Files
third_party_mesa3d/src/intel/isl/isl.h
Kenneth Graunke 02fe825a61 isl, anv, iris: Add a centralized helper to select MOCS based on usage
On Gen12+, we can enable additional caches in certain usage situations.
This routes that decision making to a central place in ISL, based on
surface usage flags, and updates both drivers to use it.  (i965 doesn't
need to change because it doesn't support Gen12.)

We continue handling the "external" decision via an anv_mocs() wrapper
for now, since we store that flag in anv_bo, which isl doesn't know
about.  (We could introduce an ISL_SURF_USAGE_EXTERNAL, but I'm not
actually sure that would be cleaner.)

This patch should not have any functional nor performance effects, as
we continue selecting the exact same MOCS values for now.

Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/7104>
2020-10-19 19:18:11 +00:00

2377 lines
87 KiB
C

/*
* Copyright 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* @file
* @brief Intel Surface Layout
*
* Header Layout
* -------------
* The header is ordered as:
* - forward declarations
* - macros that may be overridden at compile-time for specific gens
* - enums and constants
* - structs and unions
* - functions
*/
#ifndef ISL_H
#define ISL_H
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include "c99_compat.h"
#include "util/macros.h"
#include "util/format/u_format.h"
#ifdef __cplusplus
extern "C" {
#endif
struct gen_device_info;
struct brw_image_param;
#ifndef ISL_DEV_GEN
/**
* @brief Get the hardware generation of isl_device.
*
* You can define this as a compile-time constant in the CFLAGS. For example,
* `gcc -DISL_DEV_GEN(dev)=9 ...`.
*/
#define ISL_DEV_GEN(__dev) ((__dev)->info->gen)
#define ISL_DEV_GEN_SANITIZE(__dev)
#else
#define ISL_DEV_GEN_SANITIZE(__dev) \
(assert(ISL_DEV_GEN(__dev) == (__dev)->info->gen))
#endif
#ifndef ISL_DEV_IS_G4X
#define ISL_DEV_IS_G4X(__dev) ((__dev)->info->is_g4x)
#endif
#ifndef ISL_DEV_IS_HASWELL
/**
* @brief Get the hardware generation of isl_device.
*
* You can define this as a compile-time constant in the CFLAGS. For example,
* `gcc -DISL_DEV_GEN(dev)=9 ...`.
*/
#define ISL_DEV_IS_HASWELL(__dev) ((__dev)->info->is_haswell)
#endif
#ifndef ISL_DEV_IS_BAYTRAIL
#define ISL_DEV_IS_BAYTRAIL(__dev) ((__dev)->info->is_baytrail)
#endif
#ifndef ISL_DEV_USE_SEPARATE_STENCIL
/**
* You can define this as a compile-time constant in the CFLAGS. For example,
* `gcc -DISL_DEV_USE_SEPARATE_STENCIL(dev)=1 ...`.
*/
#define ISL_DEV_USE_SEPARATE_STENCIL(__dev) ((__dev)->use_separate_stencil)
#define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev)
#else
#define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev) \
(assert(ISL_DEV_USE_SEPARATE_STENCIL(__dev) == (__dev)->use_separate_stencil))
#endif
/**
* Hardware enumeration SURFACE_FORMAT.
*
* For the official list, see Broadwell PRM: Volume 2b: Command Reference:
* Enumerations: SURFACE_FORMAT.
*/
enum isl_format {
ISL_FORMAT_R32G32B32A32_FLOAT = 0,
ISL_FORMAT_R32G32B32A32_SINT = 1,
ISL_FORMAT_R32G32B32A32_UINT = 2,
ISL_FORMAT_R32G32B32A32_UNORM = 3,
ISL_FORMAT_R32G32B32A32_SNORM = 4,
ISL_FORMAT_R64G64_FLOAT = 5,
ISL_FORMAT_R32G32B32X32_FLOAT = 6,
ISL_FORMAT_R32G32B32A32_SSCALED = 7,
ISL_FORMAT_R32G32B32A32_USCALED = 8,
ISL_FORMAT_R32G32B32A32_SFIXED = 32,
ISL_FORMAT_R64G64_PASSTHRU = 33,
ISL_FORMAT_R32G32B32_FLOAT = 64,
ISL_FORMAT_R32G32B32_SINT = 65,
ISL_FORMAT_R32G32B32_UINT = 66,
ISL_FORMAT_R32G32B32_UNORM = 67,
ISL_FORMAT_R32G32B32_SNORM = 68,
ISL_FORMAT_R32G32B32_SSCALED = 69,
ISL_FORMAT_R32G32B32_USCALED = 70,
ISL_FORMAT_R32G32B32_SFIXED = 80,
ISL_FORMAT_R16G16B16A16_UNORM = 128,
ISL_FORMAT_R16G16B16A16_SNORM = 129,
ISL_FORMAT_R16G16B16A16_SINT = 130,
ISL_FORMAT_R16G16B16A16_UINT = 131,
ISL_FORMAT_R16G16B16A16_FLOAT = 132,
ISL_FORMAT_R32G32_FLOAT = 133,
ISL_FORMAT_R32G32_SINT = 134,
ISL_FORMAT_R32G32_UINT = 135,
ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS = 136,
ISL_FORMAT_X32_TYPELESS_G8X24_UINT = 137,
ISL_FORMAT_L32A32_FLOAT = 138,
ISL_FORMAT_R32G32_UNORM = 139,
ISL_FORMAT_R32G32_SNORM = 140,
ISL_FORMAT_R64_FLOAT = 141,
ISL_FORMAT_R16G16B16X16_UNORM = 142,
ISL_FORMAT_R16G16B16X16_FLOAT = 143,
ISL_FORMAT_A32X32_FLOAT = 144,
ISL_FORMAT_L32X32_FLOAT = 145,
ISL_FORMAT_I32X32_FLOAT = 146,
ISL_FORMAT_R16G16B16A16_SSCALED = 147,
ISL_FORMAT_R16G16B16A16_USCALED = 148,
ISL_FORMAT_R32G32_SSCALED = 149,
ISL_FORMAT_R32G32_USCALED = 150,
ISL_FORMAT_R32G32_FLOAT_LD = 151,
ISL_FORMAT_R32G32_SFIXED = 160,
ISL_FORMAT_R64_PASSTHRU = 161,
ISL_FORMAT_B8G8R8A8_UNORM = 192,
ISL_FORMAT_B8G8R8A8_UNORM_SRGB = 193,
ISL_FORMAT_R10G10B10A2_UNORM = 194,
ISL_FORMAT_R10G10B10A2_UNORM_SRGB = 195,
