
Right now, all keys have two things in common: a program string ID and a sampler_prog_key_data. I'd like to add another thing or two and need a place to put it. This commit adds a new brw_base_prog_key struct which contains those two common bits. Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
1216 lines
47 KiB
C
1216 lines
47 KiB
C
/*
|
||
* Copyright © 2013 Intel Corporation
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
* copy of this software and associated documentation files (the "Software"),
|
||
* to deal in the Software without restriction, including without limitation
|
||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
* and/or sell copies of the Software, and to permit persons to whom the
|
||
* Software is furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice (including the next
|
||
* paragraph) shall be included in all copies or substantial portions of the
|
||
* Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
* IN THE SOFTWARE.
|
||
*/
|
||
|
||
#include "util/ralloc.h"
|
||
|
||
#include "main/macros.h" /* Needed for MAX3 and MAX2 for format_rgb9e5 */
|
||
#include "util/format_rgb9e5.h"
|
||
#include "util/format_srgb.h"
|
||
|
||
#include "blorp_priv.h"
|
||
#include "compiler/brw_eu_defines.h"
|
||
|
||
#include "blorp_nir_builder.h"
|
||
|
||
#define FILE_DEBUG_FLAG DEBUG_BLORP
|
||
|
||
struct brw_blorp_const_color_prog_key
|
||
{
|
||
enum blorp_shader_type shader_type; /* Must be BLORP_SHADER_TYPE_CLEAR */
|
||
bool use_simd16_replicated_data;
|
||
bool clear_rgb_as_red;
|
||
bool pad[3];
|
||
};
|
||
|
||
static bool
|
||
blorp_params_get_clear_kernel(struct blorp_batch *batch,
|
||
struct blorp_params *params,
|
||
bool use_replicated_data,
|
||
bool clear_rgb_as_red)
|
||
{
|
||
struct blorp_context *blorp = batch->blorp;
|
||
|
||
const struct brw_blorp_const_color_prog_key blorp_key = {
|
||
.shader_type = BLORP_SHADER_TYPE_CLEAR,
|
||
.use_simd16_replicated_data = use_replicated_data,
|
||
.clear_rgb_as_red = clear_rgb_as_red,
|
||
};
|
||
|
||
if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
|
||
¶ms->wm_prog_kernel, ¶ms->wm_prog_data))
|
||
return true;
|
||
|
||
void *mem_ctx = ralloc_context(NULL);
|
||
|
||
nir_builder b;
|
||
blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, "BLORP-clear");
|
||
|
||
nir_variable *v_color =
|
||
BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
|
||
nir_ssa_def *color = nir_load_var(&b, v_color);
|
||
|
||
if (clear_rgb_as_red) {
|
||
nir_variable *frag_coord =
|
||
nir_variable_create(b.shader, nir_var_shader_in,
|
||
glsl_vec4_type(), "gl_FragCoord");
|
||
frag_coord->data.location = VARYING_SLOT_POS;
|
||
|
||
nir_ssa_def *pos = nir_f2i32(&b, nir_load_var(&b, frag_coord));
|
||
nir_ssa_def *comp = nir_umod(&b, nir_channel(&b, pos, 0),
|
||
nir_imm_int(&b, 3));
|
||
nir_ssa_def *color_component =
|
||
nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 0)),
|
||
nir_channel(&b, color, 0),
|
||
nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 1)),
|
||
nir_channel(&b, color, 1),
|
||
nir_channel(&b, color, 2)));
|
||
|
||
nir_ssa_def *u = nir_ssa_undef(&b, 1, 32);
|
||
color = nir_vec4(&b, color_component, u, u, u);
|
||
}
|
||
|
||
nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out,
|
||
glsl_vec4_type(),
|
||
"gl_FragColor");
|
||
frag_color->data.location = FRAG_RESULT_COLOR;
|
||
nir_store_var(&b, frag_color, color, 0xf);
|
||
|
||
struct brw_wm_prog_key wm_key;
|
||
brw_blorp_init_wm_prog_key(&wm_key);
|
||
|
||
struct brw_wm_prog_data prog_data;
|
||
const unsigned *program =
|
||
blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, use_replicated_data,
|
||
&prog_data);
|
||
|
||
bool result =
|
||
blorp->upload_shader(batch, &blorp_key, sizeof(blorp_key),
|
||
program, prog_data.base.program_size,
|
||
&prog_data.base, sizeof(prog_data),
|
||
¶ms->wm_prog_kernel, ¶ms->wm_prog_data);
|
||
|
||
ralloc_free(mem_ctx);
|
||
return result;
|
||
}
|
||
|
||
struct layer_offset_vs_key {
|
||
enum blorp_shader_type shader_type;
|
||
unsigned num_inputs;
|
||
};
|
||
|
||
/* In the case of doing attachment clears, we are using a surface state that
|
||
* is handed to us so we can't set (and don't even know) the base array layer.
|
||
* In order to do a layered clear in this scenario, we need some way of adding
|
||
* the base array layer to the instance id. Unfortunately, our hardware has
|
||
* no real concept of "base instance", so we have to do it manually in a
|
||
* vertex shader.
