1684 lines
60 KiB
C
1684 lines
60 KiB
C
/*
|
|
* Mesa 3-D graphics library
|
|
* Version: 6.5.3
|
|
*
|
|
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
|
|
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/**
|
|
* \file prog_execute.c
|
|
* Software interpreter for vertex/fragment programs.
|
|
* \author Brian Paul
|
|
*/
|
|
|
|
/*
|
|
* NOTE: we do everything in single-precision floating point; we don't
|
|
* currently observe the single/half/fixed-precision qualifiers.
|
|
*
|
|
*/
|
|
|
|
|
|
#include "glheader.h"
|
|
#include "colormac.h"
|
|
#include "context.h"
|
|
#include "program.h"
|
|
#include "prog_execute.h"
|
|
#include "prog_instruction.h"
|
|
#include "prog_parameter.h"
|
|
#include "prog_print.h"
|
|
#include "slang_library_noise.h"
|
|
|
|
|
|
/* See comments below for info about this */
|
|
#define LAMBDA_ZERO 1
|
|
|
|
/* debug predicate */
|
|
#define DEBUG_PROG 0
|
|
|
|
|
|
/**
|
|
* Set x to positive or negative infinity.
|
|
*/
|
|
#if defined(USE_IEEE) || defined(_WIN32)
|
|
#define SET_POS_INFINITY(x) ( *((GLuint *) (void *)&x) = 0x7F800000 )
|
|
#define SET_NEG_INFINITY(x) ( *((GLuint *) (void *)&x) = 0xFF800000 )
|
|
#elif defined(VMS)
|
|
#define SET_POS_INFINITY(x) x = __MAXFLOAT
|
|
#define SET_NEG_INFINITY(x) x = -__MAXFLOAT
|
|
#else
|
|
#define SET_POS_INFINITY(x) x = (GLfloat) HUGE_VAL
|
|
#define SET_NEG_INFINITY(x) x = (GLfloat) -HUGE_VAL
|
|
#endif
|
|
|
|
#define SET_FLOAT_BITS(x, bits) ((fi_type *) (void *) &(x))->i = bits
|
|
|
|
|
|
static const GLfloat ZeroVec[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
|
|
|
|
|
|
|
|
#if FEATURE_MESA_program_debug
|
|
static struct gl_program_machine *CurrentMachine = NULL;
|
|
|
|
/**
|
|
* For GL_MESA_program_debug.
|
|
* Return current value (4*GLfloat) of a program register.
|
|
* Called via ctx->Driver.GetFragmentProgramRegister().
|
|
*/
|
|
void
|
|
_mesa_get_program_register(GLcontext *ctx, enum register_file file,
|
|
GLuint index, GLfloat val[4])
|
|
{
|
|
if (CurrentMachine) {
|
|
switch (file) {
|
|
case PROGRAM_INPUT:
|
|
if (CurrentMachine->CurProgram->Target == GL_VERTEX_PROGRAM_ARB) {
|
|
COPY_4V(val, CurrentMachine->VertAttribs[index]);
|
|
}
|
|
else {
|
|
COPY_4V(val,
|
|
CurrentMachine->Attribs[index][CurrentMachine->CurElement]);
|
|
}
|
|
break;
|
|
case PROGRAM_OUTPUT:
|
|
COPY_4V(val, CurrentMachine->Outputs[index]);
|
|
break;
|
|
case PROGRAM_TEMPORARY:
|
|
COPY_4V(val, CurrentMachine->Temporaries[index]);
|
|
break;
|
|
default:
|
|
_mesa_problem(NULL,
|
|
"bad register file in _swrast_get_program_register");
|
|
}
|
|
}
|
|
}
|
|
#endif /* FEATURE_MESA_program_debug */
|
|
|
|
|
|
|
|
/**
|
|
* Return a pointer to the 4-element float vector specified by the given
|
|
* source register.
|
|
*/
|
|
static INLINE const GLfloat *
|
|
get_register_pointer(GLcontext * ctx,
|
|
const struct prog_src_register *source,
|
|
const struct gl_program_machine *machine)
|
|
{
|
|
if (source->RelAddr) {
|
|
const GLint reg = source->Index + machine->AddressReg[0][0];
|
|
ASSERT( (source->File == PROGRAM_ENV_PARAM) ||
|
|
(source->File == PROGRAM_STATE_VAR) );
|
|
if (reg < 0 || reg > MAX_NV_VERTEX_PROGRAM_PARAMS)
|
|
return ZeroVec;
|
|
else if (source->File == PROGRAM_ENV_PARAM)
|
|
return ctx->VertexProgram.Parameters[reg];
|
|
else {
|
|
ASSERT(source->File == PROGRAM_LOCAL_PARAM ||
|
|
source->File == PROGRAM_STATE_VAR);
|
|
return machine->CurProgram->Parameters->ParameterValues[reg];
|
|
}
|
|
}
|
|
|
|
switch (source->File) {
|
|
case PROGRAM_TEMPORARY:
|
|
ASSERT(source->Index < MAX_PROGRAM_TEMPS);
|
|
return machine->Temporaries[source->Index];
|
|
|
|
case PROGRAM_INPUT:
|
|
if (machine->CurProgram->Target == GL_VERTEX_PROGRAM_ARB) {
|
|
ASSERT(source->Index < VERT_ATTRIB_MAX);
|
|
return machine->VertAttribs[source->Index];
|
|
}
|
|
else {
|
|
ASSERT(source->Index < FRAG_ATTRIB_MAX);
|
|
return machine->Attribs[source->Index][machine->CurElement];
|
|
}
|
|
|
|
case PROGRAM_OUTPUT:
|
|
ASSERT(source->Index < MAX_PROGRAM_OUTPUTS);
|
|
return machine->Outputs[source->Index];
|
|
|
|
case PROGRAM_LOCAL_PARAM:
|
|
ASSERT(source->Index < MAX_PROGRAM_LOCAL_PARAMS);
|
|
return machine->CurProgram->LocalParams[source->Index];
|
|
|
|
case PROGRAM_ENV_PARAM:
|
|
ASSERT(source->Index < MAX_PROGRAM_ENV_PARAMS);
|
|
if (machine->CurProgram->Target == GL_VERTEX_PROGRAM_ARB)
|
|
return ctx->VertexProgram.Parameters[source->Index];
|
|
else
|
|
return ctx->FragmentProgram.Parameters[source->Index];
|
|
|
|
case PROGRAM_STATE_VAR:
|
|
/* Fallthrough */
|
|
case PROGRAM_CONSTANT:
|
|
/* Fallthrough */
|
|
case PROGRAM_UNIFORM:
|
|
/* Fallthrough */
|
|
case PROGRAM_NAMED_PARAM:
|
|
ASSERT(source->Index <
|
|
(GLint) machine->CurProgram->Parameters->NumParameters);
|
|
return machine->CurProgram->Parameters->ParameterValues[source->Index];
|
|
|
|
default:
|
|
_mesa_problem(ctx,
|
|
"Invalid input register file %d in get_register_pointer()",
|
|
source->File);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Fetch a 4-element float vector from the given source register.
|
|
* Apply swizzling and negating as needed.
|
|
*/
|
|
static void
|
|
fetch_vector4(GLcontext * ctx,
|
|
const struct prog_src_register *source,
|
|
const struct gl_program_machine *machine, GLfloat result[4])
|
|
{
|
|
const GLfloat *src = get_register_pointer(ctx, source, machine);
|
|
ASSERT(src);
|
|
|
|
if (source->Swizzle == SWIZZLE_NOOP) {
|
|
/* no swizzling */
|
|
COPY_4V(result, src);
|
|
}
|
|
else {
|
|
ASSERT(GET_SWZ(source->Swizzle, 0) <= 3);
|
|
ASSERT(GET_SWZ(source->Swizzle, 1) <= 3);
|
|
ASSERT(GET_SWZ(source->Swizzle, 2) <= 3);
|
|
ASSERT(GET_SWZ(source->Swizzle, 3) <= 3);
|
|
result[0] = src[GET_SWZ(source->Swizzle, 0)];
|
|
result[1] = src[GET_SWZ(source->Swizzle, 1)];
|
|
result[2] = src[GET_SWZ(source->Swizzle, 2)];
|
|
result[3] = src[GET_SWZ(source->Swizzle, 3)];
|
|
}
|
|
|
|
if (source->NegateBase) {
|
|
result[0] = -result[0];
|
|
result[1] = -result[1];
|
|
result[2] = -result[2];
|
|
result[3] = -result[3];
|
|
}
|
|
if (source->Abs) {
|
|
result[0] = FABSF(result[0]);
|
|
result[1] = FABSF(result[1]);
|
|
result[2] = FABSF(result[2]);
|
|
result[3] = FABSF(result[3]);
|
|
}
|
|
if (source->NegateAbs) {
|
|
result[0] = -result[0];
|
|
result[1] = -result[1];
|
|
result[2] = -result[2];
|
|
result[3] = -result[3];
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
/**
|
|
* Fetch the derivative with respect to X for the given register.