ISL_FORMAT_R10G10B10A2_UINT = 196,
ISL_FORMAT_R10G10B10_SNORM_A2_UNORM = 197,
ISL_FORMAT_R8G8B8A8_UNORM = 199,
ISL_FORMAT_R8G8B8A8_UNORM_SRGB = 200,
ISL_FORMAT_R8G8B8A8_SNORM = 201,
ISL_FORMAT_R8G8B8A8_SINT = 202,
ISL_FORMAT_R8G8B8A8_UINT = 203,
ISL_FORMAT_R16G16_UNORM = 204,
ISL_FORMAT_R16G16_SNORM = 205,
ISL_FORMAT_R16G16_SINT = 206,
ISL_FORMAT_R16G16_UINT = 207,
ISL_FORMAT_R16G16_FLOAT = 208,
ISL_FORMAT_B10G10R10A2_UNORM = 209,
ISL_FORMAT_B10G10R10A2_UNORM_SRGB = 210,
ISL_FORMAT_R11G11B10_FLOAT = 211,
ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM = 213,
ISL_FORMAT_R32_SINT = 214,
ISL_FORMAT_R32_UINT = 215,
ISL_FORMAT_R32_FLOAT = 216,
ISL_FORMAT_R24_UNORM_X8_TYPELESS = 217,
ISL_FORMAT_X24_TYPELESS_G8_UINT = 218,
ISL_FORMAT_L32_UNORM = 221,
ISL_FORMAT_A32_UNORM = 222,
ISL_FORMAT_L16A16_UNORM = 223,
ISL_FORMAT_I24X8_UNORM = 224,
ISL_FORMAT_L24X8_UNORM = 225,
ISL_FORMAT_A24X8_UNORM = 226,
ISL_FORMAT_I32_FLOAT = 227,
ISL_FORMAT_L32_FLOAT = 228,
ISL_FORMAT_A32_FLOAT = 229,
ISL_FORMAT_X8B8_UNORM_G8R8_SNORM = 230,
ISL_FORMAT_A8X8_UNORM_G8R8_SNORM = 231,
ISL_FORMAT_B8X8_UNORM_G8R8_SNORM = 232,
ISL_FORMAT_B8G8R8X8_UNORM = 233,
ISL_FORMAT_B8G8R8X8_UNORM_SRGB = 234,
ISL_FORMAT_R8G8B8X8_UNORM = 235,
ISL_FORMAT_R8G8B8X8_UNORM_SRGB = 236,
ISL_FORMAT_R9G9B9E5_SHAREDEXP = 237,
ISL_FORMAT_B10G10R10X2_UNORM = 238,
ISL_FORMAT_L16A16_FLOAT = 240,
ISL_FORMAT_R32_UNORM = 241,
ISL_FORMAT_R32_SNORM = 242,
ISL_FORMAT_R10G10B10X2_USCALED = 243,
ISL_FORMAT_R8G8B8A8_SSCALED = 244,
ISL_FORMAT_R8G8B8A8_USCALED = 245,
ISL_FORMAT_R16G16_SSCALED = 246,
ISL_FORMAT_R16G16_USCALED = 247,
ISL_FORMAT_R32_SSCALED = 248,
ISL_FORMAT_R32_USCALED = 249,
ISL_FORMAT_B5G6R5_UNORM = 256,
ISL_FORMAT_B5G6R5_UNORM_SRGB = 257,
ISL_FORMAT_B5G5R5A1_UNORM = 258,
ISL_FORMAT_B5G5R5A1_UNORM_SRGB = 259,
ISL_FORMAT_B4G4R4A4_UNORM = 260,
ISL_FORMAT_B4G4R4A4_UNORM_SRGB = 261,
ISL_FORMAT_R8G8_UNORM = 262,
ISL_FORMAT_R8G8_SNORM = 263,
ISL_FORMAT_R8G8_SINT = 264,
ISL_FORMAT_R8G8_UINT = 265,
ISL_FORMAT_R16_UNORM = 266,
ISL_FORMAT_R16_SNORM = 267,
ISL_FORMAT_R16_SINT = 268,
ISL_FORMAT_R16_UINT = 269,
ISL_FORMAT_R16_FLOAT = 270,
ISL_FORMAT_A8P8_UNORM_PALETTE0 = 271,
ISL_FORMAT_A8P8_UNORM_PALETTE1 = 272,
ISL_FORMAT_I16_UNORM = 273,
ISL_FORMAT_L16_UNORM = 274,
ISL_FORMAT_A16_UNORM = 275,
ISL_FORMAT_L8A8_UNORM = 276,
ISL_FORMAT_I16_FLOAT = 277,
ISL_FORMAT_L16_FLOAT = 278,
ISL_FORMAT_A16_FLOAT = 279,
ISL_FORMAT_L8A8_UNORM_SRGB = 280,
ISL_FORMAT_R5G5_SNORM_B6_UNORM = 281,
ISL_FORMAT_B5G5R5X1_UNORM = 282,
ISL_FORMAT_B5G5R5X1_UNORM_SRGB = 283,
ISL_FORMAT_R8G8_SSCALED = 284,
ISL_FORMAT_R8G8_USCALED = 285,
ISL_FORMAT_R16_SSCALED = 286,
ISL_FORMAT_R16_USCALED = 287,
ISL_FORMAT_P8A8_UNORM_PALETTE0 = 290,
ISL_FORMAT_P8A8_UNORM_PALETTE1 = 291,
ISL_FORMAT_A1B5G5R5_UNORM = 292,
ISL_FORMAT_A4B4G4R4_UNORM = 293,
ISL_FORMAT_L8A8_UINT = 294,
ISL_FORMAT_L8A8_SINT = 295,
ISL_FORMAT_R8_UNORM = 320,
ISL_FORMAT_R8_SNORM = 321,
ISL_FORMAT_R8_SINT = 322,
ISL_FORMAT_R8_UINT = 323,
ISL_FORMAT_A8_UNORM = 324,
ISL_FORMAT_I8_UNORM = 325,
ISL_FORMAT_L8_UNORM = 326,
ISL_FORMAT_P4A4_UNORM_PALETTE0 = 327,
ISL_FORMAT_A4P4_UNORM_PALETTE0 = 328,
ISL_FORMAT_R8_SSCALED = 329,
ISL_FORMAT_R8_USCALED = 330,
ISL_FORMAT_P8_UNORM_PALETTE0 = 331,
ISL_FORMAT_L8_UNORM_SRGB = 332,
ISL_FORMAT_P8_UNORM_PALETTE1 = 333,
ISL_FORMAT_P4A4_UNORM_PALETTE1 = 334,
ISL_FORMAT_A4P4_UNORM_PALETTE1 = 335,
ISL_FORMAT_Y8_UNORM = 336,
ISL_FORMAT_L8_UINT = 338,
ISL_FORMAT_L8_SINT = 339,
ISL_FORMAT_I8_UINT = 340,
ISL_FORMAT_I8_SINT = 341,
ISL_FORMAT_DXT1_RGB_SRGB = 384,
ISL_FORMAT_R1_UNORM = 385,
ISL_FORMAT_YCRCB_NORMAL = 386,
ISL_FORMAT_YCRCB_SWAPUVY = 387,
ISL_FORMAT_P2_UNORM_PALETTE0 = 388,
ISL_FORMAT_P2_UNORM_PALETTE1 = 389,
ISL_FORMAT_BC1_UNORM = 390,
ISL_FORMAT_BC2_UNORM = 391,
ISL_FORMAT_BC3_UNORM = 392,
ISL_FORMAT_BC4_UNORM = 393,
ISL_FORMAT_BC5_UNORM = 394,
ISL_FORMAT_BC1_UNORM_SRGB = 395,
ISL_FORMAT_BC2_UNORM_SRGB = 396,
ISL_FORMAT_BC3_UNORM_SRGB = 397,
ISL_FORMAT_MONO8 = 398,
ISL_FORMAT_YCRCB_SWAPUV = 399,
ISL_FORMAT_YCRCB_SWAPY = 400,
ISL_FORMAT_DXT1_RGB = 401,
ISL_FORMAT_FXT1 = 402,
ISL_FORMAT_R8G8B8_UNORM = 403,
ISL_FORMAT_R8G8B8_SNORM = 404,
ISL_FORMAT_R8G8B8_SSCALED = 405,
ISL_FORMAT_R8G8B8_USCALED = 406,
ISL_FORMAT_R64G64B64A64_FLOAT = 407,
ISL_FORMAT_R64G64B64_FLOAT = 408,
ISL_FORMAT_BC4_SNORM = 409,
ISL_FORMAT_BC5_SNORM = 410,
ISL_FORMAT_R16G16B16_FLOAT = 411,
ISL_FORMAT_R16G16B16_UNORM = 412,
ISL_FORMAT_R16G16B16_SNORM = 413,
ISL_FORMAT_R16G16B16_SSCALED = 414,
ISL_FORMAT_R16G16B16_USCALED = 415,
ISL_FORMAT_BC6H_SF16 = 417,
ISL_FORMAT_BC7_UNORM = 418,
ISL_FORMAT_BC7_UNORM_SRGB = 419,
ISL_FORMAT_BC6H_UF16 = 420,
ISL_FORMAT_PLANAR_420_8 = 421,