|
||
*/
|
||
static bool
|
||
blorp_params_get_layer_offset_vs(struct blorp_batch *batch,
|
||
struct blorp_params *params)
|
||
{
|
||
struct blorp_context *blorp = batch->blorp;
|
||
struct layer_offset_vs_key blorp_key = {
|
||
.shader_type = BLORP_SHADER_TYPE_LAYER_OFFSET_VS,
|
||
};
|
||
|
||
if (params->wm_prog_data)
|
||
blorp_key.num_inputs = params->wm_prog_data->num_varying_inputs;
|
||
|
||
if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
|
||
¶ms->vs_prog_kernel, ¶ms->vs_prog_data))
|
||
return true;
|
||
|
||
void *mem_ctx = ralloc_context(NULL);
|
||
|
||
nir_builder b;
|
||
blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_VERTEX, "BLORP-layer-offset-vs");
|
||
|
||
const struct glsl_type *uvec4_type = glsl_vector_type(GLSL_TYPE_UINT, 4);
|
||
|
||
/* First we deal with the header which has instance and base instance */
|
||
nir_variable *a_header = nir_variable_create(b.shader, nir_var_shader_in,
|
||
uvec4_type, "header");
|
||
a_header->data.location = VERT_ATTRIB_GENERIC0;
|
||
|
||
nir_variable *v_layer = nir_variable_create(b.shader, nir_var_shader_out,
|
||
glsl_int_type(), "layer_id");
|
||
v_layer->data.location = VARYING_SLOT_LAYER;
|
||
|
||
/* Compute the layer id */
|
||
nir_ssa_def *header = nir_load_var(&b, a_header);
|
||
nir_ssa_def *base_layer = nir_channel(&b, header, 0);
|
||
nir_ssa_def *instance = nir_channel(&b, header, 1);
|
||
nir_store_var(&b, v_layer, nir_iadd(&b, instance, base_layer), 0x1);
|
||
|
||
/* Then we copy the vertex from the next slot to VARYING_SLOT_POS */
|
||
nir_variable *a_vertex = nir_variable_create(b.shader, nir_var_shader_in,
|
||
glsl_vec4_type(), "a_vertex");
|
||
a_vertex->data.location = VERT_ATTRIB_GENERIC1;
|
||
|
||
nir_variable *v_pos = nir_variable_create(b.shader, nir_var_shader_out,
|
||
glsl_vec4_type(), "v_pos");
|
||
v_pos->data.location = VARYING_SLOT_POS;
|
||
|
||
nir_copy_var(&b, v_pos, a_vertex);
|
||
|
||
/* Then we copy everything else */
|
||
for (unsigned i = 0; i < blorp_key.num_inputs; i++) {
|
||
nir_variable *a_in = nir_variable_create(b.shader, nir_var_shader_in,
|
||
uvec4_type, "input");
|
||
a_in->data.location = VERT_ATTRIB_GENERIC2 + i;
|
||
|
||
nir_variable *v_out = nir_variable_create(b.shader, nir_var_shader_out,
|
||
uvec4_type, "output");
|
||
v_out->data.location = VARYING_SLOT_VAR0 + i;
|
||
|
||
nir_copy_var(&b, v_out, a_in);
|
||
}
|
||
|
||
struct brw_vs_prog_data vs_prog_data;
|
||
memset(&vs_prog_data, 0, sizeof(vs_prog_data));
|
||
|
||
const unsigned *program =
|
||
blorp_compile_vs(blorp, mem_ctx, b.shader, &vs_prog_data);
|
||
|
||
bool result =
|
||
blorp->upload_shader(batch, &blorp_key, sizeof(blorp_key),
|
||
program, vs_prog_data.base.base.program_size,
|
||
&vs_prog_data.base.base, sizeof(vs_prog_data),
|
||
¶ms->vs_prog_kernel, ¶ms->vs_prog_data);
|
||
|
||
ralloc_free(mem_ctx);
|
||
return result;
|
||
}
|
||
|
||
/* The x0, y0, x1, and y1 parameters must already be populated with the render
|
||
* area of the framebuffer to be cleared.
|
||
*/
|
||
static void
|
||
get_fast_clear_rect(const struct isl_device *dev,
|
||
const struct isl_surf *aux_surf,
|
||
unsigned *x0, unsigned *y0,
|
||
unsigned *x1, unsigned *y1)
|
||
{
|
||
unsigned int x_align, y_align;
|
||
unsigned int x_scaledown, y_scaledown;
|
||
|
||
/* Only single sampled surfaces need to (and actually can) be resolved. */
|
||
if (aux_surf->usage == ISL_SURF_USAGE_CCS_BIT) {
|
||
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
|
||
* Target(s)", beneath the "Fast Color Clear" bullet (p327):
|
||
*
|
||
* Clear pass must have a clear rectangle that must follow
|
||
* alignment rules in terms of pixels and lines as shown in the
|
||
* table below. Further, the clear-rectangle height and width
|
||
* must be multiple of the following dimensions. If the height
|
||
* and width of the render target being cleared do not meet these
|
||
* requirements, an MCS buffer can be created such that it
|
||
* follows the requirement and covers the RT.
|
||
*
|
||
* The alignment size in the table that follows is related to the
|
||
* alignment size that is baked into the CCS surface format but with X
|
||
* alignment multiplied by 16 and Y alignment multiplied by 32.
|
||
*/
|
||
x_align = isl_format_get_layout(aux_surf->format)->bw;
|
||
y_align = isl_format_get_layout(aux_surf->format)->bh;
|
||
|
||
x_align *= 16;
|
||
|
||
/* SKL+ line alignment requirement for Y-tiled are half those of the prior
|
||
* generations.
|
||
*/
|
||
if (dev->info->gen >= 9)
|
||
y_align *= 16;
|
||
else
|
||
y_align *= 32;
|
||
|
||
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
|
||
* Target(s)", beneath the "Fast Color Clear" bullet (p327):
|
||
*
|
||
* In order to optimize the performance MCS buffer (when bound to
|
||
* 1X RT) clear similarly to MCS buffer clear for MSRT case,
|
||
* clear rect is required to be scaled by the following factors
|
||
* in the horizontal and vertical directions:
|
||
*
|
||
* The X and Y scale down factors in the table that follows are each
|
||
* equal to half the alignment value computed above.
|
||
*/
|
||
x_scaledown = x_align / 2;
|
||
y_scaledown = y_align / 2;
|
||
|
||
if (ISL_DEV_IS_HASWELL(dev)) {
|
||
/* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
|
||
* Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
|
||
* Clear of Non-MultiSampled Render Target Restrictions":
|
||
*
|
||
* Clear rectangle must be aligned to two times the number of
|
||
* pixels in the table shown below due to 16x16 hashing across the
|
||
* slice.
|
||
*
|
||
* This restriction is only documented to exist on HSW GT3 but
|
||
* empirical evidence suggests that it's also needed GT2.
|
||
*/
|
||
x_align *= 2;
|
||
y_align *= 2;
|
||
}
|
||
} else {
|
||
assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT);
|
||
|
||
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
|
||
* Target(s)", beneath the "MSAA Compression" bullet (p326):
|
||
*
|
||
* Clear pass for this case requires that scaled down primitive
|
||
* is sent down with upper left co-ordinate to coincide with
|
||
* actual rectangle being cleared. For MSAA, clear rectangle’s
|
||
* height and width need to as show in the following table in
|
||
* terms of (width,height) of the RT.
|
||
*
|
||
* MSAA Width of Clear Rect Height of Clear Rect
|
||
* 2X Ceil(1/8*width) Ceil(1/2*height)
|
||
* 4X Ceil(1/8*width) Ceil(1/2*height)
|
||
* 8X Ceil(1/2*width) Ceil(1/2*height)
|
||
* 16X width Ceil(1/2*height)
|
||
*
|
||
* The text "with upper left co-ordinate to coincide with actual
|
||
* rectangle being cleared" is a little confusing--it seems to imply
|
||
* that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
|
||
* feed the pipeline using the rectangle (x,y) to
|
||
* (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
|
||
* the number of samples. Experiments indicate that this is not
|
||
* quite correct; actually, what the hardware appears to do is to
|
||
* align whatever rectangle is sent down the pipeline to the nearest
|
||
* multiple of 2x2 blocks, and then scale it up by a factor of N
|
||
* horizontally and 2 vertically. So the resulting alignment is 4
|
||
* vertically and either 4 or 16 horizontally, and the scaledown
|
||
* factor is 2 vertically and either 2 or 8 horizontally.