|
|
* \return GL_TRUE if it was easily computed or GL_FALSE if we
|
|
* need to execute another instance of the program (ugh)!
|
|
*/
|
|
static GLboolean
|
|
fetch_vector4_deriv(GLcontext * ctx,
|
|
const struct prog_src_register *source,
|
|
const SWspan * span,
|
|
char xOrY, GLint column, GLfloat result[4])
|
|
{
|
|
GLfloat src[4];
|
|
|
|
ASSERT(xOrY == 'X' || xOrY == 'Y');
|
|
|
|
switch (source->Index) {
|
|
case FRAG_ATTRIB_WPOS:
|
|
if (xOrY == 'X') {
|
|
src[0] = 1.0;
|
|
src[1] = 0.0;
|
|
src[2] = span->attrStepX[FRAG_ATTRIB_WPOS][2]
|
|
/ ctx->DrawBuffer->_DepthMaxF;
|
|
src[3] = span->attrStepX[FRAG_ATTRIB_WPOS][3];
|
|
}
|
|
else {
|
|
src[0] = 0.0;
|
|
src[1] = 1.0;
|
|
src[2] = span->attrStepY[FRAG_ATTRIB_WPOS][2]
|
|
/ ctx->DrawBuffer->_DepthMaxF;
|
|
src[3] = span->attrStepY[FRAG_ATTRIB_WPOS][3];
|
|
}
|
|
break;
|
|
case FRAG_ATTRIB_COL0:
|
|
case FRAG_ATTRIB_COL1:
|
|
if (xOrY == 'X') {
|
|
src[0] = span->attrStepX[source->Index][0] * (1.0F / CHAN_MAXF);
|
|
src[1] = span->attrStepX[source->Index][1] * (1.0F / CHAN_MAXF);
|
|
src[2] = span->attrStepX[source->Index][2] * (1.0F / CHAN_MAXF);
|
|
src[3] = span->attrStepX[source->Index][3] * (1.0F / CHAN_MAXF);
|
|
}
|
|
else {
|
|
src[0] = span->attrStepY[source->Index][0] * (1.0F / CHAN_MAXF);
|
|
src[1] = span->attrStepY[source->Index][1] * (1.0F / CHAN_MAXF);
|
|
src[2] = span->attrStepY[source->Index][2] * (1.0F / CHAN_MAXF);
|
|
src[3] = span->attrStepY[source->Index][3] * (1.0F / CHAN_MAXF);
|
|
}
|
|
break;
|
|
case FRAG_ATTRIB_FOGC:
|
|
if (xOrY == 'X') {
|
|
src[0] = span->attrStepX[FRAG_ATTRIB_FOGC][0] * (1.0F / CHAN_MAXF);
|
|
src[1] = 0.0;
|
|
src[2] = 0.0;
|
|
src[3] = 0.0;
|
|
}
|
|
else {
|
|
src[0] = span->attrStepY[FRAG_ATTRIB_FOGC][0] * (1.0F / CHAN_MAXF);
|
|
src[1] = 0.0;
|
|
src[2] = 0.0;
|
|
src[3] = 0.0;
|
|
}
|
|
break;
|
|
default:
|
|
assert(source->Index < FRAG_ATTRIB_MAX);
|
|
/* texcoord or varying */
|
|
if (xOrY == 'X') {
|
|
/* this is a little tricky - I think I've got it right */
|
|
const GLfloat invQ = 1.0f / (span->attrStart[source->Index][3]
|
|
+
|
|
span->attrStepX[source->Index][3] *
|
|
column);
|
|
src[0] = span->attrStepX[source->Index][0] * invQ;
|
|
src[1] = span->attrStepX[source->Index][1] * invQ;
|
|
src[2] = span->attrStepX[source->Index][2] * invQ;
|
|
src[3] = span->attrStepX[source->Index][3] * invQ;
|
|
}
|
|
else {
|
|
/* Tricky, as above, but in Y direction */
|
|
const GLfloat invQ = 1.0f / (span->attrStart[source->Index][3]
|
|
+ span->attrStepY[source->Index][3]);
|
|
src[0] = span->attrStepY[source->Index][0] * invQ;
|
|
src[1] = span->attrStepY[source->Index][1] * invQ;
|
|
src[2] = span->attrStepY[source->Index][2] * invQ;
|
|
src[3] = span->attrStepY[source->Index][3] * invQ;
|
|
}
|
|
break;
|
|
}
|
|
|
|
result[0] = src[GET_SWZ(source->Swizzle, 0)];
|
|
result[1] = src[GET_SWZ(source->Swizzle, 1)];
|
|
result[2] = src[GET_SWZ(source->Swizzle, 2)];
|
|
result[3] = src[GET_SWZ(source->Swizzle, 3)];
|
|
|
|
if (source->NegateBase) {
|
|
result[0] = -result[0];
|
|
result[1] = -result[1];
|
|
result[2] = -result[2];
|
|
result[3] = -result[3];
|
|
}
|
|
if (source->Abs) {
|
|
result[0] = FABSF(result[0]);
|
|
result[1] = FABSF(result[1]);
|
|
result[2] = FABSF(result[2]);
|
|
result[3] = FABSF(result[3]);
|
|
}
|
|
if (source->NegateAbs) {
|
|
result[0] = -result[0];
|
|
result[1] = -result[1];
|
|
result[2] = -result[2];
|
|
result[3] = -result[3];
|
|
}
|
|
return GL_TRUE;
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
* As above, but only return result[0] element.
|
|
*/
|
|
static void
|
|
fetch_vector1(GLcontext * ctx,
|
|
const struct prog_src_register *source,
|
|
const struct gl_program_machine *machine, GLfloat result[4])
|
|
{
|
|
const GLfloat *src = get_register_pointer(ctx, source, machine);
|
|
ASSERT(src);
|
|
|
|
result[0] = src[GET_SWZ(source->Swizzle, 0)];
|
|
|
|
if (source->NegateBase) {
|
|
result[0] = -result[0];
|
|
}
|
|
if (source->Abs) {
|
|
result[0] = FABSF(result[0]);
|
|
}
|
|
if (source->NegateAbs) {
|
|
result[0] = -result[0];
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Test value against zero and return GT, LT, EQ or UN if NaN.
|
|
*/
|
|
static INLINE GLuint
|
|
generate_cc(float value)
|
|
{
|
|
if (value != value)
|
|
return COND_UN; /* NaN */
|
|
if (value > 0.0F)
|
|
return COND_GT;
|
|
if (value < 0.0F)
|
|
return COND_LT;
|
|
return COND_EQ;
|
|
}
|
|
|
|
|
|
/**
|
|
* Test if the ccMaskRule is satisfied by the given condition code.
|
|
* Used to mask destination writes according to the current condition code.
|
|
*/
|
|
static INLINE GLboolean
|
|
test_cc(GLuint condCode, GLuint ccMaskRule)
|
|
{
|
|
switch (ccMaskRule) {
|
|
case COND_EQ: return (condCode == COND_EQ);
|
|
case COND_NE: return (condCode != COND_EQ);
|
|
case COND_LT: return (condCode == COND_LT);
|
|
case COND_GE: return (condCode == COND_GT || condCode == COND_EQ);
|
|
case COND_LE: return (condCode == COND_LT || condCode == COND_EQ);
|
|
case COND_GT: return (condCode == COND_GT);
|
|
case COND_TR: return GL_TRUE;
|
|
case COND_FL: return GL_FALSE;
|
|
default: return GL_TRUE;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Evaluate the 4 condition codes against a predicate and return GL_TRUE
|
|
* or GL_FALSE to indicate result.