ISL_FORMAT_PLANAR_420_16 = 422,
ISL_FORMAT_R8G8B8_UNORM_SRGB = 424,
ISL_FORMAT_ETC1_RGB8 = 425,
ISL_FORMAT_ETC2_RGB8 = 426,
ISL_FORMAT_EAC_R11 = 427,
ISL_FORMAT_EAC_RG11 = 428,
ISL_FORMAT_EAC_SIGNED_R11 = 429,
ISL_FORMAT_EAC_SIGNED_RG11 = 430,
ISL_FORMAT_ETC2_SRGB8 = 431,
ISL_FORMAT_R16G16B16_UINT = 432,
ISL_FORMAT_R16G16B16_SINT = 433,
ISL_FORMAT_R32_SFIXED = 434,
ISL_FORMAT_R10G10B10A2_SNORM = 435,
ISL_FORMAT_R10G10B10A2_USCALED = 436,
ISL_FORMAT_R10G10B10A2_SSCALED = 437,
ISL_FORMAT_R10G10B10A2_SINT = 438,
ISL_FORMAT_B10G10R10A2_SNORM = 439,
ISL_FORMAT_B10G10R10A2_USCALED = 440,
ISL_FORMAT_B10G10R10A2_SSCALED = 441,
ISL_FORMAT_B10G10R10A2_UINT = 442,
ISL_FORMAT_B10G10R10A2_SINT = 443,
ISL_FORMAT_R64G64B64A64_PASSTHRU = 444,
ISL_FORMAT_R64G64B64_PASSTHRU = 445,
ISL_FORMAT_ETC2_RGB8_PTA = 448,
ISL_FORMAT_ETC2_SRGB8_PTA = 449,
ISL_FORMAT_ETC2_EAC_RGBA8 = 450,
ISL_FORMAT_ETC2_EAC_SRGB8_A8 = 451,
ISL_FORMAT_R8G8B8_UINT = 456,
ISL_FORMAT_R8G8B8_SINT = 457,
ISL_FORMAT_RAW = 511,
ISL_FORMAT_ASTC_LDR_2D_4X4_U8SRGB = 512,
ISL_FORMAT_ASTC_LDR_2D_5X4_U8SRGB = 520,
ISL_FORMAT_ASTC_LDR_2D_5X5_U8SRGB = 521,
ISL_FORMAT_ASTC_LDR_2D_6X5_U8SRGB = 529,
ISL_FORMAT_ASTC_LDR_2D_6X6_U8SRGB = 530,
ISL_FORMAT_ASTC_LDR_2D_8X5_U8SRGB = 545,
ISL_FORMAT_ASTC_LDR_2D_8X6_U8SRGB = 546,
ISL_FORMAT_ASTC_LDR_2D_8X8_U8SRGB = 548,
ISL_FORMAT_ASTC_LDR_2D_10X5_U8SRGB = 561,
ISL_FORMAT_ASTC_LDR_2D_10X6_U8SRGB = 562,
ISL_FORMAT_ASTC_LDR_2D_10X8_U8SRGB = 564,
ISL_FORMAT_ASTC_LDR_2D_10X10_U8SRGB = 566,
ISL_FORMAT_ASTC_LDR_2D_12X10_U8SRGB = 574,
ISL_FORMAT_ASTC_LDR_2D_12X12_U8SRGB = 575,
ISL_FORMAT_ASTC_LDR_2D_4X4_FLT16 = 576,
ISL_FORMAT_ASTC_LDR_2D_5X4_FLT16 = 584,
ISL_FORMAT_ASTC_LDR_2D_5X5_FLT16 = 585,
ISL_FORMAT_ASTC_LDR_2D_6X5_FLT16 = 593,
ISL_FORMAT_ASTC_LDR_2D_6X6_FLT16 = 594,
ISL_FORMAT_ASTC_LDR_2D_8X5_FLT16 = 609,
ISL_FORMAT_ASTC_LDR_2D_8X6_FLT16 = 610,
ISL_FORMAT_ASTC_LDR_2D_8X8_FLT16 = 612,
ISL_FORMAT_ASTC_LDR_2D_10X5_FLT16 = 625,
ISL_FORMAT_ASTC_LDR_2D_10X6_FLT16 = 626,
ISL_FORMAT_ASTC_LDR_2D_10X8_FLT16 = 628,
ISL_FORMAT_ASTC_LDR_2D_10X10_FLT16 = 630,
ISL_FORMAT_ASTC_LDR_2D_12X10_FLT16 = 638,
ISL_FORMAT_ASTC_LDR_2D_12X12_FLT16 = 639,
ISL_FORMAT_ASTC_HDR_2D_4X4_FLT16 = 832,
ISL_FORMAT_ASTC_HDR_2D_5X4_FLT16 = 840,
ISL_FORMAT_ASTC_HDR_2D_5X5_FLT16 = 841,
ISL_FORMAT_ASTC_HDR_2D_6X5_FLT16 = 849,
ISL_FORMAT_ASTC_HDR_2D_6X6_FLT16 = 850,
ISL_FORMAT_ASTC_HDR_2D_8X5_FLT16 = 865,
ISL_FORMAT_ASTC_HDR_2D_8X6_FLT16 = 866,
ISL_FORMAT_ASTC_HDR_2D_8X8_FLT16 = 868,
ISL_FORMAT_ASTC_HDR_2D_10X5_FLT16 = 881,
ISL_FORMAT_ASTC_HDR_2D_10X6_FLT16 = 882,
ISL_FORMAT_ASTC_HDR_2D_10X8_FLT16 = 884,
ISL_FORMAT_ASTC_HDR_2D_10X10_FLT16 = 886,
ISL_FORMAT_ASTC_HDR_2D_12X10_FLT16 = 894,
ISL_FORMAT_ASTC_HDR_2D_12X12_FLT16 = 895,
/* The formats that follow are internal to ISL and as such don't have an
* explicit number. We'll just let the C compiler assign it for us. Any
* actual hardware formats *must* come before these in the list.
*/
/* Formats for the aux-map */
ISL_FORMAT_PLANAR_420_10,
ISL_FORMAT_PLANAR_420_12,
/* Formats for auxiliary surfaces */
ISL_FORMAT_HIZ,
ISL_FORMAT_MCS_2X,
ISL_FORMAT_MCS_4X,
ISL_FORMAT_MCS_8X,
ISL_FORMAT_MCS_16X,
ISL_FORMAT_GEN7_CCS_32BPP_X,
ISL_FORMAT_GEN7_CCS_64BPP_X,
ISL_FORMAT_GEN7_CCS_128BPP_X,
ISL_FORMAT_GEN7_CCS_32BPP_Y,
ISL_FORMAT_GEN7_CCS_64BPP_Y,
ISL_FORMAT_GEN7_CCS_128BPP_Y,
ISL_FORMAT_GEN9_CCS_32BPP,
ISL_FORMAT_GEN9_CCS_64BPP,
ISL_FORMAT_GEN9_CCS_128BPP,
ISL_FORMAT_GEN12_CCS_8BPP_Y0,
ISL_FORMAT_GEN12_CCS_16BPP_Y0,
ISL_FORMAT_GEN12_CCS_32BPP_Y0,
ISL_FORMAT_GEN12_CCS_64BPP_Y0,
ISL_FORMAT_GEN12_CCS_128BPP_Y0,
/* An upper bound on the supported format enumerations */
ISL_NUM_FORMATS,
/* Hardware doesn't understand this out-of-band value */
ISL_FORMAT_UNSUPPORTED = UINT16_MAX,
};
/**
* Numerical base type for channels of isl_format.
*/
enum isl_base_type {
ISL_VOID,
ISL_RAW,
ISL_UNORM,
ISL_SNORM,
ISL_UFLOAT,
ISL_SFLOAT,
ISL_UFIXED,
ISL_SFIXED,
ISL_UINT,
ISL_SINT,
ISL_USCALED,
ISL_SSCALED,
};
/**
* Colorspace of isl_format.
*/
enum isl_colorspace {
ISL_COLORSPACE_NONE = 0,
ISL_COLORSPACE_LINEAR,
ISL_COLORSPACE_SRGB,
ISL_COLORSPACE_YUV,
};
/**
* Texture compression mode of isl_format.
*/
enum isl_txc {
ISL_TXC_NONE = 0,
ISL_TXC_DXT1,
ISL_TXC_DXT3,
ISL_TXC_DXT5,
ISL_TXC_FXT1,
ISL_TXC_RGTC1,
ISL_TXC_RGTC2,
ISL_TXC_BPTC,
ISL_TXC_ETC1,
ISL_TXC_ETC2,
ISL_TXC_ASTC,
/* Used for auxiliary surface formats */
ISL_TXC_HIZ,
ISL_TXC_MCS,
ISL_TXC_CCS,
};
/**
* @brief Hardware tile mode
*
* WARNING: These values differ from the hardware enum values, which are
* unstable across hardware generations.
*
* Note that legacy Y tiling is ISL_TILING_Y0 instead of ISL_TILING_Y, to
* clearly distinguish it from Yf and Ys.