|
||
*/
|
||
switch (aux_surf->format) {
|
||
case ISL_FORMAT_MCS_2X:
|
||
case ISL_FORMAT_MCS_4X:
|
||
x_scaledown = 8;
|
||
break;
|
||
case ISL_FORMAT_MCS_8X:
|
||
x_scaledown = 2;
|
||
break;
|
||
case ISL_FORMAT_MCS_16X:
|
||
x_scaledown = 1;
|
||
break;
|
||
default:
|
||
unreachable("Unexpected MCS format for fast clear");
|
||
}
|
||
y_scaledown = 2;
|
||
x_align = x_scaledown * 2;
|
||
y_align = y_scaledown * 2;
|
||
}
|
||
|
||
*x0 = ROUND_DOWN_TO(*x0, x_align) / x_scaledown;
|
||
*y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown;
|
||
*x1 = ALIGN(*x1, x_align) / x_scaledown;
|
||
*y1 = ALIGN(*y1, y_align) / y_scaledown;
|
||
}
|
||
|
||
void
|
||
blorp_fast_clear(struct blorp_batch *batch,
|
||
const struct blorp_surf *surf, enum isl_format format,
|
||
uint32_t level, uint32_t start_layer, uint32_t num_layers,
|
||
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
|
||
{
|
||
/* Ensure that all layers undergoing the clear have an auxiliary buffer. */
|
||
assert(start_layer + num_layers <=
|
||
MAX2(surf->aux_surf->logical_level0_px.depth >> level,
|
||
surf->aux_surf->logical_level0_px.array_len));
|
||
|
||
struct blorp_params params;
|
||
blorp_params_init(¶ms);
|
||
params.num_layers = num_layers;
|
||
|
||
params.x0 = x0;
|
||
params.y0 = y0;
|
||
params.x1 = x1;
|
||
params.y1 = y1;
|
||
|
||
memset(¶ms.wm_inputs.clear_color, 0xff, 4*sizeof(float));
|
||
params.fast_clear_op = ISL_AUX_OP_FAST_CLEAR;
|
||
|
||
get_fast_clear_rect(batch->blorp->isl_dev, surf->aux_surf,
|
||
¶ms.x0, ¶ms.y0, ¶ms.x1, ¶ms.y1);
|
||
|
||
if (!blorp_params_get_clear_kernel(batch, ¶ms, true, false))
|
||
return;
|
||
|
||
brw_blorp_surface_info_init(batch->blorp, ¶ms.dst, surf, level,
|
||
start_layer, format, true);
|
||
params.num_samples = params.dst.surf.samples;
|
||
|
||
batch->blorp->exec(batch, ¶ms);
|
||
}
|
||
|
||
union isl_color_value
|
||
swizzle_color_value(union isl_color_value src, struct isl_swizzle swizzle)
|
||
{
|
||
union isl_color_value dst = { .u32 = { 0, } };
|
||
|
||
/* We assign colors in ABGR order so that the first one will be taken in
|
||
* RGBA precedence order. According to the PRM docs for shader channel
|
||
* select, this matches Haswell hardware behavior.
|
||
*/
|
||
if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
|
||
dst.u32[swizzle.a - ISL_CHANNEL_SELECT_RED] = src.u32[3];
|
||
if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
|
||
dst.u32[swizzle.b - ISL_CHANNEL_SELECT_RED] = src.u32[2];
|
||
if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
|
||
dst.u32[swizzle.g - ISL_CHANNEL_SELECT_RED] = src.u32[1];
|
||
if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
|
||
dst.u32[swizzle.r - ISL_CHANNEL_SELECT_RED] = src.u32[0];
|
||
|
||
return dst;
|
||
}
|
||
|
||
void
|
||
blorp_clear(struct blorp_batch *batch,
|
||
const struct blorp_surf *surf,
|
||
enum isl_format format, struct isl_swizzle swizzle,
|
||
uint32_t level, uint32_t start_layer, uint32_t num_layers,
|
||
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
|
||
union isl_color_value clear_color,
|
||
const bool color_write_disable[4])
|
||
{
|
||
struct blorp_params params;
|
||
blorp_params_init(¶ms);
|
||
|
||
/* Manually apply the clear destination swizzle. This way swizzled clears
|
||
* will work for swizzles which we can't normally use for rendering and it
|
||
* also ensures that they work on pre-Haswell hardware which can't swizlle
|
||
* at all.
|
||
*/
|
||
clear_color = swizzle_color_value(clear_color, swizzle);
|
||
swizzle = ISL_SWIZZLE_IDENTITY;
|
||
|
||
bool clear_rgb_as_red = false;
|
||
if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
|
||
clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32);
|
||
format = ISL_FORMAT_R32_UINT;
|
||
} else if (format == ISL_FORMAT_L8_UNORM_SRGB) {
|
||
clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]);
|
||
format = ISL_FORMAT_R8_UNORM;
|
||
} else if (format == ISL_FORMAT_A4B4G4R4_UNORM) {
|
||
/* Broadwell and earlier cannot render to this format so we need to work
|
||
* around it by swapping the colors around and using B4G4R4A4 instead.
|
||
*/
|
||
const struct isl_swizzle ARGB = ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE);
|
||
clear_color = swizzle_color_value(clear_color, ARGB);
|
||
format = ISL_FORMAT_B4G4R4A4_UNORM;
|
||
} else if (isl_format_get_layout(format)->bpb % 3 == 0) {
|
||
clear_rgb_as_red = true;
|
||
if (format == ISL_FORMAT_R8G8B8_UNORM_SRGB) {
|
||
clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]);
|
||
clear_color.f32[1] = util_format_linear_to_srgb_float(clear_color.f32[1]);
|
||
clear_color.f32[2] = util_format_linear_to_srgb_float(clear_color.f32[2]);
|
||
}
|
||
}
|
||
|
||
memcpy(¶ms.wm_inputs.clear_color, clear_color.f32, sizeof(float) * 4);
|
||
|
||
bool use_simd16_replicated_data = true;
|
||
|
||
/* From the SNB PRM (Vol4_Part1):
|
||
*
|
||
* "Replicated data (Message Type = 111) is only supported when
|
||
* accessing tiled memory. Using this Message Type to access linear
|
||
* (untiled) memory is UNDEFINED."
|
||
*/
|
||
if (surf->surf->tiling == ISL_TILING_LINEAR)
|
||
use_simd16_replicated_data = false;
|
||
|
||
/* Replicated clears don't work yet before gen6 */
|
||
if (batch->blorp->isl_dev->info->gen < 6)
|
||
use_simd16_replicated_data = false;
|
||
|
||
/* Constant color writes ignore everyting in blend and color calculator
|
||
* state. This is not documented.