|
|
*/
|
|
static INLINE GLboolean
|
|
eval_condition(const struct gl_program_machine *machine,
|
|
const struct prog_instruction *inst)
|
|
{
|
|
const GLuint swizzle = inst->DstReg.CondSwizzle;
|
|
const GLuint condMask = inst->DstReg.CondMask;
|
|
if (test_cc(machine->CondCodes[GET_SWZ(swizzle, 0)], condMask) ||
|
|
test_cc(machine->CondCodes[GET_SWZ(swizzle, 1)], condMask) ||
|
|
test_cc(machine->CondCodes[GET_SWZ(swizzle, 2)], condMask) ||
|
|
test_cc(machine->CondCodes[GET_SWZ(swizzle, 3)], condMask)) {
|
|
return GL_TRUE;
|
|
}
|
|
else {
|
|
return GL_FALSE;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Store 4 floats into a register. Observe the instructions saturate and
|
|
* set-condition-code flags.
|
|
*/
|
|
static void
|
|
store_vector4(const struct prog_instruction *inst,
|
|
struct gl_program_machine *machine, const GLfloat value[4])
|
|
{
|
|
const struct prog_dst_register *dest = &(inst->DstReg);
|
|
const GLboolean clamp = inst->SaturateMode == SATURATE_ZERO_ONE;
|
|
GLfloat *dstReg;
|
|
GLfloat dummyReg[4];
|
|
GLfloat clampedValue[4];
|
|
GLuint writeMask = dest->WriteMask;
|
|
|
|
switch (dest->File) {
|
|
case PROGRAM_OUTPUT:
|
|
ASSERT(dest->Index < MAX_PROGRAM_OUTPUTS);
|
|
dstReg = machine->Outputs[dest->Index];
|
|
break;
|
|
case PROGRAM_TEMPORARY:
|
|
ASSERT(dest->Index < MAX_PROGRAM_TEMPS);
|
|
dstReg = machine->Temporaries[dest->Index];
|
|
break;
|
|
case PROGRAM_WRITE_ONLY:
|
|
dstReg = dummyReg;
|
|
return;
|
|
default:
|
|
_mesa_problem(NULL, "bad register file in store_vector4(fp)");
|
|
return;
|
|
}
|
|
|
|
#if 0
|
|
if (value[0] > 1.0e10 ||
|
|
IS_INF_OR_NAN(value[0]) ||
|
|
IS_INF_OR_NAN(value[1]) ||
|
|
IS_INF_OR_NAN(value[2]) || IS_INF_OR_NAN(value[3]))
|
|
printf("store %g %g %g %g\n", value[0], value[1], value[2], value[3]);
|
|
#endif
|
|
|
|
if (clamp) {
|
|
clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F);
|
|
clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F);
|
|
clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F);
|
|
clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F);
|
|
value = clampedValue;
|
|
}
|
|
|
|
if (dest->CondMask != COND_TR) {
|
|
/* condition codes may turn off some writes */
|
|
if (writeMask & WRITEMASK_X) {
|
|
if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 0)],
|
|
dest->CondMask))
|
|
writeMask &= ~WRITEMASK_X;
|
|
}
|
|
if (writeMask & WRITEMASK_Y) {
|
|
if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 1)],
|
|
dest->CondMask))
|
|
writeMask &= ~WRITEMASK_Y;
|
|
}
|
|
if (writeMask & WRITEMASK_Z) {
|
|
if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 2)],
|
|
dest->CondMask))
|
|
writeMask &= ~WRITEMASK_Z;
|
|
}
|
|
if (writeMask & WRITEMASK_W) {
|
|
if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 3)],
|
|
dest->CondMask))
|
|
writeMask &= ~WRITEMASK_W;
|
|
}
|
|
}
|
|
|
|
if (writeMask & WRITEMASK_X)
|
|
dstReg[0] = value[0];
|
|
if (writeMask & WRITEMASK_Y)
|
|
dstReg[1] = value[1];
|
|
if (writeMask & WRITEMASK_Z)
|
|
dstReg[2] = value[2];
|
|
if (writeMask & WRITEMASK_W)
|
|
dstReg[3] = value[3];
|
|
|
|
if (inst->CondUpdate) {
|
|
if (writeMask & WRITEMASK_X)
|
|
machine->CondCodes[0] = generate_cc(value[0]);
|
|
if (writeMask & WRITEMASK_Y)
|
|
machine->CondCodes[1] = generate_cc(value[1]);
|
|
if (writeMask & WRITEMASK_Z)
|
|
machine->CondCodes[2] = generate_cc(value[2]);
|
|
if (writeMask & WRITEMASK_W)
|
|
machine->CondCodes[3] = generate_cc(value[3]);
|
|
}
|
|
}
|
|
|
|
|
|
#if 0
|
|
/**
|
|
* Initialize a new machine state instance from an existing one, adding
|
|
* the partial derivatives onto the input registers.
|
|
* Used to implement DDX and DDY instructions in non-trivial cases.
|
|
*/
|
|
static void
|
|
init_machine_deriv(GLcontext * ctx,
|
|
const struct gl_program_machine *machine,
|
|
const struct gl_fragment_program *program,
|
|
const SWspan * span, char xOrY,
|
|
struct gl_program_machine *dMachine)
|
|
{
|
|
GLuint attr;
|
|
|
|
ASSERT(xOrY == 'X' || xOrY == 'Y');
|
|
|
|
/* copy existing machine */
|
|
_mesa_memcpy(dMachine, machine, sizeof(struct gl_program_machine));
|
|
|
|
if (program->Base.Target == GL_FRAGMENT_PROGRAM_NV) {
|
|
/* XXX also need to do this when using valgrind */
|
|
/* Clear temporary registers (undefined for ARB_f_p) */
|
|
_mesa_bzero((void *) machine->Temporaries,
|
|
MAX_PROGRAM_TEMPS * 4 * sizeof(GLfloat));
|
|
}
|
|
|
|
/* Add derivatives */
|
|
if (program->Base.InputsRead & FRAG_BIT_WPOS) {
|
|
GLfloat *wpos = machine->Attribs[FRAG_ATTRIB_WPOS][machine->CurElement];
|
|
if (xOrY == 'X') {
|
|
wpos[0] += 1.0F;
|
|
wpos[1] += 0.0F;
|
|
wpos[2] += span->attrStepX[FRAG_ATTRIB_WPOS][2];
|
|
wpos[3] += span->attrStepX[FRAG_ATTRIB_WPOS][3];
|
|
}
|
|
else {
|
|
wpos[0] += 0.0F;
|
|
wpos[1] += 1.0F;
|
|
wpos[2] += span->attrStepY[FRAG_ATTRIB_WPOS][2];
|
|
wpos[3] += span->attrStepY[FRAG_ATTRIB_WPOS][3];
|
|
}
|
|
}
|
|
|
|
/* primary, secondary colors */
|
|
for (attr = FRAG_ATTRIB_COL0; attr <= FRAG_ATTRIB_COL1; attr++) {
|
|
if (program->Base.InputsRead & (1 << attr)) {
|
|
GLfloat *col = machine->Attribs[attr][machine->CurElement];
|
|
if (xOrY == 'X') {
|
|
col[0] += span->attrStepX[attr][0] * (1.0F / CHAN_MAXF);
|
|
col[1] += span->attrStepX[attr][1] * (1.0F / CHAN_MAXF);
|
|
col[2] += span->attrStepX[attr][2] * (1.0F / CHAN_MAXF);
|
|
col[3] += span->attrStepX[attr][3] * (1.0F / CHAN_MAXF);
|
|
}
|
|
else {
|
|
col[0] += span->attrStepY[attr][0] * (1.0F / CHAN_MAXF);
|
|
col[1] += span->attrStepY[attr][1] * (1.0F / CHAN_MAXF);
|
|
col[2] += span->attrStepY[attr][2] * (1.0F / CHAN_MAXF);
|
|
col[3] += span->attrStepY[attr][3] * (1.0F / CHAN_MAXF);
|
|
}
|
|
}
|
|
}
|
|
if (program->Base.InputsRead & FRAG_BIT_FOGC) {
|
|
GLfloat *fogc = machine->Attribs[FRAG_ATTRIB_FOGC][machine->CurElement];
|
|
if (xOrY == 'X') {
|
|
fogc[0] += span->attrStepX[FRAG_ATTRIB_FOGC][0];
|
|
}
|
|
else {
|
|
fogc[0] += span->attrStepY[FRAG_ATTRIB_FOGC][0];
|
|
}
|
|
}
|
|
/* texcoord and varying vars */
|
|
for (attr = FRAG_ATTRIB_TEX0; attr < FRAG_ATTRIB_MAX; attr++) {
|
|
if (program->Base.InputsRead & (1 << attr)) {
|
|
GLfloat *val = machine->Attribs[attr][machine->CurElement];
|
|
/* XXX perspective-correct interpolation */
|
|
if (xOrY == 'X') {
|
|
val[0] += span->attrStepX[attr][0];
|
|
val[1] += span->attrStepX[attr][1];
|
|
val[2] += span->attrStepX[attr][2];
|
|
val[3] += span->attrStepX[attr][3];
|
|
}
|
|
else {
|
|
val[0] += span->attrStepY[attr][0];
|
|
val[1] += span->attrStepY[attr][1];
|
|
val[2] += span->attrStepY[attr][2];
|
|
val[3] += span->attrStepY[attr][3];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* init condition codes */
|
|
dMachine->CondCodes[0] = COND_EQ;
|
|
dMachine->CondCodes[1] = COND_EQ;
|
|
dMachine->CondCodes[2] = COND_EQ;
|
|
dMachine->CondCodes[3] = COND_EQ;
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
* Execute the given vertex/fragment program.