*/
enum isl_tiling {
ISL_TILING_LINEAR = 0,
ISL_TILING_W,
ISL_TILING_X,
ISL_TILING_Y0, /**< Legacy Y tiling */
ISL_TILING_Yf, /**< Standard 4K tiling. The 'f' means "four". */
ISL_TILING_Ys, /**< Standard 64K tiling. The 's' means "sixty-four". */
ISL_TILING_HIZ, /**< Tiling format for HiZ surfaces */
ISL_TILING_CCS, /**< Tiling format for CCS surfaces */
ISL_TILING_GEN12_CCS, /**< Tiling format for Gen12 CCS surfaces */
};
/**
* @defgroup Tiling Flags
* @{
*/
typedef uint32_t isl_tiling_flags_t;
#define ISL_TILING_LINEAR_BIT (1u << ISL_TILING_LINEAR)
#define ISL_TILING_W_BIT (1u << ISL_TILING_W)
#define ISL_TILING_X_BIT (1u << ISL_TILING_X)
#define ISL_TILING_Y0_BIT (1u << ISL_TILING_Y0)
#define ISL_TILING_Yf_BIT (1u << ISL_TILING_Yf)
#define ISL_TILING_Ys_BIT (1u << ISL_TILING_Ys)
#define ISL_TILING_HIZ_BIT (1u << ISL_TILING_HIZ)
#define ISL_TILING_CCS_BIT (1u << ISL_TILING_CCS)
#define ISL_TILING_GEN12_CCS_BIT (1u << ISL_TILING_GEN12_CCS)
#define ISL_TILING_ANY_MASK (~0u)
#define ISL_TILING_NON_LINEAR_MASK (~ISL_TILING_LINEAR_BIT)
/** Any Y tiling, including legacy Y tiling. */
#define ISL_TILING_ANY_Y_MASK (ISL_TILING_Y0_BIT | \
ISL_TILING_Yf_BIT | \
ISL_TILING_Ys_BIT)
/** The Skylake BSpec refers to Yf and Ys as "standard tiling formats". */
#define ISL_TILING_STD_Y_MASK (ISL_TILING_Yf_BIT | \
ISL_TILING_Ys_BIT)
/** @} */
/**
* @brief Logical dimension of surface.
*
* Note: There is no dimension for cube map surfaces. ISL interprets cube maps
* as 2D array surfaces.
*/
enum isl_surf_dim {
ISL_SURF_DIM_1D,
ISL_SURF_DIM_2D,
ISL_SURF_DIM_3D,
};
/**
* @brief Physical layout of the surface's dimensions.
*/
enum isl_dim_layout {
/**
* For details, see the G35 PRM >> Volume 1: Graphics Core >> Section
* 6.17.3: 2D Surfaces.
*
* On many gens, 1D surfaces share the same layout as 2D surfaces. From
* the G35 PRM >> Volume 1: Graphics Core >> Section 6.17.2: 1D Surfaces:
*
* One-dimensional surfaces are identical to 2D surfaces with height of
* one.
*
* @invariant isl_surf::phys_level0_sa::depth == 1
*/
ISL_DIM_LAYOUT_GEN4_2D,
/**
* For details, see the G35 PRM >> Volume 1: Graphics Core >> Section
* 6.17.5: 3D Surfaces.
*
* @invariant isl_surf::phys_level0_sa::array_len == 1
*/
ISL_DIM_LAYOUT_GEN4_3D,
/**
* Special layout used for HiZ and stencil on Sandy Bridge to work around
* the hardware's lack of mipmap support. On gen6, HiZ and stencil buffers
* work the same as on gen7+ except that they don't technically support
* mipmapping. That does not, however, stop us from doing it. As far as
* Sandy Bridge hardware is concerned, HiZ and stencil always operates on a
* single miplevel 2D (possibly array) image. The dimensions of that image
* are NOT minified.
*
* In order to implement HiZ and stencil on Sandy Bridge, we create one
* full-sized 2D (possibly array) image for every LOD with every image
* aligned to a page boundary. When the surface is used with the stencil
* or HiZ hardware, we manually offset to the image for the given LOD.
*
* As a memory saving measure, we pretend that the width of each miplevel
* is minified and we place LOD1 and above below LOD0 but horizontally
* adjacent to each other. When considered as full-sized images, LOD1 and
* above technically overlap. However, since we only write to part of that
* image, the hardware will never notice the overlap.
*
* This layout looks something like this:
*
* +---------+
* | |
* | |
* +---------+
* | |
* | |
* +---------+
*
* +----+ +-+ .
* | | +-+
* +----+
*
* +----+ +-+ .
* | | +-+
* +----+
*/
ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ,
/**
* For details, see the Skylake BSpec >> Memory Views >> Common Surface
* Formats >> Surface Layout and Tiling >> » 1D Surfaces.
*/
ISL_DIM_LAYOUT_GEN9_1D,
};
enum isl_aux_usage {
/** No Auxiliary surface is used */
ISL_AUX_USAGE_NONE,
/** The primary surface is a depth surface and the auxiliary surface is HiZ */
ISL_AUX_USAGE_HIZ,
/** The auxiliary surface is an MCS
*
* @invariant isl_surf::samples > 1
*/
ISL_AUX_USAGE_MCS,
/** The auxiliary surface is a fast-clear-only compression surface
*
* @invariant isl_surf::samples == 1
*/
ISL_AUX_USAGE_CCS_D,
/** The auxiliary surface provides full lossless color compression
*
* @invariant isl_surf::samples == 1
*/
ISL_AUX_USAGE_CCS_E,
/** The auxiliary surface provides full lossless color compression on
* Gen12.
*
* @invariant isl_surf::samples == 1
*/
ISL_AUX_USAGE_GEN12_CCS_E,
/** The auxiliary surface provides full lossless media color compression
*
* @invariant isl_surf::samples == 1
*/
ISL_AUX_USAGE_MC,
/** The auxiliary surface is a HiZ surface operating in write-through mode
* and CCS is also enabled
*
* In this mode, the HiZ and CCS surfaces act as a single fused compression
* surface where resolves and ambiguates operate on both surfaces at the
* same time. In this mode, the HiZ surface operates in write-through
* mode where it is only used for accelerating depth testing and not for
* actual compression. The CCS-compressed surface contains valid data at
* all times.
*
* @invariant isl_surf::samples == 1
*/
ISL_AUX_USAGE_HIZ_CCS_WT,
/** The auxiliary surface is a HiZ surface with and CCS is also enabled
*
* In this mode, the HiZ and CCS surfaces act as a single fused compression
* surface where resolves and ambiguates operate on both surfaces at the
* same time. In this mode, full HiZ compression is enabled and the
* CCS-compressed main surface may not contain valid data. The only way to
* read the surface outside of the depth hardware is to do a full resolve
* which resolves both HiZ and CCS so the surface is in the pass-through
* state.
*/
ISL_AUX_USAGE_HIZ_CCS,
/** The auxiliary surface is an MCS and CCS is also enabled
*
* In this mode, we have fused MCS+CCS compression where the MCS is used
* for fast-clears and "identical samples" compression just like on Gen7-11
* but each plane is then CCS compressed.
*
* @invariant isl_surf::samples > 1
*/
ISL_AUX_USAGE_MCS_CCS,
/** CCS auxiliary data is used to compress a stencil buffer
*
* @invariant isl_surf::samples == 1
*/
ISL_AUX_USAGE_STC_CCS,
};
/**
* Enum for keeping track of the state an auxiliary compressed surface.
*
* For any given auxiliary surface compression format (HiZ, CCS, or MCS), any
* given slice (lod + array layer) can be in one of the six states described
* by this enum. Draw and resolve operations may cause the slice to change
* from one state to another. The six valid states are:
*
* 1) Clear: In this state, each block in the auxiliary surface contains a
* magic value that indicates that the block is in the clear state. If
* a block is in the clear state, it's values in the primary surface are
* ignored and the color of the samples in the block is taken either the
* RENDER_SURFACE_STATE packet for color or 3DSTATE_CLEAR_PARAMS for
* depth. Since neither the primary surface nor the auxiliary surface
* contains the clear value, the surface can be cleared to a different
* color by simply changing the clear color without modifying either
* surface.
*
* 2) Partial Clear: In this state, each block in the auxiliary surface
* contains either the magic clear or pass-through value. See Clear and
* Pass-through for more details.
*
* 3) Compressed w/ Clear: In this state, neither the auxiliary surface
* nor the primary surface has a complete representation of the data.
* Instead, both surfaces must be used together or else rendering
* corruption may occur. Depending on the auxiliary compression format
* and the data, any given block in the primary surface may contain all,
* some, or none of the data required to reconstruct the actual sample
* values. Blocks may also be in the clear state (see Clear) and have
* their value taken from outside the surface.
*
* 4) Compressed w/o Clear: This state is identical to the state above
* except that no blocks are in the clear state. In this state, all of
* the data required to reconstruct the final sample values is contained
* in the auxiliary and primary surface and the clear value is not
* considered.