|
||
*/
|
||
if (color_write_disable) {
|
||
for (unsigned i = 0; i < 4; i++) {
|
||
params.color_write_disable[i] = color_write_disable[i];
|
||
if (color_write_disable[i])
|
||
use_simd16_replicated_data = false;
|
||
}
|
||
}
|
||
|
||
if (!blorp_params_get_clear_kernel(batch, ¶ms,
|
||
use_simd16_replicated_data,
|
||
clear_rgb_as_red))
|
||
return;
|
||
|
||
if (!blorp_ensure_sf_program(batch, ¶ms))
|
||
return;
|
||
|
||
while (num_layers > 0) {
|
||
brw_blorp_surface_info_init(batch->blorp, ¶ms.dst, surf, level,
|
||
start_layer, format, true);
|
||
params.dst.view.swizzle = swizzle;
|
||
|
||
params.x0 = x0;
|
||
params.y0 = y0;
|
||
params.x1 = x1;
|
||
params.y1 = y1;
|
||
|
||
if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
|
||
assert(params.dst.surf.samples == 1);
|
||
assert(num_layers == 1);
|
||
params.x0 += params.dst.tile_x_sa;
|
||
params.y0 += params.dst.tile_y_sa;
|
||
params.x1 += params.dst.tile_x_sa;
|
||
params.y1 += params.dst.tile_y_sa;
|
||
}
|
||
|
||
/* The MinLOD and MinimumArrayElement don't work properly for cube maps.
|
||
* Convert them to a single slice on gen4.
|
||
*/
|
||
if (batch->blorp->isl_dev->info->gen == 4 &&
|
||
(params.dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT)) {
|
||
blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, ¶ms.dst);
|
||
}
|
||
|
||
if (clear_rgb_as_red) {
|
||
surf_fake_rgb_with_red(batch->blorp->isl_dev, ¶ms.dst);
|
||
params.x0 *= 3;
|
||
params.x1 *= 3;
|
||
}
|
||
|
||
if (isl_format_is_compressed(params.dst.surf.format)) {
|
||
blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, ¶ms.dst,
|
||
NULL, NULL, NULL, NULL);
|
||
//&dst_x, &dst_y, &dst_w, &dst_h);
|
||
}
|
||
|
||
if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
|
||
/* Either we're on gen4 where there is no multisampling or the
|
||
* surface is compressed which also implies no multisampling.
|
||
* Therefore, sa == px and we don't need to do a conversion.
|
||
*/
|
||
assert(params.dst.surf.samples == 1);
|
||
params.x0 += params.dst.tile_x_sa;
|
||
params.y0 += params.dst.tile_y_sa;
|
||
params.x1 += params.dst.tile_x_sa;
|
||
params.y1 += params.dst.tile_y_sa;
|
||
}
|
||
|
||
params.num_samples = params.dst.surf.samples;
|
||
|
||
/* We may be restricted on the number of layers we can bind at any one
|
||
* time. In particular, Sandy Bridge has a maximum number of layers of
|
||
* 512 but a maximum 3D texture size is much larger.
|
||
*/
|
||
params.num_layers = MIN2(params.dst.view.array_len, num_layers);
|
||
|
||
const unsigned max_image_width = 16 * 1024;
|
||
if (params.dst.surf.logical_level0_px.width > max_image_width) {
|
||
/* Clearing an RGB image as red multiplies the surface width by 3
|
||
* so it may now be too wide for the hardware surface limits. We
|
||
* have to break the clear up into pieces in order to clear wide
|
||
* images.
|
||
*/
|
||
assert(clear_rgb_as_red);
|
||
assert(params.dst.surf.dim == ISL_SURF_DIM_2D);
|
||
assert(params.dst.surf.tiling == ISL_TILING_LINEAR);
|
||
assert(params.dst.surf.logical_level0_px.depth == 1);
|
||
assert(params.dst.surf.logical_level0_px.array_len == 1);
|
||
assert(params.dst.surf.levels == 1);
|
||
assert(params.dst.surf.samples == 1);
|
||
assert(params.dst.tile_x_sa == 0 || params.dst.tile_y_sa == 0);
|
||
assert(params.dst.aux_usage == ISL_AUX_USAGE_NONE);
|
||
|
||
/* max_image_width rounded down to a multiple of 3 */
|
||
const unsigned max_fake_rgb_width = (max_image_width / 3) * 3;
|
||
const unsigned cpp =
|
||
isl_format_get_layout(params.dst.surf.format)->bpb / 8;
|
||
|
||
params.dst.surf.logical_level0_px.width = max_fake_rgb_width;
|
||
params.dst.surf.phys_level0_sa.width = max_fake_rgb_width;
|
||
|
||
uint32_t orig_x0 = params.x0, orig_x1 = params.x1;
|
||
uint64_t orig_offset = params.dst.addr.offset;
|
||
for (uint32_t x = orig_x0; x < orig_x1; x += max_fake_rgb_width) {
|
||
/* Offset to the surface. It's easy because we're linear */
|
||
params.dst.addr.offset = orig_offset + x * cpp;
|
||
|
||
params.x0 = 0;
|
||
params.x1 = MIN2(orig_x1 - x, max_image_width);
|
||
|
||
batch->blorp->exec(batch, ¶ms);
|
||
}
|
||
} else {
|
||
batch->blorp->exec(batch, ¶ms);
|
||
}
|
||
|
||
start_layer += params.num_layers;
|
||
num_layers -= params.num_layers;
|
||
}
|
||
}
|
||
|
||
void
|
||
blorp_clear_depth_stencil(struct blorp_batch *batch,
|
||
const struct blorp_surf *depth,
|
||
const struct blorp_surf *stencil,
|
||
uint32_t level, uint32_t start_layer,
|
||
uint32_t num_layers,
|
||
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
|
||
bool clear_depth, float depth_value,
|
||
uint8_t stencil_mask, uint8_t stencil_value)
|
||
{
|
||
struct blorp_params params;
|
||
blorp_params_init(¶ms);
|
||
|
||
params.x0 = x0;
|
||
params.y0 = y0;
|
||
params.x1 = x1;
|
||
params.y1 = y1;
|
||
|
||
if (ISL_DEV_GEN(batch->blorp->isl_dev) == 6) {
|
||
/* For some reason, Sandy Bridge gets occlusion queries wrong if we
|
||
* don't have a shader. In particular, it records samples even though
|
||
* we disable statistics in 3DSTATE_WM. Give it the usual clear shader
|
||
* to work around the issue.
|
||
*/
|
||
if (!blorp_params_get_clear_kernel(batch, ¶ms, false, false))
|
||
return;
|
||
}
|
||
|
||
while (num_layers > 0) {
|
||
params.num_layers = num_layers;
|
||
|
||
if (stencil_mask) {
|
||
brw_blorp_surface_info_init(batch->blorp, ¶ms.stencil, stencil,
|
||
level, start_layer,
|
||
ISL_FORMAT_UNSUPPORTED, true);
|
||
params.stencil_mask = stencil_mask;
|
||
params.stencil_ref = stencil_value;
|
||
|
||
params.dst.surf.samples = params.stencil.surf.samples;
|
||
params.dst.surf.logical_level0_px =
|
||
params.stencil.surf.logical_level0_px;
|
||
params.dst.view = params.depth.view;
|
||
|
||
params.num_samples = params.stencil.surf.samples;
|
||
|
||
/* We may be restricted on the number of layers we can bind at any
|
||
* one time. In particular, Sandy Bridge has a maximum number of
|
||
* layers of 512 but a maximum 3D texture size is much larger.