|
|
*
|
|
* \param ctx - rendering context
|
|
* \param program - the fragment program to execute
|
|
* \param machine - machine state (register file)
|
|
* \param maxInst - max number of instructions to execute
|
|
* \return GL_TRUE if program completed or GL_FALSE if program executed KIL.
|
|
*/
|
|
GLboolean
|
|
_mesa_execute_program(GLcontext * ctx,
|
|
const struct gl_program *program, GLuint maxInst,
|
|
struct gl_program_machine *machine)
|
|
{
|
|
const GLuint MAX_EXEC = 10000;
|
|
GLint pc, total = 0;
|
|
|
|
machine->CurProgram = program;
|
|
|
|
if (DEBUG_PROG) {
|
|
printf("execute program %u --------------------\n", program->Id);
|
|
}
|
|
|
|
#if FEATURE_MESA_program_debug
|
|
CurrentMachine = machine;
|
|
#endif
|
|
|
|
for (pc = 0; pc < maxInst; pc++) {
|
|
const struct prog_instruction *inst = program->Instructions + pc;
|
|
|
|
#if FEATURE_MESA_program_debug
|
|
if (ctx->FragmentProgram.CallbackEnabled &&
|
|
ctx->FragmentProgram.Callback) {
|
|
ctx->FragmentProgram.CurrentPosition = inst->StringPos;
|
|
ctx->FragmentProgram.Callback(program->Target,
|
|
ctx->FragmentProgram.CallbackData);
|
|
}
|
|
#endif
|
|
|
|
if (DEBUG_PROG) {
|
|
_mesa_print_instruction(inst);
|
|
}
|
|
|
|
switch (inst->Opcode) {
|
|
case OPCODE_ABS:
|
|
{
|
|
GLfloat a[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
result[0] = FABSF(a[0]);
|
|
result[1] = FABSF(a[1]);
|
|
result[2] = FABSF(a[2]);
|
|
result[3] = FABSF(a[3]);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_ADD:
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = a[0] + b[0];
|
|
result[1] = a[1] + b[1];
|
|
result[2] = a[2] + b[2];
|
|
result[3] = a[3] + b[3];
|
|
store_vector4(inst, machine, result);
|
|
if (DEBUG_PROG) {
|
|
printf("ADD (%g %g %g %g) = (%g %g %g %g) + (%g %g %g %g)\n",
|
|
result[0], result[1], result[2], result[3],
|
|
a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
|
|
}
|
|
}
|
|
break;
|
|
case OPCODE_ARL:
|
|
{
|
|
GLfloat t[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, t);
|
|
machine->AddressReg[0][0] = (GLint) FLOORF(t[0]);
|
|
}
|
|
break;
|
|
case OPCODE_BGNLOOP:
|
|
/* no-op */
|
|
break;
|
|
case OPCODE_ENDLOOP:
|
|
/* subtract 1 here since pc is incremented by for(pc) loop */
|
|
pc = inst->BranchTarget - 1; /* go to matching BNGLOOP */
|
|
break;
|
|
case OPCODE_BGNSUB: /* begin subroutine */
|
|
break;
|
|
case OPCODE_ENDSUB: /* end subroutine */
|
|
break;
|
|
case OPCODE_BRA: /* branch (conditional) */
|
|
/* fall-through */
|
|
case OPCODE_BRK: /* break out of loop (conditional) */
|
|
/* fall-through */
|
|
case OPCODE_CONT: /* continue loop (conditional) */
|
|
if (eval_condition(machine, inst)) {
|
|
/* take branch */
|
|
/* Subtract 1 here since we'll do pc++ at end of for-loop */
|
|
pc = inst->BranchTarget - 1;
|
|
}
|
|
break;
|
|
case OPCODE_CAL: /* Call subroutine (conditional) */
|
|
if (eval_condition(machine, inst)) {
|
|
/* call the subroutine */
|
|
if (machine->StackDepth >= MAX_PROGRAM_CALL_DEPTH) {
|
|
return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
|
|
}
|
|
machine->CallStack[machine->StackDepth++] = pc + 1;
|
|
pc = inst->BranchTarget; /* XXX - 1 ??? */
|
|
}
|
|
break;
|
|
case OPCODE_CMP:
|
|
{
|
|
GLfloat a[4], b[4], c[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
fetch_vector4(ctx, &inst->SrcReg[2], machine, c);
|
|
result[0] = a[0] < 0.0F ? b[0] : c[0];
|
|
result[1] = a[1] < 0.0F ? b[1] : c[1];
|
|
result[2] = a[2] < 0.0F ? b[2] : c[2];
|
|
result[3] = a[3] < 0.0F ? b[3] : c[3];
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_COS:
|
|
{
|
|
GLfloat a[4], result[4];
|
|
fetch_vector1(ctx, &inst->SrcReg[0], machine, a);
|
|
result[0] = result[1] = result[2] = result[3]
|
|
= (GLfloat) _mesa_cos(a[0]);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_DDX: /* Partial derivative with respect to X */
|
|
{
|
|
#if 0
|
|
GLfloat a[4], aNext[4], result[4];
|
|
struct gl_program_machine dMachine;
|
|
if (!fetch_vector4_deriv(ctx, &inst->SrcReg[0], span, 'X',
|
|
column, result)) {
|
|
/* This is tricky. Make a copy of the current machine state,
|
|
* increment the input registers by the dx or dy partial
|
|
* derivatives, then re-execute the program up to the
|
|
* preceeding instruction, then fetch the source register.
|
|
* Finally, find the difference in the register values for
|
|
* the original and derivative runs.