*
* 5) Resolved: In this state, the primary surface contains 100% of the
* data. The auxiliary surface is also valid so the surface can be
* validly used with or without aux enabled. The auxiliary surface may,
* however, contain non-trivial data and any update to the primary
* surface with aux disabled will cause the two to get out of sync.
*
* 6) Pass-through: In this state, the primary surface contains 100% of the
* data and every block in the auxiliary surface contains a magic value
* which indicates that the auxiliary surface should be ignored and the
* only the primary surface should be considered. Updating the primary
* surface without aux works fine and can be done repeatedly in this
* mode. Writing to a surface in pass-through mode with aux enabled may
* cause the auxiliary buffer to contain non-trivial data and no longer
* be in the pass-through state.
*
* 7) Aux Invalid: In this state, the primary surface contains 100% of the
* data and the auxiliary surface is completely bogus. Any attempt to
* use the auxiliary surface is liable to result in rendering
* corruption. The only thing that one can do to re-enable aux once
* this state is reached is to use an ambiguate pass to transition into
* the pass-through state.
*
* Drawing with or without aux enabled may implicitly cause the surface to
* transition between these states. There are also four types of auxiliary
* compression operations which cause an explicit transition which are
* described by the isl_aux_op enum below.
*
* Not all operations are valid or useful in all states. The diagram below
* contains a complete description of the states and all valid and useful
* transitions except clear.
*
* Draw w/ Aux
* +----------+
* | |
* | +-------------+ Draw w/ Aux +-------------+
* +------>| Compressed |<-------------------| Clear |
* | w/ Clear |----->----+ | |
* +-------------+ | +-------------+
* | /|\ | | |
* | | | | |
* | | +------<-----+ | Draw w/
* | | | | Clear Only
* | | Full | | +----------+
* Partial | | Resolve | \|/ | |
* Resolve | | | +-------------+ |
* | | | | Partial |<------+
* | | | | Clear |<----------+
* | | | +-------------+ |
* | | | | |
* | | +------>---------+ Full |
* | | | Resolve |
* Draw w/ aux | | Partial Fast Clear | |
* +----------+ | +--------------------------+ | |
* | | \|/ | \|/ |
* | +-------------+ Full Resolve +-------------+ |
* +------>| Compressed |------------------->| Resolved | |
* | w/o Clear |<-------------------| | |
* +-------------+ Draw w/ Aux +-------------+ |
* /|\ | | |
* | Draw | | Draw |
* | w/ Aux | | w/o Aux |
* | Ambiguate | | |
* | +--------------------------+ | |
* Draw w/o Aux | | | Draw w/o Aux |
* +----------+ | | | +----------+ |
* | | | \|/ \|/ | | |
* | +-------------+ Ambiguate +-------------+ | |
* +------>| Pass- |<-------------------| Aux |<------+ |
* +------>| through | | Invalid | |
* | +-------------+ +-------------+ |
* | | | |
* +----------+ +-----------------------------------------------------+
* Draw w/ Partial Fast Clear
* Clear Only
*
*
* While the above general theory applies to all forms of auxiliary
* compression on Intel hardware, not all states and operations are available
* on all compression types. However, each of the auxiliary states and
* operations can be fairly easily mapped onto the above diagram:
*
* HiZ: Hierarchical depth compression is capable of being in any of the
* states above. Hardware provides three HiZ operations: "Depth
* Clear", "Depth Resolve", and "HiZ Resolve" which map to "Fast
* Clear", "Full Resolve", and "Ambiguate" respectively. The
* hardware provides no HiZ partial resolve operation so the only way
* to get into the "Compressed w/o Clear" state is to render with HiZ
* when the surface is in the resolved or pass-through states.
*
* MCS: Multisample compression is technically capable of being in any of
* the states above except that most of them aren't useful. Both the
* render engine and the sampler support MCS compression and, apart
* from clear color, MCS is format-unaware so we leave the surface
* compressed 100% of the time. The hardware provides no MCS
* operations.
*
* CCS_D: Single-sample fast-clears (also called CCS_D in ISL) are one of
* the simplest forms of compression since they don't do anything
* beyond clear color tracking. They really only support three of
* the six states: Clear, Partial Clear, and Pass-through. The
* only CCS_D operation is "Resolve" which maps to a full resolve
* followed by an ambiguate.
*
* CCS_E: Single-sample render target compression (also called CCS_E in ISL)
* is capable of being in almost all of the above states. THe only
* exception is that it does not have separate resolved and pass-
* through states. Instead, the CCS_E full resolve operation does
* both a resolve and an ambiguate so it goes directly into the
* pass-through state. CCS_E also provides fast clear and partial
* resolve operations which work as described above.
*
* While it is technically possible to perform a CCS_E ambiguate, it
* is not provided by Sky Lake hardware so we choose to avoid the aux
* invalid state. If the aux invalid state were determined to be
* useful, a CCS ambiguate could be done by carefully rendering to
* the CCS and filling it with zeros.
*/
enum isl_aux_state {
#ifdef IN_UNIT_TEST
ISL_AUX_STATE_ASSERT,
#endif
ISL_AUX_STATE_CLEAR,
ISL_AUX_STATE_PARTIAL_CLEAR,
ISL_AUX_STATE_COMPRESSED_CLEAR,
ISL_AUX_STATE_COMPRESSED_NO_CLEAR,
ISL_AUX_STATE_RESOLVED,
ISL_AUX_STATE_PASS_THROUGH,
ISL_AUX_STATE_AUX_INVALID,
};
/**
* Enum which describes explicit aux transition operations.
*/
enum isl_aux_op {
#ifdef IN_UNIT_TEST
ISL_AUX_OP_ASSERT,
#endif
ISL_AUX_OP_NONE,
/** Fast Clear
*
* This operation writes the magic "clear" value to the auxiliary surface.
* This operation will safely transition any slice of a surface from any
* state to the clear state so long as the entire slice is fast cleared at
* once. A fast clear that only covers part of a slice of a surface is
* called a partial fast clear.
*/
ISL_AUX_OP_FAST_CLEAR,
/** Full Resolve
*
* This operation combines the auxiliary surface data with the primary
* surface data and writes the result to the primary. For HiZ, the docs
* call this a depth resolve. For CCS, the hardware full resolve operation
* does both a full resolve and an ambiguate so it actually takes you all
* the way to the pass-through state.
*/
ISL_AUX_OP_FULL_RESOLVE,
/** Partial Resolve
*
* This operation considers blocks which are in the "clear" state and
* writes the clear value directly into the primary or auxiliary surface.
* Once this operation completes, the surface is still compressed but no
* longer references the clear color. This operation is only available
* for CCS_E.
*/
ISL_AUX_OP_PARTIAL_RESOLVE,
/** Ambiguate
*
* This operation throws away the current auxiliary data and replaces it
* with the magic pass-through value. If an ambiguate operation is
* performed when the primary surface does not contain 100% of the data,
* data will be lost. This operation is only implemented in hardware for
* depth where it is called a HiZ resolve.