|
||
*/
|
||
if (params.stencil.view.array_len < params.num_layers)
|
||
params.num_layers = params.stencil.view.array_len;
|
||
}
|
||
|
||
if (clear_depth) {
|
||
brw_blorp_surface_info_init(batch->blorp, ¶ms.depth, depth,
|
||
level, start_layer,
|
||
ISL_FORMAT_UNSUPPORTED, true);
|
||
params.z = depth_value;
|
||
params.depth_format =
|
||
isl_format_get_depth_format(depth->surf->format, false);
|
||
|
||
params.dst.surf.samples = params.depth.surf.samples;
|
||
params.dst.surf.logical_level0_px =
|
||
params.depth.surf.logical_level0_px;
|
||
params.dst.view = params.depth.view;
|
||
|
||
params.num_samples = params.depth.surf.samples;
|
||
|
||
/* We may be restricted on the number of layers we can bind at any
|
||
* one time. In particular, Sandy Bridge has a maximum number of
|
||
* layers of 512 but a maximum 3D texture size is much larger.
|
||
*/
|
||
if (params.depth.view.array_len < params.num_layers)
|
||
params.num_layers = params.depth.view.array_len;
|
||
}
|
||
|
||
batch->blorp->exec(batch, ¶ms);
|
||
|
||
start_layer += params.num_layers;
|
||
num_layers -= params.num_layers;
|
||
}
|
||
}
|
||
|
||
bool
|
||
blorp_can_hiz_clear_depth(uint8_t gen, enum isl_format format,
|
||
uint32_t num_samples,
|
||
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
|
||
{
|
||
/* This function currently doesn't support any gen prior to gen8 */
|
||
assert(gen >= 8);
|
||
|
||
if (gen == 8 && format == ISL_FORMAT_R16_UNORM) {
|
||
/* Apply the D16 alignment restrictions. On BDW, HiZ has an 8x4 sample
|
||
* block with the following property: as the number of samples increases,
|
||
* the number of pixels representable by this block decreases by a factor
|
||
* of the sample dimensions. Sample dimensions scale following the MSAA
|
||
* interleaved pattern.
|
||
*
|
||
* Sample|Sample|Pixel
|
||
* Count |Dim |Dim
|
||
* ===================
|
||
* 1 | 1x1 | 8x4
|
||
* 2 | 2x1 | 4x4
|
||
* 4 | 2x2 | 4x2
|
||
* 8 | 4x2 | 2x2
|
||
* 16 | 4x4 | 2x1
|
||
*
|
||
* Table: Pixel Dimensions in a HiZ Sample Block Pre-SKL
|
||
*/
|
||
const struct isl_extent2d sa_block_dim =
|
||
isl_get_interleaved_msaa_px_size_sa(num_samples);
|
||
const uint8_t align_px_w = 8 / sa_block_dim.w;
|
||
const uint8_t align_px_h = 4 / sa_block_dim.h;
|
||
|
||
/* Fast depth clears clear an entire sample block at a time. As a result,
|
||
* the rectangle must be aligned to the dimensions of the encompassing
|
||
* pixel block for a successful operation.
|
||
*
|
||
* Fast clears can still work if the upper-left corner is aligned and the
|
||
* bottom-rigtht corner touches the edge of a depth buffer whose extent
|
||
* is unaligned. This is because each miplevel in the depth buffer is
|
||
* padded by the Pixel Dim (similar to a standard compressed texture).
|
||
* In this case, the clear rectangle could be padded by to match the full
|
||
* depth buffer extent but to support multiple clearing techniques, we
|
||
* chose to be unaware of the depth buffer's extent and thus don't handle
|
||
* this case.
|
||
*/
|
||
if (x0 % align_px_w || y0 % align_px_h ||
|
||
x1 % align_px_w || y1 % align_px_h)
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
void
|
||
blorp_hiz_clear_depth_stencil(struct blorp_batch *batch,
|
||
const struct blorp_surf *depth,
|
||
const struct blorp_surf *stencil,
|
||
uint32_t level,
|
||
uint32_t start_layer, uint32_t num_layers,
|
||
uint32_t x0, uint32_t y0,
|
||
uint32_t x1, uint32_t y1,
|
||
bool clear_depth, float depth_value,
|
||
bool clear_stencil, uint8_t stencil_value)
|
||
{
|
||
struct blorp_params params;
|
||
blorp_params_init(¶ms);
|
||
|
||
/* This requires WM_HZ_OP which only exists on gen8+ */
|
||
assert(ISL_DEV_GEN(batch->blorp->isl_dev) >= 8);
|
||
|
||
params.hiz_op = ISL_AUX_OP_FAST_CLEAR;
|
||
params.num_layers = 1;
|
||
|
||
params.x0 = x0;
|
||
params.y0 = y0;
|
||
params.x1 = x1;
|
||
params.y1 = y1;
|
||
|
||
for (uint32_t l = 0; l < num_layers; l++) {
|
||
const uint32_t layer = start_layer + l;
|
||
if (clear_stencil) {
|
||
brw_blorp_surface_info_init(batch->blorp, ¶ms.stencil, stencil,
|
||
level, layer,
|
||
ISL_FORMAT_UNSUPPORTED, true);
|
||
params.stencil_mask = 0xff;
|
||
params.stencil_ref = stencil_value;
|
||
params.num_samples = params.stencil.surf.samples;
|
||
}
|
||
|
||
if (clear_depth) {
|
||
/* If we're clearing depth, we must have HiZ */
|
||
assert(depth && depth->aux_usage == ISL_AUX_USAGE_HIZ);
|
||
|
||
brw_blorp_surface_info_init(batch->blorp, ¶ms.depth, depth,
|
||
level, layer,
|
||
ISL_FORMAT_UNSUPPORTED, true);
|
||
params.depth.clear_color.f32[0] = depth_value;
|
||
params.depth_format =
|
||
isl_format_get_depth_format(depth->surf->format, false);
|
||
params.num_samples = params.depth.surf.samples;
|
||
}
|
||
|
||
batch->blorp->exec(batch, ¶ms);
|
||
}
|
||
}
|
||
|
||
/* Given a depth stencil attachment, this function performs a fast depth clear
|
||
* on a depth portion and a regular clear on the stencil portion. When
|
||
* performing a fast depth clear on the depth portion, the HiZ buffer is simply
|
||
* tagged as cleared so the depth clear value is not actually needed.