|
|
*/
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, program, a);
|
|
init_machine_deriv(ctx, machine, program, span,
|
|
'X', &dMachine);
|
|
execute_program(ctx, program, pc, &dMachine, span, column);
|
|
fetch_vector4(ctx, &inst->SrcReg[0], &dMachine, program,
|
|
aNext);
|
|
result[0] = aNext[0] - a[0];
|
|
result[1] = aNext[1] - a[1];
|
|
result[2] = aNext[2] - a[2];
|
|
result[3] = aNext[3] - a[3];
|
|
}
|
|
store_vector4(inst, machine, result);
|
|
#else
|
|
store_vector4(inst, machine, ZeroVec);
|
|
#endif
|
|
}
|
|
break;
|
|
case OPCODE_DDY: /* Partial derivative with respect to Y */
|
|
{
|
|
#if 0
|
|
GLfloat a[4], aNext[4], result[4];
|
|
struct gl_program_machine dMachine;
|
|
if (!fetch_vector4_deriv(ctx, &inst->SrcReg[0], span, 'Y',
|
|
column, result)) {
|
|
init_machine_deriv(ctx, machine, program, span,
|
|
'Y', &dMachine);
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, program, a);
|
|
execute_program(ctx, program, pc, &dMachine, span, column);
|
|
fetch_vector4(ctx, &inst->SrcReg[0], &dMachine, program,
|
|
aNext);
|
|
result[0] = aNext[0] - a[0];
|
|
result[1] = aNext[1] - a[1];
|
|
result[2] = aNext[2] - a[2];
|
|
result[3] = aNext[3] - a[3];
|
|
}
|
|
store_vector4(inst, machine, result);
|
|
#else
|
|
store_vector4(inst, machine, ZeroVec);
|
|
#endif
|
|
}
|
|
break;
|
|
case OPCODE_DP3:
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = result[1] = result[2] = result[3] = DOT3(a, b);
|
|
store_vector4(inst, machine, result);
|
|
if (DEBUG_PROG) {
|
|
printf("DP3 %g = (%g %g %g) . (%g %g %g)\n",
|
|
result[0], a[0], a[1], a[2], b[0], b[1], b[2]);
|
|
}
|
|
}
|
|
break;
|
|
case OPCODE_DP4:
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = result[1] = result[2] = result[3] = DOT4(a, b);
|
|
store_vector4(inst, machine, result);
|
|
if (DEBUG_PROG) {
|
|
printf("DP4 %g = (%g, %g %g %g) . (%g, %g %g %g)\n",
|
|
result[0], a[0], a[1], a[2], a[3],
|
|
b[0], b[1], b[2], b[3]);
|
|
}
|
|
}
|
|
break;
|
|
case OPCODE_DPH:
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = result[1] = result[2] = result[3] =
|
|
a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + b[3];
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_DST: /* Distance vector */
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = 1.0F;
|
|
result[1] = a[1] * b[1];
|
|
result[2] = a[2];
|
|
result[3] = b[3];
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_EXP:
|
|
{
|
|
GLfloat t[4], q[4], floor_t0;
|
|
fetch_vector1(ctx, &inst->SrcReg[0], machine, t);
|
|
floor_t0 = FLOORF(t[0]);
|
|
if (floor_t0 > FLT_MAX_EXP) {
|
|
SET_POS_INFINITY(q[0]);
|
|
SET_POS_INFINITY(q[2]);
|
|
}
|
|
else if (floor_t0 < FLT_MIN_EXP) {
|
|
q[0] = 0.0F;
|
|
q[2] = 0.0F;
|
|
}
|
|
else {
|
|
q[0] = LDEXPF(1.0, (int) floor_t0);
|
|
/* Note: GL_NV_vertex_program expects
|
|
* result.z = result.x * APPX(result.y)
|
|
* We do what the ARB extension says.
|
|
*/
|
|
q[2] = pow(2.0, t[0]);
|
|
}
|
|
q[1] = t[0] - floor_t0;
|
|
q[3] = 1.0F;
|
|
store_vector4( inst, machine, q );
|
|
}
|
|
break;
|
|
case OPCODE_EX2: /* Exponential base 2 */
|
|
{
|
|
GLfloat a[4], result[4];
|
|
fetch_vector1(ctx, &inst->SrcReg[0], machine, a);
|
|
result[0] = result[1] = result[2] = result[3] =
|
|
(GLfloat) _mesa_pow(2.0, a[0]);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_FLR:
|
|
{
|
|
GLfloat a[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
result[0] = FLOORF(a[0]);
|
|
result[1] = FLOORF(a[1]);
|
|
result[2] = FLOORF(a[2]);
|
|
result[3] = FLOORF(a[3]);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_FRC:
|
|
{
|
|
GLfloat a[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
result[0] = a[0] - FLOORF(a[0]);
|
|
result[1] = a[1] - FLOORF(a[1]);
|
|
result[2] = a[2] - FLOORF(a[2]);
|
|
result[3] = a[3] - FLOORF(a[3]);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_IF:
|
|
if (eval_condition(machine, inst)) {
|
|
/* do if-clause (just continue execution) */
|
|
}
|
|
else {
|
|
/* go to the instruction after ELSE or ENDIF */
|
|
assert(inst->BranchTarget >= 0);
|
|
pc = inst->BranchTarget - 1;
|
|
}
|
|
break;
|
|
case OPCODE_ELSE:
|
|
/* goto ENDIF */
|
|
assert(inst->BranchTarget >= 0);
|
|
pc = inst->BranchTarget - 1;
|
|
break;
|
|
case OPCODE_ENDIF:
|
|
/* nothing */
|
|
break;
|
|
case OPCODE_INT: /* float to int */
|
|
{
|
|
GLfloat a[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
result[0] = (GLfloat) (GLint) a[0];
|
|
result[1] = (GLfloat) (GLint) a[1];
|
|
result[2] = (GLfloat) (GLint) a[2];
|
|
result[3] = (GLfloat) (GLint) a[3];
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_KIL_NV: /* NV_f_p only (conditional) */
|
|
if (eval_condition(machine, inst)) {
|
|
return GL_FALSE;
|
|
}
|
|
break;
|
|
case OPCODE_KIL: /* ARB_f_p only */
|
|
{
|
|
GLfloat a[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
if (a[0] < 0.0F || a[1] < 0.0F || a[2] < 0.0F || a[3] < 0.0F) {
|
|
return GL_FALSE;
|
|
}
|
|
}
|
|
break;
|
|
case OPCODE_LG2: /* log base 2 */
|
|
{
|
|
GLfloat a[4], result[4];
|
|
fetch_vector1(ctx, &inst->SrcReg[0], machine, a);
|
|
result[0] = result[1] = result[2] = result[3] = LOG2(a[0]);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_LIT:
|
|
{
|
|
const GLfloat epsilon = 1.0F / 256.0F; /* from NV VP spec */
|
|
GLfloat a[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
a[0] = MAX2(a[0], 0.0F);
|
|
a[1] = MAX2(a[1], 0.0F);
|
|
/* XXX ARB version clamps a[3], NV version doesn't */
|
|
a[3] = CLAMP(a[3], -(128.0F - epsilon), (128.0F - epsilon));
|
|
result[0] = 1.0F;
|
|
result[1] = a[0];
|
|
/* XXX we could probably just use pow() here */
|
|
if (a[0] > 0.0F) {
|
|
if (a[1] == 0.0 && a[3] == 0.0)
|
|
result[2] = 1.0;
|
|
else
|
|
result[2] = EXPF(a[3] * LOGF(a[1]));
|
|
}
|
|
else {
|
|
result[2] = 0.0;
|
|
}
|
|
result[3] = 1.0F;
|
|
store_vector4(inst, machine, result);
|
|
if (DEBUG_PROG) {
|
|
printf("LIT (%g %g %g %g) : (%g %g %g %g)\n",
|
|
result[0], result[1], result[2], result[3],
|
|
a[0], a[1], a[2], a[3]);
|
|
}
|
|
}
|
|
break;
|
|
case OPCODE_LOG:
|
|
{
|
|
GLfloat t[4], q[4], abs_t0;
|
|
fetch_vector1(ctx, &inst->SrcReg[0], machine, t);
|
|
abs_t0 = FABSF(t[0]);
|
|
if (abs_t0 != 0.0F) {
|
|
/* Since we really can't handle infinite values on VMS
|
|
* like other OSes we'll use __MAXFLOAT to represent
|
|
* infinity. This may need some tweaking.