*/
ISL_AUX_OP_AMBIGUATE,
};
/* TODO(chadv): Explain */
enum isl_array_pitch_span {
ISL_ARRAY_PITCH_SPAN_FULL,
ISL_ARRAY_PITCH_SPAN_COMPACT,
};
/**
* @defgroup Surface Usage
* @{
*/
typedef uint64_t isl_surf_usage_flags_t;
#define ISL_SURF_USAGE_RENDER_TARGET_BIT (1u << 0)
#define ISL_SURF_USAGE_DEPTH_BIT (1u << 1)
#define ISL_SURF_USAGE_STENCIL_BIT (1u << 2)
#define ISL_SURF_USAGE_TEXTURE_BIT (1u << 3)
#define ISL_SURF_USAGE_CUBE_BIT (1u << 4)
#define ISL_SURF_USAGE_DISABLE_AUX_BIT (1u << 5)
#define ISL_SURF_USAGE_DISPLAY_BIT (1u << 6)
#define ISL_SURF_USAGE_DISPLAY_ROTATE_90_BIT (1u << 7)
#define ISL_SURF_USAGE_DISPLAY_ROTATE_180_BIT (1u << 8)
#define ISL_SURF_USAGE_DISPLAY_ROTATE_270_BIT (1u << 9)
#define ISL_SURF_USAGE_DISPLAY_FLIP_X_BIT (1u << 10)
#define ISL_SURF_USAGE_DISPLAY_FLIP_Y_BIT (1u << 11)
#define ISL_SURF_USAGE_STORAGE_BIT (1u << 12)
#define ISL_SURF_USAGE_HIZ_BIT (1u << 13)
#define ISL_SURF_USAGE_MCS_BIT (1u << 14)
#define ISL_SURF_USAGE_CCS_BIT (1u << 15)
#define ISL_SURF_USAGE_VERTEX_BUFFER_BIT (1u << 16)
#define ISL_SURF_USAGE_INDEX_BUFFER_BIT (1u << 17)
#define ISL_SURF_USAGE_CONSTANT_BUFFER_BIT (1u << 18)
#define ISL_SURF_USAGE_STAGING_BIT (1u << 19)
/** @} */
/**
* @defgroup Channel Mask
*
* These #define values are chosen to match the values of
* RENDER_SURFACE_STATE::Color Buffer Component Write Disables
*
* @{
*/
typedef uint8_t isl_channel_mask_t;
#define ISL_CHANNEL_BLUE_BIT (1 << 0)
#define ISL_CHANNEL_GREEN_BIT (1 << 1)
#define ISL_CHANNEL_RED_BIT (1 << 2)
#define ISL_CHANNEL_ALPHA_BIT (1 << 3)
/** @} */
/**
* @brief A channel select (also known as texture swizzle) value
*/
enum PACKED isl_channel_select {
ISL_CHANNEL_SELECT_ZERO = 0,
ISL_CHANNEL_SELECT_ONE = 1,
ISL_CHANNEL_SELECT_RED = 4,
ISL_CHANNEL_SELECT_GREEN = 5,
ISL_CHANNEL_SELECT_BLUE = 6,
ISL_CHANNEL_SELECT_ALPHA = 7,
};
/**
* Identical to VkSampleCountFlagBits.
*/
enum isl_sample_count {
ISL_SAMPLE_COUNT_1_BIT = 1u,
ISL_SAMPLE_COUNT_2_BIT = 2u,
ISL_SAMPLE_COUNT_4_BIT = 4u,
ISL_SAMPLE_COUNT_8_BIT = 8u,
ISL_SAMPLE_COUNT_16_BIT = 16u,
};
typedef uint32_t isl_sample_count_mask_t;
/**
* @brief Multisample Format
*/
enum isl_msaa_layout {
/**
* @brief Suface is single-sampled.
*/
ISL_MSAA_LAYOUT_NONE,
/**
* @brief [SNB+] Interleaved Multisample Format
*
* In this format, multiple samples are interleaved into each cacheline.
* In other words, the sample index is swizzled into the low 6 bits of the
* surface's virtual address space.
*
* For example, suppose the surface is legacy Y tiled, is 4x multisampled,
* and its pixel format is 32bpp. Then the first cacheline is arranged
* thus:
*
* (0,0,0) (0,1,0) (0,0,1) (1,0,1)
* (1,0,0) (1,1,0) (0,1,1) (1,1,1)
*
* (0,0,2) (1,0,2) (0,0,3) (1,0,3)
* (0,1,2) (1,1,2) (0,1,3) (1,1,3)
*
* The hardware docs refer to this format with multiple terms. In
* Sandybridge, this is the only multisample format; so no term is used.
* The Ivybridge docs refer to surfaces in this format as IMS (Interleaved
* Multisample Surface). Later hardware docs additionally refer to this
* format as MSFMT_DEPTH_STENCIL (because the format is deprecated for
* color surfaces).
*
* See the Sandybridge PRM, Volume 4, Part 1, Section 2.7 "Multisampled
* Surface Behavior".
*
* See the Ivybridge PRM, Volume 1, Part 1, Section 6.18.4.1 "Interleaved
* Multisampled Surfaces".
*/
ISL_MSAA_LAYOUT_INTERLEAVED,
/**
* @brief [IVB+] Array Multisample Format
*
* In this format, the surface's physical layout resembles that of a
* 2D array surface.
*
* Suppose the multisample surface's logical extent is (w, h) and its
* sample count is N. Then surface's physical extent is the same as
* a singlesample 2D surface whose logical extent is (w, h) and array
* length is N. Array slice `i` contains the pixel values for sample
* index `i`.
*
* The Ivybridge docs refer to surfaces in this format as UMS
* (Uncompressed Multsample Layout) and CMS (Compressed Multisample
* Surface). The Broadwell docs additionally refer to this format as
* MSFMT_MSS (MSS=Multisample Surface Storage).
*
* See the Broadwell PRM, Volume 5 "Memory Views", Section "Uncompressed
* Multisample Surfaces".
*
* See the Broadwell PRM, Volume 5 "Memory Views", Section "Compressed
* Multisample Surfaces".
*/
ISL_MSAA_LAYOUT_ARRAY,
};
typedef enum {
ISL_MEMCPY = 0,
ISL_MEMCPY_BGRA8,
ISL_MEMCPY_STREAMING_LOAD,
ISL_MEMCPY_INVALID,
} isl_memcpy_type;
struct isl_device {
const struct gen_device_info *info;
bool use_separate_stencil;
bool has_bit6_swizzling;
/**
* Describes the layout of a RENDER_SURFACE_STATE structure for the
* current gen.
*/
struct {
uint8_t size;
uint8_t align;
uint8_t addr_offset;
uint8_t aux_addr_offset;
/* Rounded up to the nearest dword to simplify GPU memcpy operations. */
/* size of the state buffer used to store the clear color + extra
* additional space used by the hardware */
uint8_t clear_color_state_size;
uint8_t clear_color_state_offset;
/* size of the clear color itself - used to copy it to/from a BO */
uint8_t clear_value_size;
uint8_t clear_value_offset;
} ss;
/**
* Describes the layout of the depth/stencil/hiz commands as emitted by
* isl_emit_depth_stencil_hiz.
*/
struct {
uint8_t size;
uint8_t depth_offset;
uint8_t stencil_offset;
uint8_t hiz_offset;
} ds;
struct {
uint32_t internal;
uint32_t external;
} mocs;
};
struct isl_extent2d {
union { uint32_t w, width; };
union { uint32_t h, height; };
};
struct isl_extent3d {
union { uint32_t w, width; };
union { uint32_t h, height; };
union { uint32_t d, depth; };
};
struct isl_extent4d {
union { uint32_t w, width; };
union { uint32_t h, height; };
union { uint32_t d, depth; };
union { uint32_t a, array_len; };
};
struct isl_channel_layout {
enum isl_base_type type;
uint8_t start_bit; /**< Bit at which this channel starts */
uint8_t bits; /**< Size in bits */
};
/**
* Each format has 3D block extent (width, height, depth). The block extent of
* compressed formats is that of the format's compression block. For example,
* the block extent of ISL_FORMAT_ETC2_RGB8 is (w=4, h=4, d=1). The block
* extent of uncompressed pixel formats, such as ISL_FORMAT_R8G8B8A8_UNORM, is
* is (w=1, h=1, d=1).
*/
struct isl_format_layout {
enum isl_format format;
const char *name;
uint16_t bpb; /**< Bits per block */
uint8_t bw; /**< Block width, in pixels */
uint8_t bh; /**< Block height, in pixels */
uint8_t bd; /**< Block depth, in pixels */
union {
struct {
struct isl_channel_layout r; /**< Red channel */
struct isl_channel_layout g; /**< Green channel */
struct isl_channel_layout b; /**< Blue channel */
struct isl_channel_layout a; /**< Alpha channel */
struct isl_channel_layout l; /**< Luminance channel */
struct isl_channel_layout i; /**< Intensity channel */
struct isl_channel_layout p; /**< Palette channel */
} channels;
struct isl_channel_layout channels_array[7];
};
enum isl_colorspace colorspace;
enum isl_txc txc;
};
struct isl_tile_info {
enum isl_tiling tiling;
/* The size (in bits per block) of a single surface element
*
* For surfaces with power-of-two formats, this is the same as
* isl_format_layout::bpb. For non-power-of-two formats it may be smaller.
* The logical_extent_el field is in terms of elements of this size.
*
* For example, consider ISL_FORMAT_R32G32B32_FLOAT for which
* isl_format_layout::bpb is 96 (a non-power-of-two). In this case, none
* of the tiling formats can actually hold an integer number of 96-bit
* surface elements so isl_tiling_get_info returns an isl_tile_info for a
* 32-bit element size. It is the responsibility of the caller to
* recognize that 32 != 96 ad adjust accordingly. For instance, to compute
* the width of a surface in tiles, you would do:
*
* width_tl = DIV_ROUND_UP(width_el * (format_bpb / tile_info.format_bpb),
* tile_info.logical_extent_el.width);
*/
uint32_t format_bpb;
/** The logical size of the tile in units of format_bpb size elements
*
* This field determines how a given surface is cut up into tiles. It is
* used to compute the size of a surface in tiles and can be used to
* determine the location of the tile containing any given surface element.