|
||
*/
|
||
void
|
||
blorp_gen8_hiz_clear_attachments(struct blorp_batch *batch,
|
||
uint32_t num_samples,
|
||
uint32_t x0, uint32_t y0,
|
||
uint32_t x1, uint32_t y1,
|
||
bool clear_depth, bool clear_stencil,
|
||
uint8_t stencil_value)
|
||
{
|
||
assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
|
||
|
||
struct blorp_params params;
|
||
blorp_params_init(¶ms);
|
||
params.num_layers = 1;
|
||
params.hiz_op = ISL_AUX_OP_FAST_CLEAR;
|
||
params.x0 = x0;
|
||
params.y0 = y0;
|
||
params.x1 = x1;
|
||
params.y1 = y1;
|
||
params.num_samples = num_samples;
|
||
params.depth.enabled = clear_depth;
|
||
params.stencil.enabled = clear_stencil;
|
||
params.stencil_ref = stencil_value;
|
||
batch->blorp->exec(batch, ¶ms);
|
||
}
|
||
|
||
/** Clear active color/depth/stencili attachments
|
||
*
|
||
* This function performs a clear operation on the currently bound
|
||
* color/depth/stencil attachments. It is assumed that any information passed
|
||
* in here is valid, consistent, and in-bounds relative to the currently
|
||
* attached depth/stencil. The binding_table_offset parameter is the 32-bit
|
||
* offset relative to surface state base address where pre-baked binding table
|
||
* that we are to use lives. If clear_color is false, binding_table_offset
|
||
* must point to a binding table with one entry which is a valid null surface
|
||
* that matches the currently bound depth and stencil.
|
||
*/
|
||
void
|
||
blorp_clear_attachments(struct blorp_batch *batch,
|
||
uint32_t binding_table_offset,
|
||
enum isl_format depth_format,
|
||
uint32_t num_samples,
|
||
uint32_t start_layer, uint32_t num_layers,
|
||
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
|
||
bool clear_color, union isl_color_value color_value,
|
||
bool clear_depth, float depth_value,
|
||
uint8_t stencil_mask, uint8_t stencil_value)
|
||
{
|
||
struct blorp_params params;
|
||
blorp_params_init(¶ms);
|
||
|
||
assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
|
||
|
||
params.x0 = x0;
|
||
params.y0 = y0;
|
||
params.x1 = x1;
|
||
params.y1 = y1;
|
||
|
||
params.use_pre_baked_binding_table = true;
|
||
params.pre_baked_binding_table_offset = binding_table_offset;
|
||
|
||
params.num_layers = num_layers;
|
||
params.num_samples = num_samples;
|
||
|
||
if (clear_color) {
|
||
params.dst.enabled = true;
|
||
|
||
memcpy(¶ms.wm_inputs.clear_color, color_value.f32, sizeof(float) * 4);
|
||
|
||
/* Unfortunately, without knowing whether or not our destination surface
|
||
* is tiled or not, we have to assume it may be linear. This means no
|
||
* SIMD16_REPDATA for us. :-(
|
||
*/
|
||
if (!blorp_params_get_clear_kernel(batch, ¶ms, false, false))
|
||
return;
|
||
}
|
||
|
||
if (clear_depth) {
|
||
params.depth.enabled = true;
|
||
|
||
params.z = depth_value;
|
||
params.depth_format = isl_format_get_depth_format(depth_format, false);
|
||
}
|
||
|
||
if (stencil_mask) {
|
||
params.stencil.enabled = true;
|
||
|
||
params.stencil_mask = stencil_mask;
|
||
params.stencil_ref = stencil_value;
|
||
}
|
||
|
||
if (!blorp_params_get_layer_offset_vs(batch, ¶ms))
|
||
return;
|
||
|
||
params.vs_inputs.base_layer = start_layer;
|
||
|
||
batch->blorp->exec(batch, ¶ms);
|
||
}
|
||
|
||
void
|
||
blorp_ccs_resolve(struct blorp_batch *batch,
|
||
struct blorp_surf *surf, uint32_t level,
|
||
uint32_t start_layer, uint32_t num_layers,
|
||
enum isl_format format,
|
||
enum isl_aux_op resolve_op)
|
||
{
|
||
struct blorp_params params;
|
||
|
||
blorp_params_init(¶ms);
|
||
brw_blorp_surface_info_init(batch->blorp, ¶ms.dst, surf,
|
||
level, start_layer, format, true);
|
||
|
||
/* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
|
||
*
|
||
* A rectangle primitive must be scaled down by the following factors
|
||
* with respect to render target being resolved.
|
||
*
|
||
* The scaledown factors in the table that follows are related to the block
|
||
* size of the CCS format. For IVB and HSW, we divide by two, for BDW we
|
||
* multiply by 8 and 16. On Sky Lake, we multiply by 8.
|
||
*/
|
||
const struct isl_format_layout *aux_fmtl =
|
||
isl_format_get_layout(params.dst.aux_surf.format);
|
||
assert(aux_fmtl->txc == ISL_TXC_CCS);
|
||
|
||
unsigned x_scaledown, y_scaledown;
|
||
if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 9) {
|
||
x_scaledown = aux_fmtl->bw * 8;
|
||
y_scaledown = aux_fmtl->bh * 8;
|
||
} else if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) {
|
||
x_scaledown = aux_fmtl->bw * 8;
|
||
y_scaledown = aux_fmtl->bh * 16;
|
||
} else {
|
||
x_scaledown = aux_fmtl->bw / 2;
|
||
y_scaledown = aux_fmtl->bh / 2;
|
||
}
|
||
params.x0 = params.y0 = 0;
|
||
params.x1 = minify(params.dst.aux_surf.logical_level0_px.width, level);
|
||
params.y1 = minify(params.dst.aux_surf.logical_level0_px.height, level);
|
||
params.x1 = ALIGN(params.x1, x_scaledown) / x_scaledown;
|
||
params.y1 = ALIGN(params.y1, y_scaledown) / y_scaledown;
|
||
|
||
if (batch->blorp->isl_dev->info->gen >= 10) {
|
||
assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE ||
|
||
resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE ||
|
||
resolve_op == ISL_AUX_OP_AMBIGUATE);
|
||
} else if (batch->blorp->isl_dev->info->gen >= 9) {
|
||
assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE ||
|
||
resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
|
||
} else {
|
||
/* Broadwell and earlier do not have a partial resolve */
|
||
assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE);
|
||
}
|
||
params.fast_clear_op = resolve_op;
|
||
params.num_layers = num_layers;
|
||
|
||
/* Note: there is no need to initialize push constants because it doesn't
|
||
* matter what data gets dispatched to the render target. However, we must
|
||
* ensure that the fragment shader delivers the data using the "replicated
|
||
* color" message.