|
|
*/
|
|
#ifdef VMS
|
|
if (abs_t0 == __MAXFLOAT)
|
|
#else
|
|
if (IS_INF_OR_NAN(abs_t0))
|
|
#endif
|
|
{
|
|
SET_POS_INFINITY(q[0]);
|
|
q[1] = 1.0F;
|
|
SET_POS_INFINITY(q[2]);
|
|
}
|
|
else {
|
|
int exponent;
|
|
GLfloat mantissa = FREXPF(t[0], &exponent);
|
|
q[0] = (GLfloat) (exponent - 1);
|
|
q[1] = (GLfloat) (2.0 * mantissa); /* map [.5, 1) -> [1, 2) */
|
|
q[2] = (GLfloat) (q[0] + LOG2(q[1]));
|
|
}
|
|
}
|
|
else {
|
|
SET_NEG_INFINITY(q[0]);
|
|
q[1] = 1.0F;
|
|
SET_NEG_INFINITY(q[2]);
|
|
}
|
|
q[3] = 1.0;
|
|
store_vector4(inst, machine, q);
|
|
}
|
|
break;
|
|
case OPCODE_LRP:
|
|
{
|
|
GLfloat a[4], b[4], c[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
fetch_vector4(ctx, &inst->SrcReg[2], machine, c);
|
|
result[0] = a[0] * b[0] + (1.0F - a[0]) * c[0];
|
|
result[1] = a[1] * b[1] + (1.0F - a[1]) * c[1];
|
|
result[2] = a[2] * b[2] + (1.0F - a[2]) * c[2];
|
|
result[3] = a[3] * b[3] + (1.0F - a[3]) * c[3];
|
|
store_vector4(inst, machine, result);
|
|
if (DEBUG_PROG) {
|
|
printf("LRP (%g %g %g %g) = (%g %g %g %g), "
|
|
"(%g %g %g %g), (%g %g %g %g)\n",
|
|
result[0], result[1], result[2], result[3],
|
|
a[0], a[1], a[2], a[3],
|
|
b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
|
|
}
|
|
}
|
|
break;
|
|
case OPCODE_MAD:
|
|
{
|
|
GLfloat a[4], b[4], c[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
fetch_vector4(ctx, &inst->SrcReg[2], machine, c);
|
|
result[0] = a[0] * b[0] + c[0];
|
|
result[1] = a[1] * b[1] + c[1];
|
|
result[2] = a[2] * b[2] + c[2];
|
|
result[3] = a[3] * b[3] + c[3];
|
|
store_vector4(inst, machine, result);
|
|
if (DEBUG_PROG) {
|
|
printf("MAD (%g %g %g %g) = (%g %g %g %g) * "
|
|
"(%g %g %g %g) + (%g %g %g %g)\n",
|
|
result[0], result[1], result[2], result[3],
|
|
a[0], a[1], a[2], a[3],
|
|
b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
|
|
}
|
|
}
|
|
break;
|
|
case OPCODE_MAX:
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = MAX2(a[0], b[0]);
|
|
result[1] = MAX2(a[1], b[1]);
|
|
result[2] = MAX2(a[2], b[2]);
|
|
result[3] = MAX2(a[3], b[3]);
|
|
store_vector4(inst, machine, result);
|
|
if (DEBUG_PROG) {
|
|
printf("MAX (%g %g %g %g) = (%g %g %g %g), (%g %g %g %g)\n",
|
|
result[0], result[1], result[2], result[3],
|
|
a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
|
|
}
|
|
}
|
|
break;
|
|
case OPCODE_MIN:
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = MIN2(a[0], b[0]);
|
|
result[1] = MIN2(a[1], b[1]);
|
|
result[2] = MIN2(a[2], b[2]);
|
|
result[3] = MIN2(a[3], b[3]);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_MOV:
|
|
{
|
|
GLfloat result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, result);
|
|
store_vector4(inst, machine, result);
|
|
if (DEBUG_PROG) {
|
|
printf("MOV (%g %g %g %g)\n",
|
|
result[0], result[1], result[2], result[3]);
|
|
}
|
|
}
|
|
break;
|
|
case OPCODE_MUL:
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = a[0] * b[0];
|
|
result[1] = a[1] * b[1];
|
|
result[2] = a[2] * b[2];
|
|
result[3] = a[3] * b[3];
|
|
store_vector4(inst, machine, result);
|
|
if (DEBUG_PROG) {
|
|
printf("MUL (%g %g %g %g) = (%g %g %g %g) * (%g %g %g %g)\n",
|
|
result[0], result[1], result[2], result[3],
|
|
a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
|
|
}
|
|
}
|
|
break;
|
|
case OPCODE_NOISE1:
|
|
{
|
|
GLfloat a[4], result[4];
|
|
fetch_vector1(ctx, &inst->SrcReg[0], machine, a);
|
|
result[0] =
|
|
result[1] =
|
|
result[2] = result[3] = _slang_library_noise1(a[0]);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_NOISE2:
|
|
{
|
|
GLfloat a[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
result[0] =
|
|
result[1] =
|
|
result[2] = result[3] = _slang_library_noise2(a[0], a[1]);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_NOISE3:
|
|
{
|
|
GLfloat a[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
result[0] =
|
|
result[1] =
|
|
result[2] =
|
|
result[3] = _slang_library_noise3(a[0], a[1], a[2]);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_NOISE4:
|
|
{
|
|
GLfloat a[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
result[0] =
|
|
result[1] =
|
|
result[2] =
|
|
result[3] = _slang_library_noise4(a[0], a[1], a[2], a[3]);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_NOP:
|
|
break;
|
|
case OPCODE_PK2H: /* pack two 16-bit floats in one 32-bit float */
|
|
{
|
|
GLfloat a[4], result[4];
|
|
GLhalfNV hx, hy;
|
|
GLuint *rawResult = (GLuint *) result;
|
|
GLuint twoHalves;
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
hx = _mesa_float_to_half(a[0]);
|
|
hy = _mesa_float_to_half(a[1]);
|
|
twoHalves = hx | (hy << 16);
|
|
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
|
|
= twoHalves;
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_PK2US: /* pack two GLushorts into one 32-bit float */
|
|
{
|
|
GLfloat a[4], result[4];
|
|
GLuint usx, usy, *rawResult = (GLuint *) result;
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
a[0] = CLAMP(a[0], 0.0F, 1.0F);
|
|
a[1] = CLAMP(a[1], 0.0F, 1.0F);
|
|
usx = IROUND(a[0] * 65535.0F);
|
|
usy = IROUND(a[1] * 65535.0F);
|
|
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
|
|
= usx | (usy << 16);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_PK4B: /* pack four GLbytes into one 32-bit float */
|
|
{
|
|
GLfloat a[4], result[4];
|
|
GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result;
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
a[0] = CLAMP(a[0], -128.0F / 127.0F, 1.0F);
|
|
a[1] = CLAMP(a[1], -128.0F / 127.0F, 1.0F);
|
|
a[2] = CLAMP(a[2], -128.0F / 127.0F, 1.0F);
|
|
a[3] = CLAMP(a[3], -128.0F / 127.0F, 1.0F);
|
|
ubx = IROUND(127.0F * a[0] + 128.0F);
|
|
uby = IROUND(127.0F * a[1] + 128.0F);
|
|
ubz = IROUND(127.0F * a[2] + 128.0F);
|
|
ubw = IROUND(127.0F * a[3] + 128.0F);
|
|
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
|
|
= ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_PK4UB: /* pack four GLubytes into one 32-bit float */
|
|
{
|
|
GLfloat a[4], result[4];
|
|
GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result;
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
a[0] = CLAMP(a[0], 0.0F, 1.0F);
|
|
a[1] = CLAMP(a[1], 0.0F, 1.0F);
|
|
a[2] = CLAMP(a[2], 0.0F, 1.0F);
|
|
a[3] = CLAMP(a[3], 0.0F, 1.0F);
|
|
ubx = IROUND(255.0F * a[0]);
|
|
uby = IROUND(255.0F * a[1]);
