op_var[0], op_var[1]);
} else {
assert(op_var[0]->type->is_scalar());
do_mul_mat_scalar(result_var, op_var[1], op_var[0]);
}
}
break;
default:
printf("FINISHME: Handle matrix operation for %s\n", expr->operator_string());
abort();
}
assign->remove();
this->made_progress = true;
return visit_continue;
}