|
||
*/
|
||
|
||
if (!blorp_params_get_clear_kernel(batch, ¶ms, true, false))
|
||
return;
|
||
|
||
batch->blorp->exec(batch, ¶ms);
|
||
}
|
||
|
||
static nir_ssa_def *
|
||
blorp_nir_bit(nir_builder *b, nir_ssa_def *src, unsigned bit)
|
||
{
|
||
return nir_iand(b, nir_ushr(b, src, nir_imm_int(b, bit)),
|
||
nir_imm_int(b, 1));
|
||
}
|
||
|
||
struct blorp_mcs_partial_resolve_key
|
||
{
|
||
enum blorp_shader_type shader_type;
|
||
bool indirect_clear_color;
|
||
bool int_format;
|
||
uint32_t num_samples;
|
||
};
|
||
|
||
static bool
|
||
blorp_params_get_mcs_partial_resolve_kernel(struct blorp_batch *batch,
|
||
struct blorp_params *params)
|
||
{
|
||
struct blorp_context *blorp = batch->blorp;
|
||
const struct blorp_mcs_partial_resolve_key blorp_key = {
|
||
.shader_type = BLORP_SHADER_TYPE_MCS_PARTIAL_RESOLVE,
|
||
.indirect_clear_color = params->dst.clear_color_addr.buffer != NULL,
|
||
.int_format = isl_format_has_int_channel(params->dst.view.format),
|
||
.num_samples = params->num_samples,
|
||
};
|
||
|
||
if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
|
||
¶ms->wm_prog_kernel, ¶ms->wm_prog_data))
|
||
return true;
|
||
|
||
void *mem_ctx = ralloc_context(NULL);
|
||
|
||
nir_builder b;
|
||
blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT,
|
||
"BLORP-mcs-partial-resolve");
|
||
|
||
nir_variable *v_color =
|
||
BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
|
||
|
||
nir_variable *frag_color =
|
||
nir_variable_create(b.shader, nir_var_shader_out,
|
||
glsl_vec4_type(), "gl_FragColor");
|
||
frag_color->data.location = FRAG_RESULT_COLOR;
|
||
|
||
/* Do an MCS fetch and check if it is equal to the magic clear value */
|
||
nir_ssa_def *mcs =
|
||
blorp_nir_txf_ms_mcs(&b, nir_f2i32(&b, blorp_nir_frag_coord(&b)),
|
||
nir_load_layer_id(&b));
|
||
nir_ssa_def *is_clear =
|
||
blorp_nir_mcs_is_clear_color(&b, mcs, blorp_key.num_samples);
|
||
|
||
/* If we aren't the clear value, discard. */
|
||
nir_intrinsic_instr *discard =
|
||
nir_intrinsic_instr_create(b.shader, nir_intrinsic_discard_if);
|
||
discard->src[0] = nir_src_for_ssa(nir_inot(&b, is_clear));
|
||
nir_builder_instr_insert(&b, &discard->instr);
|
||
|
||
nir_ssa_def *clear_color = nir_load_var(&b, v_color);
|
||
if (blorp_key.indirect_clear_color && blorp->isl_dev->info->gen <= 8) {
|
||
/* Gen7-8 clear colors are stored as single 0/1 bits */
|
||
clear_color = nir_vec4(&b, blorp_nir_bit(&b, clear_color, 31),
|
||
blorp_nir_bit(&b, clear_color, 30),
|
||
blorp_nir_bit(&b, clear_color, 29),
|
||
blorp_nir_bit(&b, clear_color, 28));
|
||
|
||
if (!blorp_key.int_format)
|
||
clear_color = nir_i2f32(&b, clear_color);
|
||
}
|
||
nir_store_var(&b, frag_color, clear_color, 0xf);
|
||
|
||
struct brw_wm_prog_key wm_key;
|
||
brw_blorp_init_wm_prog_key(&wm_key);
|
||
wm_key.base.tex.compressed_multisample_layout_mask = 1;
|
||
wm_key.base.tex.msaa_16 = blorp_key.num_samples == 16;
|
||
wm_key.multisample_fbo = true;
|
||
|
||
struct brw_wm_prog_data prog_data;
|
||
const unsigned *program =
|
||
blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, false,
|
||
&prog_data);
|
||
|
||
bool result =
|
||
blorp->upload_shader(batch, &blorp_key, sizeof(blorp_key),
|
||
program, prog_data.base.program_size,
|
||
&prog_data.base, sizeof(prog_data),
|
||
¶ms->wm_prog_kernel, ¶ms->wm_prog_data);
|
||
|
||
ralloc_free(mem_ctx);
|
||
return result;
|
||
}
|
||
|
||
void
|
||
blorp_mcs_partial_resolve(struct blorp_batch *batch,
|
||
struct blorp_surf *surf,
|
||
enum isl_format format,
|
||
uint32_t start_layer, uint32_t num_layers)
|
||
{
|
||
struct blorp_params params;
|
||
blorp_params_init(¶ms);
|
||
|
||
assert(batch->blorp->isl_dev->info->gen >= 7);
|
||
|
||
params.x0 = 0;
|
||
params.y0 = 0;
|
||
params.x1 = surf->surf->logical_level0_px.width;
|
||
params.y1 = surf->surf->logical_level0_px.height;
|
||
|
||
brw_blorp_surface_info_init(batch->blorp, ¶ms.src, surf, 0,
|
||
start_layer, format, false);
|
||
brw_blorp_surface_info_init(batch->blorp, ¶ms.dst, surf, 0,
|
||
start_layer, format, true);
|
||
|
||
params.num_samples = params.dst.surf.samples;
|
||
params.num_layers = num_layers;
|
||
params.dst_clear_color_as_input = surf->clear_color_addr.buffer != NULL;
|
||
|
||
memcpy(¶ms.wm_inputs.clear_color,
|
||
surf->clear_color.f32, sizeof(float) * 4);
|
||
|
||
if (!blorp_params_get_mcs_partial_resolve_kernel(batch, ¶ms))
|
||
return;
|
||
|
||
batch->blorp->exec(batch, ¶ms);
|
||
}
|
||
|
||
/** Clear a CCS to the "uncompressed" state
|
||
*
|
||
* This pass is the CCS equivalent of a "HiZ resolve". It sets the CCS values
|
||
* for a given layer/level of a surface to 0x0 which is the "uncompressed"
|
||
* state which tells the sampler to go look at the main surface.