* The exact value of this field depends heavily on the bits-per-block of
* the format being used.
*/
struct isl_extent2d logical_extent_el;
/** The physical size of the tile in bytes and rows of bytes
*
* This field determines how the tiles of a surface are physically layed
* out in memory. The logical and physical tile extent are frequently the
* same but this is not always the case. For instance, a W-tile (which is
* always used with ISL_FORMAT_R8) has a logical size of 64el x 64el but
* its physical size is 128B x 32rows, the same as a Y-tile.
*
* @see isl_surf::row_pitch_B
*/
struct isl_extent2d phys_extent_B;
};
/**
* Metadata about a DRM format modifier.
*/
struct isl_drm_modifier_info {
uint64_t modifier;
/** Text name of the modifier */
const char *name;
/** ISL tiling implied by this modifier */
enum isl_tiling tiling;
/** ISL aux usage implied by this modifier */
enum isl_aux_usage aux_usage;
/** Whether or not this modifier supports clear color */
bool supports_clear_color;
};
/**
* @brief Input to surface initialization
*
* @invariant width >= 1
* @invariant height >= 1
* @invariant depth >= 1
* @invariant levels >= 1
* @invariant samples >= 1
* @invariant array_len >= 1
*
* @invariant if 1D then height == 1 and depth == 1 and samples == 1
* @invariant if 2D then depth == 1
* @invariant if 3D then array_len == 1 and samples == 1
*/
struct isl_surf_init_info {
enum isl_surf_dim dim;
enum isl_format format;
uint32_t width;
uint32_t height;
uint32_t depth;
uint32_t levels;
uint32_t array_len;
uint32_t samples;
/** Lower bound for isl_surf::alignment, in bytes. */
uint32_t min_alignment_B;
/**
* Exact value for isl_surf::row_pitch. Ignored if zero. isl_surf_init()
* will fail if this is misaligned or out of bounds.
*/
uint32_t row_pitch_B;
isl_surf_usage_flags_t usage;
/** Flags that alter how ISL selects isl_surf::tiling. */
isl_tiling_flags_t tiling_flags;
};
struct isl_surf {
enum isl_surf_dim dim;
enum isl_dim_layout dim_layout;
enum isl_msaa_layout msaa_layout;
enum isl_tiling tiling;
enum isl_format format;
/**
* Alignment of the upper-left sample of each subimage, in units of surface
* elements.
*/
struct isl_extent3d image_alignment_el;
/**
* Logical extent of the surface's base level, in units of pixels. This is
* identical to the extent defined in isl_surf_init_info.
*/
struct isl_extent4d logical_level0_px;
/**
* Physical extent of the surface's base level, in units of physical
* surface samples.
*
* Consider isl_dim_layout as an operator that transforms a logical surface
* layout to a physical surface layout. Then
*
* logical_layout := (isl_surf::dim, isl_surf::logical_level0_px)
* isl_surf::phys_level0_sa := isl_surf::dim_layout * logical_layout
*/
struct isl_extent4d phys_level0_sa;
uint32_t levels;
uint32_t samples;
/** Total size of the surface, in bytes. */
uint64_t size_B;
/** Required alignment for the surface's base address. */
uint32_t alignment_B;
/**
* The interpretation of this field depends on the value of
* isl_tile_info::physical_extent_B. In particular, the width of the
* surface in tiles is row_pitch_B / isl_tile_info::physical_extent_B.width
* and the distance in bytes between vertically adjacent tiles in the image
* is given by row_pitch_B * isl_tile_info::physical_extent_B.height.
*
* For linear images where isl_tile_info::physical_extent_B.height == 1,
* this cleanly reduces to being the distance, in bytes, between vertically
* adjacent surface elements.
*
* @see isl_tile_info::phys_extent_B;
*/
uint32_t row_pitch_B;
/**
* Pitch between physical array slices, in rows of surface elements.
*/
uint32_t array_pitch_el_rows;
enum isl_array_pitch_span array_pitch_span;
/** Copy of isl_surf_init_info::usage. */
isl_surf_usage_flags_t usage;
};
struct isl_swizzle {
enum isl_channel_select r:4;
enum isl_channel_select g:4;
enum isl_channel_select b:4;
enum isl_channel_select a:4;
};
#define ISL_SWIZZLE(R, G, B, A) ((struct isl_swizzle) { \
.r = ISL_CHANNEL_SELECT_##R, \
.g = ISL_CHANNEL_SELECT_##G, \
.b = ISL_CHANNEL_SELECT_##B, \
.a = ISL_CHANNEL_SELECT_##A, \
})
#define ISL_SWIZZLE_IDENTITY ISL_SWIZZLE(RED, GREEN, BLUE, ALPHA)
struct isl_view {
/**
* Indicates the usage of the particular view
*
* Normally, this is one bit. However, for a cube map texture, it
* should be ISL_SURF_USAGE_TEXTURE_BIT | ISL_SURF_USAGE_CUBE_BIT.
*/
isl_surf_usage_flags_t usage;
/**
* The format to use in the view
*
* This may differ from the format of the actual isl_surf but must have
* the same block size.
*/
enum isl_format format;
uint32_t base_level;
uint32_t levels;
/**
* Base array layer
*
* For cube maps, both base_array_layer and array_len should be
* specified in terms of 2-D layers and must be a multiple of 6.
*
* 3-D textures are effectively treated as 2-D arrays when used as a
* storage image or render target. If `usage` contains
* ISL_SURF_USAGE_RENDER_TARGET_BIT or ISL_SURF_USAGE_STORAGE_BIT then
* base_array_layer and array_len are applied. If the surface is only used
* for texturing, they are ignored.
*/
uint32_t base_array_layer;
/**
* Array Length
*
* Indicates the number of array elements starting at Base Array Layer.
*/
uint32_t array_len;
struct isl_swizzle swizzle;
};
union isl_color_value {
float f32[4];
uint32_t u32[4];
int32_t i32[4];
};
struct isl_surf_fill_state_info {
const struct isl_surf *surf;
const struct isl_view *view;
/**
* The address of the surface in GPU memory.
*/
uint64_t address;
/**
* The Memory Object Control state for the filled surface state.
*
* The exact format of this value depends on hardware generation.
*/
uint32_t mocs;
/**
* The auxilary surface or NULL if no auxilary surface is to be used.
*/
const struct isl_surf *aux_surf;
enum isl_aux_usage aux_usage;
uint64_t aux_address;
/**
* The clear color for this surface
*
* Valid values depend on hardware generation.
*/
union isl_color_value clear_color;
/**
* Send only the clear value address
*
* If set, we only pass the clear address to the GPU and it will fetch it
* from wherever it is.
*/
bool use_clear_address;
uint64_t clear_address;
/**
* Surface write disables for gen4-5
*/
isl_channel_mask_t write_disables;
/* Intra-tile offset */
uint16_t x_offset_sa, y_offset_sa;
};
struct isl_buffer_fill_state_info {
/**
* The address of the surface in GPU memory.
*/
uint64_t address;
/**
* The size of the buffer
*/
uint64_t size_B;
/**
* The Memory Object Control state for the filled surface state.
*
* The exact format of this value depends on hardware generation.
*/
uint32_t mocs;
/**
* The format to use in the surface state
*
* This may differ from the format of the actual isl_surf but have the
* same block size.
*/
enum isl_format format;
/**
* The swizzle to use in the surface state
*/
struct isl_swizzle swizzle;
uint32_t stride_B;
};
struct isl_depth_stencil_hiz_emit_info {
/**
* The depth surface
*/
const struct isl_surf *depth_surf;
/**
* The stencil surface
*
* If separate stencil is not available, this must point to the same
* isl_surf as depth_surf.
*/
const struct isl_surf *stencil_surf;
/**
* The view into the depth and stencil surfaces.
*
* This view applies to both surfaces simultaneously.
*/
const struct isl_view *view;
/**
* The address of the depth surface in GPU memory
*/
uint64_t depth_address;
/**
* The address of the stencil surface in GPU memory
*
* If separate stencil is not available, this must have the same value as
* depth_address.
*/
uint64_t stencil_address;
/**
* The Memory Object Control state for depth and stencil buffers
*
* Both depth and stencil will get the same MOCS value. The exact format
* of this value depends on hardware generation.