|
|
ubz = IROUND(255.0F * a[2]);
|
|
ubw = IROUND(255.0F * a[3]);
|
|
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
|
|
= ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_POW:
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector1(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector1(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = result[1] = result[2] = result[3]
|
|
= (GLfloat) _mesa_pow(a[0], b[0]);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_RCP:
|
|
{
|
|
GLfloat a[4], result[4];
|
|
fetch_vector1(ctx, &inst->SrcReg[0], machine, a);
|
|
if (DEBUG_PROG) {
|
|
if (a[0] == 0)
|
|
printf("RCP(0)\n");
|
|
else if (IS_INF_OR_NAN(a[0]))
|
|
printf("RCP(inf)\n");
|
|
}
|
|
result[0] = result[1] = result[2] = result[3] = 1.0F / a[0];
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_RET: /* return from subroutine (conditional) */
|
|
if (eval_condition(machine, inst)) {
|
|
if (machine->StackDepth == 0) {
|
|
return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
|
|
}
|
|
pc = machine->CallStack[--machine->StackDepth];
|
|
}
|
|
break;
|
|
case OPCODE_RFL: /* reflection vector */
|
|
{
|
|
GLfloat axis[4], dir[4], result[4], tmpX, tmpW;
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, axis);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, dir);
|
|
tmpW = DOT3(axis, axis);
|
|
tmpX = (2.0F * DOT3(axis, dir)) / tmpW;
|
|
result[0] = tmpX * axis[0] - dir[0];
|
|
result[1] = tmpX * axis[1] - dir[1];
|
|
result[2] = tmpX * axis[2] - dir[2];
|
|
/* result[3] is never written! XXX enforce in parser! */
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_RSQ: /* 1 / sqrt() */
|
|
{
|
|
GLfloat a[4], result[4];
|
|
fetch_vector1(ctx, &inst->SrcReg[0], machine, a);
|
|
a[0] = FABSF(a[0]);
|
|
result[0] = result[1] = result[2] = result[3] = INV_SQRTF(a[0]);
|
|
store_vector4(inst, machine, result);
|
|
if (DEBUG_PROG) {
|
|
printf("RSQ %g = 1/sqrt(|%g|)\n", result[0], a[0]);
|
|
}
|
|
}
|
|
break;
|
|
case OPCODE_SCS: /* sine and cos */
|
|
{
|
|
GLfloat a[4], result[4];
|
|
fetch_vector1(ctx, &inst->SrcReg[0], machine, a);
|
|
result[0] = (GLfloat) _mesa_cos(a[0]);
|
|
result[1] = (GLfloat) _mesa_sin(a[0]);
|
|
result[2] = 0.0; /* undefined! */
|
|
result[3] = 0.0; /* undefined! */
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_SEQ: /* set on equal */
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = (a[0] == b[0]) ? 1.0F : 0.0F;
|
|
result[1] = (a[1] == b[1]) ? 1.0F : 0.0F;
|
|
result[2] = (a[2] == b[2]) ? 1.0F : 0.0F;
|
|
result[3] = (a[3] == b[3]) ? 1.0F : 0.0F;
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_SFL: /* set false, operands ignored */
|
|
{
|
|
static const GLfloat result[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_SGE: /* set on greater or equal */
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = (a[0] >= b[0]) ? 1.0F : 0.0F;
|
|
result[1] = (a[1] >= b[1]) ? 1.0F : 0.0F;
|
|
result[2] = (a[2] >= b[2]) ? 1.0F : 0.0F;
|
|
result[3] = (a[3] >= b[3]) ? 1.0F : 0.0F;
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_SGT: /* set on greater */
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = (a[0] > b[0]) ? 1.0F : 0.0F;
|
|
result[1] = (a[1] > b[1]) ? 1.0F : 0.0F;
|
|
result[2] = (a[2] > b[2]) ? 1.0F : 0.0F;
|
|
result[3] = (a[3] > b[3]) ? 1.0F : 0.0F;
|
|
store_vector4(inst, machine, result);
|
|
if (DEBUG_PROG) {
|
|
printf("SGT %g %g %g %g\n",
|
|
result[0], result[1], result[2], result[3]);
|
|
}
|
|
}
|
|
break;
|
|
case OPCODE_SIN:
|
|
{
|
|
GLfloat a[4], result[4];
|
|
fetch_vector1(ctx, &inst->SrcReg[0], machine, a);
|
|
result[0] = result[1] = result[2] = result[3]
|
|
= (GLfloat) _mesa_sin(a[0]);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_SLE: /* set on less or equal */
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = (a[0] <= b[0]) ? 1.0F : 0.0F;
|
|
result[1] = (a[1] <= b[1]) ? 1.0F : 0.0F;
|
|
result[2] = (a[2] <= b[2]) ? 1.0F : 0.0F;
|
|
result[3] = (a[3] <= b[3]) ? 1.0F : 0.0F;
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_SLT: /* set on less */
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = (a[0] < b[0]) ? 1.0F : 0.0F;
|
|
result[1] = (a[1] < b[1]) ? 1.0F : 0.0F;
|
|
result[2] = (a[2] < b[2]) ? 1.0F : 0.0F;
|
|
result[3] = (a[3] < b[3]) ? 1.0F : 0.0F;
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_SNE: /* set on not equal */
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = (a[0] != b[0]) ? 1.0F : 0.0F;
|
|
result[1] = (a[1] != b[1]) ? 1.0F : 0.0F;
|
|
result[2] = (a[2] != b[2]) ? 1.0F : 0.0F;
|
|
result[3] = (a[3] != b[3]) ? 1.0F : 0.0F;
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_STR: /* set true, operands ignored */
|
|
{
|
|
static const GLfloat result[4] = { 1.0F, 1.0F, 1.0F, 1.0F };
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_SUB:
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = a[0] - b[0];
|
|
result[1] = a[1] - b[1];
|
|
result[2] = a[2] - b[2];
|
|
result[3] = a[3] - b[3];
|
|
store_vector4(inst, machine, result);
|
|
if (DEBUG_PROG) {
|
|
printf("SUB (%g %g %g %g) = (%g %g %g %g) - (%g %g %g %g)\n",
|
|
result[0], result[1], result[2], result[3],
|
|
a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
|
|
}
|
|
}
|
|
break;
|
|
case OPCODE_SWZ: /* extended swizzle */
|
|
{
|
|
const struct prog_src_register *source = &inst->SrcReg[0];
|
|
const GLfloat *src = get_register_pointer(ctx, source, machine);
|
|
GLfloat result[4];
|
|
GLuint i;
|
|
for (i = 0; i < 4; i++) {
|
|
const GLuint swz = GET_SWZ(source->Swizzle, i);
|
|
if (swz == SWIZZLE_ZERO)
|
|
result[i] = 0.0;
|
|
else if (swz == SWIZZLE_ONE)
|
|
result[i] = 1.0;
|
|
else {
|
|
ASSERT(swz >= 0);
|
|
ASSERT(swz <= 3);
|
|
result[i] = src[swz];
|
|
}
|
|
if (source->NegateBase & (1 << i))
|
|
result[i] = -result[i];
|
|
}
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_TEX: /* Both ARB and NV frag prog */
|
|
/* Texel lookup */
|
|
{
|
|
/* Note: only use the precomputed lambda value when we're
|
|
* sampling texture unit [K] with texcoord[K].
|
|
* Otherwise, the lambda value may have no relation to the
|
|
* instruction's texcoord or texture image. Using the wrong
|
|
* lambda is usually bad news.
|
|
* The rest of the time, just use zero (until we get a more
|
|
* sophisticated way of computing lambda).