|
||
*/
|
||
void
|
||
blorp_ccs_ambiguate(struct blorp_batch *batch,
|
||
struct blorp_surf *surf,
|
||
uint32_t level, uint32_t layer)
|
||
{
|
||
if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 10) {
|
||
/* On gen10 and above, we have a hardware resolve op for this */
|
||
return blorp_ccs_resolve(batch, surf, level, layer, 1,
|
||
surf->surf->format, ISL_AUX_OP_AMBIGUATE);
|
||
}
|
||
|
||
struct blorp_params params;
|
||
blorp_params_init(¶ms);
|
||
|
||
assert(ISL_DEV_GEN(batch->blorp->isl_dev) >= 7);
|
||
|
||
const struct isl_format_layout *aux_fmtl =
|
||
isl_format_get_layout(surf->aux_surf->format);
|
||
assert(aux_fmtl->txc == ISL_TXC_CCS);
|
||
|
||
params.dst = (struct brw_blorp_surface_info) {
|
||
.enabled = true,
|
||
.addr = surf->aux_addr,
|
||
.view = {
|
||
.usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
|
||
.format = ISL_FORMAT_R32G32B32A32_UINT,
|
||
.base_level = 0,
|
||
.base_array_layer = 0,
|
||
.levels = 1,
|
||
.array_len = 1,
|
||
.swizzle = ISL_SWIZZLE_IDENTITY,
|
||
},
|
||
};
|
||
|
||
uint32_t z = 0;
|
||
if (surf->surf->dim == ISL_SURF_DIM_3D) {
|
||
z = layer;
|
||
layer = 0;
|
||
}
|
||
|
||
uint32_t offset_B, x_offset_el, y_offset_el;
|
||
isl_surf_get_image_offset_el(surf->aux_surf, level, layer, z,
|
||
&x_offset_el, &y_offset_el);
|
||
isl_tiling_get_intratile_offset_el(surf->aux_surf->tiling, aux_fmtl->bpb,
|
||
surf->aux_surf->row_pitch_B,
|
||
x_offset_el, y_offset_el,
|
||
&offset_B, &x_offset_el, &y_offset_el);
|
||
params.dst.addr.offset += offset_B;
|
||
|
||
const uint32_t width_px =
|
||
minify(surf->aux_surf->logical_level0_px.width, level);
|
||
const uint32_t height_px =
|
||
minify(surf->aux_surf->logical_level0_px.height, level);
|
||
const uint32_t width_el = DIV_ROUND_UP(width_px, aux_fmtl->bw);
|
||
const uint32_t height_el = DIV_ROUND_UP(height_px, aux_fmtl->bh);
|
||
|
||
struct isl_tile_info ccs_tile_info;
|
||
isl_surf_get_tile_info(surf->aux_surf, &ccs_tile_info);
|
||
|
||
/* We're going to map it as a regular RGBA32_UINT surface. We need to
|
||
* downscale a good deal. We start by computing the area on the CCS to
|
||
* clear in units of Y-tiled cache lines.
|
||
*/
|
||
uint32_t x_offset_cl, y_offset_cl, width_cl, height_cl;
|
||
if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) {
|
||
/* From the Sky Lake PRM Vol. 12 in the section on planes:
|
||
*
|
||
* "The Color Control Surface (CCS) contains the compression status
|
||
* of the cache-line pairs. The compression state of the cache-line
|
||
* pair is specified by 2 bits in the CCS. Each CCS cache-line
|
||
* represents an area on the main surface of 16x16 sets of 128 byte
|
||
* Y-tiled cache-line-pairs. CCS is always Y tiled."
|
||
*
|
||
* Each 2-bit surface element in the CCS corresponds to a single
|
||
* cache-line pair in the main surface. This means that 16x16 el block
|
||
* in the CCS maps to a Y-tiled cache line. Fortunately, CCS layouts
|
||
* are calculated with a very large alignment so we can round up to a
|
||
* whole cache line without worrying about overdraw.
|
||
*/
|
||
|
||
/* On Broadwell and above, a CCS tile is the same as a Y tile when
|
||
* viewed at the cache-line granularity. Fortunately, the horizontal
|
||
* and vertical alignment requirements of the CCS are such that we can
|
||
* align to an entire cache line without worrying about crossing over
|
||
* from one LOD to another.
|
||
*/
|
||
const uint32_t x_el_per_cl = ccs_tile_info.logical_extent_el.w / 8;
|
||
const uint32_t y_el_per_cl = ccs_tile_info.logical_extent_el.h / 8;
|
||
assert(surf->aux_surf->image_alignment_el.w % x_el_per_cl == 0);
|
||
assert(surf->aux_surf->image_alignment_el.h % y_el_per_cl == 0);
|
||
|
||
assert(x_offset_el % x_el_per_cl == 0);
|
||
assert(y_offset_el % y_el_per_cl == 0);
|
||
x_offset_cl = x_offset_el / x_el_per_cl;
|
||
y_offset_cl = y_offset_el / y_el_per_cl;
|
||
width_cl = DIV_ROUND_UP(width_el, x_el_per_cl);
|
||
height_cl = DIV_ROUND_UP(height_el, y_el_per_cl);
|
||
} else {
|
||
/* On gen7, the CCS tiling is not so nice. However, there we are
|
||
* guaranteed that we only have a single level and slice so we don't
|
||
* have to worry about it and can just align to a whole tile.
|
||
*/
|
||
assert(surf->aux_surf->logical_level0_px.depth == 1);
|
||
assert(surf->aux_surf->logical_level0_px.array_len == 1);
|
||
assert(x_offset_el == 0 && y_offset_el == 0);
|
||
const uint32_t width_tl =
|
||
DIV_ROUND_UP(width_el, ccs_tile_info.logical_extent_el.w);
|
||
const uint32_t height_tl =
|
||
DIV_ROUND_UP(height_el, ccs_tile_info.logical_extent_el.h);
|
||
x_offset_cl = 0;
|
||
y_offset_cl = 0;
|
||
width_cl = width_tl * 8;
|
||
height_cl = height_tl * 8;
|
||
}
|
||
|
||
/* We're going to use a RGBA32 format so as to write data as quickly as
|
||
* possible. A y-tiled cache line will then be 1x4 px.
|
||
*/
|
||
const uint32_t x_offset_rgba_px = x_offset_cl;
|
||
const uint32_t y_offset_rgba_px = y_offset_cl * 4;
|
||
const uint32_t width_rgba_px = width_cl;
|
||
const uint32_t height_rgba_px = height_cl * 4;
|
||
|
||
MAYBE_UNUSED bool ok =
|
||
isl_surf_init(batch->blorp->isl_dev, ¶ms.dst.surf,
|
||
.dim = ISL_SURF_DIM_2D,
|
||
.format = ISL_FORMAT_R32G32B32A32_UINT,
|
||
.width = width_rgba_px + x_offset_rgba_px,
|
||
.height = height_rgba_px + y_offset_rgba_px,
|
||
.depth = 1,
|
||
.levels = 1,
|
||
.array_len = 1,
|
||
.samples = 1,
|
||
.row_pitch_B = surf->aux_surf->row_pitch_B,
|
||
.usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
|
||
.tiling_flags = ISL_TILING_Y0_BIT);
|
||
assert(ok);
|
||
|
||
params.x0 = x_offset_rgba_px;
|
||
params.y0 = y_offset_rgba_px;
|
||
params.x1 = x_offset_rgba_px + width_rgba_px;
|
||
params.y1 = y_offset_rgba_px + height_rgba_px;
|
||
|
||
/* A CCS value of 0 means "uncompressed." */
|
||
memset(¶ms.wm_inputs.clear_color, 0,
|
||
sizeof(params.wm_inputs.clear_color));
|
||
|
||
if (!blorp_params_get_clear_kernel(batch, ¶ms, true, false))
|
||
return;
|
||
|
||
batch->blorp->exec(batch, ¶ms);
|
||
}
|