|
|
*/
|
|
GLfloat coord[4], color[4], lambda;
|
|
#if 0
|
|
if (inst->SrcReg[0].File == PROGRAM_INPUT &&
|
|
inst->SrcReg[0].Index == FRAG_ATTRIB_TEX0 + inst->TexSrcUnit)
|
|
lambda = span->array->lambda[inst->TexSrcUnit][column];
|
|
else
|
|
#endif
|
|
lambda = 0.0;
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, coord);
|
|
machine->FetchTexelLod(ctx, coord, lambda, inst->TexSrcUnit,
|
|
color);
|
|
if (DEBUG_PROG) {
|
|
printf("TEX (%g, %g, %g, %g) = texture[%d][%g, %g, %g, %g], "
|
|
"lod %f\n",
|
|
color[0], color[1], color[2], color[3],
|
|
inst->TexSrcUnit,
|
|
coord[0], coord[1], coord[2], coord[3], lambda);
|
|
}
|
|
store_vector4(inst, machine, color);
|
|
}
|
|
break;
|
|
case OPCODE_TXB: /* GL_ARB_fragment_program only */
|
|
/* Texel lookup with LOD bias */
|
|
{
|
|
const struct gl_texture_unit *texUnit
|
|
= &ctx->Texture.Unit[inst->TexSrcUnit];
|
|
GLfloat coord[4], color[4], lambda, bias;
|
|
#if 0
|
|
if (inst->SrcReg[0].File == PROGRAM_INPUT &&
|
|
inst->SrcReg[0].Index == FRAG_ATTRIB_TEX0 + inst->TexSrcUnit)
|
|
lambda = span->array->lambda[inst->TexSrcUnit][column];
|
|
else
|
|
#endif
|
|
lambda = 0.0;
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, coord);
|
|
/* coord[3] is the bias to add to lambda */
|
|
bias = texUnit->LodBias + coord[3];
|
|
if (texUnit->_Current)
|
|
bias += texUnit->_Current->LodBias;
|
|
machine->FetchTexelLod(ctx, coord, lambda + bias,
|
|
inst->TexSrcUnit, color);
|
|
store_vector4(inst, machine, color);
|
|
}
|
|
break;
|
|
case OPCODE_TXD: /* GL_NV_fragment_program only */
|
|
/* Texture lookup w/ partial derivatives for LOD */
|
|
{
|
|
GLfloat texcoord[4], dtdx[4], dtdy[4], color[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, texcoord);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, dtdx);
|
|
fetch_vector4(ctx, &inst->SrcReg[2], machine, dtdy);
|
|
machine->FetchTexelDeriv(ctx, texcoord, dtdx, dtdy,
|
|
inst->TexSrcUnit, color);
|
|
store_vector4(inst, machine, color);
|
|
}
|
|
break;
|
|
case OPCODE_TXP: /* GL_ARB_fragment_program only */
|
|
/* Texture lookup w/ projective divide */
|
|
{
|
|
GLfloat texcoord[4], color[4], lambda;
|
|
#if 0
|
|
if (inst->SrcReg[0].File == PROGRAM_INPUT &&
|
|
inst->SrcReg[0].Index == FRAG_ATTRIB_TEX0 + inst->TexSrcUnit)
|
|
lambda = span->array->lambda[inst->TexSrcUnit][column];
|
|
else
|
|
#endif
|
|
lambda = 0.0;
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, texcoord);
|
|
/* Not so sure about this test - if texcoord[3] is
|
|
* zero, we'd probably be fine except for an ASSERT in
|
|
* IROUND_POS() which gets triggered by the inf values created.
|
|
*/
|
|
if (texcoord[3] != 0.0) {
|
|
texcoord[0] /= texcoord[3];
|
|
texcoord[1] /= texcoord[3];
|
|
texcoord[2] /= texcoord[3];
|
|
}
|
|
machine->FetchTexelLod(ctx, texcoord, lambda,
|
|
inst->TexSrcUnit, color);
|
|
store_vector4(inst, machine, color);
|
|
}
|
|
break;
|
|
case OPCODE_TXP_NV: /* GL_NV_fragment_program only */
|
|
/* Texture lookup w/ projective divide */
|
|
{
|
|
GLfloat texcoord[4], color[4], lambda;
|
|
#if 0
|
|
if (inst->SrcReg[0].File == PROGRAM_INPUT &&
|
|
inst->SrcReg[0].Index == FRAG_ATTRIB_TEX0 + inst->TexSrcUnit)
|
|
lambda = span->array->lambda[inst->TexSrcUnit][column];
|
|
else
|
|
#endif
|
|
lambda = 0.0;
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, texcoord);
|
|
if (inst->TexSrcTarget != TEXTURE_CUBE_INDEX &&
|
|
texcoord[3] != 0.0) {
|
|
texcoord[0] /= texcoord[3];
|
|
texcoord[1] /= texcoord[3];
|
|
texcoord[2] /= texcoord[3];
|
|
}
|
|
machine->FetchTexelLod(ctx, texcoord, lambda,
|
|
inst->TexSrcUnit, color);
|
|
store_vector4(inst, machine, color);
|
|
}
|
|
break;
|
|
case OPCODE_UP2H: /* unpack two 16-bit floats */
|
|
{
|
|
GLfloat a[4], result[4];
|
|
const GLuint *rawBits = (const GLuint *) a;
|
|
GLhalfNV hx, hy;
|
|
fetch_vector1(ctx, &inst->SrcReg[0], machine, a);
|
|
hx = rawBits[0] & 0xffff;
|
|
hy = rawBits[0] >> 16;
|
|
result[0] = result[2] = _mesa_half_to_float(hx);
|
|
result[1] = result[3] = _mesa_half_to_float(hy);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_UP2US: /* unpack two GLushorts */
|
|
{
|
|
GLfloat a[4], result[4];
|
|
const GLuint *rawBits = (const GLuint *) a;
|
|
GLushort usx, usy;
|
|
fetch_vector1(ctx, &inst->SrcReg[0], machine, a);
|
|
usx = rawBits[0] & 0xffff;
|
|
usy = rawBits[0] >> 16;
|
|
result[0] = result[2] = usx * (1.0f / 65535.0f);
|
|
result[1] = result[3] = usy * (1.0f / 65535.0f);
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_UP4B: /* unpack four GLbytes */
|
|
{
|
|
GLfloat a[4], result[4];
|
|
const GLuint *rawBits = (const GLuint *) a;
|
|
fetch_vector1(ctx, &inst->SrcReg[0], machine, a);
|
|
result[0] = (((rawBits[0] >> 0) & 0xff) - 128) / 127.0F;
|
|
result[1] = (((rawBits[0] >> 8) & 0xff) - 128) / 127.0F;
|
|
result[2] = (((rawBits[0] >> 16) & 0xff) - 128) / 127.0F;
|
|
result[3] = (((rawBits[0] >> 24) & 0xff) - 128) / 127.0F;
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_UP4UB: /* unpack four GLubytes */
|
|
{
|
|
GLfloat a[4], result[4];
|
|
const GLuint *rawBits = (const GLuint *) a;
|
|
fetch_vector1(ctx, &inst->SrcReg[0], machine, a);
|
|
result[0] = ((rawBits[0] >> 0) & 0xff) / 255.0F;
|
|
result[1] = ((rawBits[0] >> 8) & 0xff) / 255.0F;
|
|
result[2] = ((rawBits[0] >> 16) & 0xff) / 255.0F;
|
|
result[3] = ((rawBits[0] >> 24) & 0xff) / 255.0F;
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_XPD: /* cross product */
|
|
{
|
|
GLfloat a[4], b[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
result[0] = a[1] * b[2] - a[2] * b[1];
|
|
result[1] = a[2] * b[0] - a[0] * b[2];
|
|
result[2] = a[0] * b[1] - a[1] * b[0];
|
|
result[3] = 1.0;
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_X2D: /* 2-D matrix transform */
|
|
{
|
|
GLfloat a[4], b[4], c[4], result[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
fetch_vector4(ctx, &inst->SrcReg[1], machine, b);
|
|
fetch_vector4(ctx, &inst->SrcReg[2], machine, c);
|
|
result[0] = a[0] + b[0] * c[0] + b[1] * c[1];
|
|
result[1] = a[1] + b[0] * c[2] + b[1] * c[3];
|
|
result[2] = a[2] + b[0] * c[0] + b[1] * c[1];
|
|
result[3] = a[3] + b[0] * c[2] + b[1] * c[3];
|
|
store_vector4(inst, machine, result);
|
|
}
|
|
break;
|
|
case OPCODE_PRINT:
|
|
{
|
|
if (inst->SrcReg[0].File != -1) {
|
|
GLfloat a[4];
|
|
fetch_vector4(ctx, &inst->SrcReg[0], machine, a);
|
|
_mesa_printf("%s%g, %g, %g, %g\n", (const char *) inst->Data,
|
|
a[0], a[1], a[2], a[3]);
|
|
}
|
|
else {
|
|
_mesa_printf("%s\n", (const char *) inst->Data);
|
|
}
|
|
}
|
|
break;
|
|
case OPCODE_END:
|
|
return GL_TRUE;
|
|
default:
|
|
_mesa_problem(ctx, "Bad opcode %d in _mesa_exec_fragment_program",
|
|
inst->Opcode);
|
|
return GL_TRUE; /* return value doesn't matter */
|
|
|
|
}
|
|
|
|
total++;
|
|
if (total > MAX_EXEC) {
|
|
_mesa_problem(ctx, "Infinite loop detected in fragment program");
|
|
return GL_TRUE;
|
|
abort();
|
|
}
|
|
|
|
} /* for pc */
|
|
|
|
#if FEATURE_MESA_program_debug
|
|
CurrentMachine = NULL;
|
|
#endif
|
|
|
|
return GL_TRUE;
|
|
}
|