*/
uint32_t mocs;
/**
* The HiZ surface or NULL if HiZ is disabled.
*/
const struct isl_surf *hiz_surf;
enum isl_aux_usage hiz_usage;
uint64_t hiz_address;
/**
* The depth clear value
*/
float depth_clear_value;
/**
* Track stencil aux usage for Gen >= 12
*/
enum isl_aux_usage stencil_aux_usage;
};
extern const struct isl_format_layout isl_format_layouts[];
void
isl_device_init(struct isl_device *dev,
const struct gen_device_info *info,
bool has_bit6_swizzling);
isl_sample_count_mask_t ATTRIBUTE_CONST
isl_device_get_sample_counts(struct isl_device *dev);
static inline const struct isl_format_layout * ATTRIBUTE_CONST
isl_format_get_layout(enum isl_format fmt)
{
assert(fmt != ISL_FORMAT_UNSUPPORTED);
assert(fmt < ISL_NUM_FORMATS);
return &isl_format_layouts[fmt];
}
bool isl_format_is_valid(enum isl_format);
static inline const char * ATTRIBUTE_CONST
isl_format_get_name(enum isl_format fmt)
{
return isl_format_get_layout(fmt)->name;
}
enum isl_format isl_format_for_pipe_format(enum pipe_format pf);
bool isl_format_supports_rendering(const struct gen_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_alpha_blending(const struct gen_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_sampling(const struct gen_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_filtering(const struct gen_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_vertex_fetch(const struct gen_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_typed_writes(const struct gen_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_typed_reads(const struct gen_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_ccs_d(const struct gen_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_ccs_e(const struct gen_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_multisampling(const struct gen_device_info *devinfo,
enum isl_format format);
bool isl_formats_are_ccs_e_compatible(const struct gen_device_info *devinfo,
enum isl_format format1,
enum isl_format format2);
uint8_t isl_format_get_aux_map_encoding(enum isl_format format);
bool isl_format_has_unorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
bool isl_format_has_snorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
bool isl_format_has_ufloat_channel(enum isl_format fmt) ATTRIBUTE_CONST;
bool isl_format_has_sfloat_channel(enum isl_format fmt) ATTRIBUTE_CONST;
bool isl_format_has_uint_channel(enum isl_format fmt) ATTRIBUTE_CONST;
bool isl_format_has_sint_channel(enum isl_format fmt) ATTRIBUTE_CONST;
static inline bool
isl_format_has_normalized_channel(enum isl_format fmt)
{
return isl_format_has_unorm_channel(fmt) ||
isl_format_has_snorm_channel(fmt);
}
static inline bool
isl_format_has_float_channel(enum isl_format fmt)
{
return isl_format_has_ufloat_channel(fmt) ||
isl_format_has_sfloat_channel(fmt);
}
static inline bool
isl_format_has_int_channel(enum isl_format fmt)
{
return isl_format_has_uint_channel(fmt) ||
isl_format_has_sint_channel(fmt);
}
bool isl_format_has_color_component(enum isl_format fmt,
int component) ATTRIBUTE_CONST;
unsigned isl_format_get_num_channels(enum isl_format fmt);
uint32_t isl_format_get_depth_format(enum isl_format fmt, bool has_stencil);
static inline bool
isl_format_is_compressed(enum isl_format fmt)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
return fmtl->txc != ISL_TXC_NONE;
}
static inline bool
isl_format_has_bc_compression(enum isl_format fmt)
{
switch (isl_format_get_layout(fmt)->txc) {
case ISL_TXC_DXT1:
case ISL_TXC_DXT3:
case ISL_TXC_DXT5:
return true;
case ISL_TXC_NONE:
case ISL_TXC_FXT1:
case ISL_TXC_RGTC1:
case ISL_TXC_RGTC2:
case ISL_TXC_BPTC:
case ISL_TXC_ETC1:
case ISL_TXC_ETC2:
case ISL_TXC_ASTC:
return false;
case ISL_TXC_HIZ:
case ISL_TXC_MCS:
case ISL_TXC_CCS:
unreachable("Should not be called on an aux surface");
}
unreachable("bad texture compression mode");
return false;
}
static inline bool
isl_format_is_planar(enum isl_format fmt)
{
return fmt == ISL_FORMAT_PLANAR_420_8 ||
fmt == ISL_FORMAT_PLANAR_420_10 ||
fmt == ISL_FORMAT_PLANAR_420_12 ||
fmt == ISL_FORMAT_PLANAR_420_16;
}
static inline bool
isl_format_is_yuv(enum isl_format fmt)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
return fmtl->colorspace == ISL_COLORSPACE_YUV;
}
static inline bool
isl_format_block_is_1x1x1(enum isl_format fmt)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
return fmtl->bw == 1 && fmtl->bh == 1 && fmtl->bd == 1;
}
static inline bool
isl_format_is_srgb(enum isl_format fmt)
{
return isl_format_get_layout(fmt)->colorspace == ISL_COLORSPACE_SRGB;
}
enum isl_format isl_format_srgb_to_linear(enum isl_format fmt);
static inline bool
isl_format_is_rgb(enum isl_format fmt)
{
if (isl_format_is_yuv(fmt))
return false;
const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
return fmtl->channels.r.bits > 0 &&
fmtl->channels.g.bits > 0 &&
fmtl->channels.b.bits > 0 &&
fmtl->channels.a.bits == 0;
}
static inline bool
isl_format_is_rgbx(enum isl_format fmt)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
return fmtl->channels.r.bits > 0 &&
fmtl->channels.g.bits > 0 &&
fmtl->channels.b.bits > 0 &&
fmtl->channels.a.bits > 0 &&
fmtl->channels.a.type == ISL_VOID;
}
enum isl_format isl_format_rgb_to_rgba(enum isl_format rgb) ATTRIBUTE_CONST;
enum isl_format isl_format_rgb_to_rgbx(enum isl_format rgb) ATTRIBUTE_CONST;
enum isl_format isl_format_rgbx_to_rgba(enum isl_format rgb) ATTRIBUTE_CONST;
union isl_color_value
isl_color_value_swizzle_inv(union isl_color_value src,
struct isl_swizzle swizzle);
void isl_color_value_pack(const union isl_color_value *value,
enum isl_format format,
uint32_t *data_out);
void isl_color_value_unpack(union isl_color_value *value,
enum isl_format format,
const uint32_t *data_in);
bool isl_is_storage_image_format(enum isl_format fmt);
enum isl_format
isl_lower_storage_image_format(const struct gen_device_info *devinfo,
enum isl_format fmt);
/* Returns true if this hardware supports typed load/store on a format with
* the same size as the given format.
*/
bool
isl_has_matching_typed_storage_image_format(const struct gen_device_info *devinfo,
enum isl_format fmt);
static inline enum isl_tiling
isl_tiling_flag_to_enum(isl_tiling_flags_t flag)
{
assert(__builtin_popcount(flag) == 1);
return (enum isl_tiling) (__builtin_ffs(flag) - 1);
}
static inline bool
isl_tiling_is_any_y(enum isl_tiling tiling)
{
return (1u << tiling) & ISL_TILING_ANY_Y_MASK;
}
static inline bool
isl_tiling_is_std_y(enum isl_tiling tiling)
{
return (1u << tiling) & ISL_TILING_STD_Y_MASK;
}
uint32_t
isl_tiling_to_i915_tiling(enum isl_tiling tiling);
enum isl_tiling
isl_tiling_from_i915_tiling(uint32_t tiling);
/**
* Return an isl_aux_op needed to enable an access to occur in an
* isl_aux_state suitable for the isl_aux_usage.
*
* NOTE: If the access will invalidate the main surface, this function should
* not be called and the isl_aux_op of NONE should be used instead.
* Otherwise, an extra (but still lossless) ambiguate may occur.
*
* @invariant initial_state is possible with an isl_aux_usage compatible with
* the given usage. Two usages are compatible if it's possible to
* switch between them (e.g. CCS_E <-> CCS_D).
* @invariant fast_clear is false if the aux doesn't support fast clears.
*/
enum isl_aux_op
isl_aux_prepare_access(enum isl_aux_state initial_state,
enum isl_aux_usage usage,
bool fast_clear_supported);
/**
* Return the isl_aux_state entered after performing an isl_aux_op.
*
* @invariant initial_state is possible with the given usage.
* @invariant op is possible with the given usage.
* @invariant op must not cause HW to read from an invalid aux.
*/
enum isl_aux_state
isl_aux_state_transition_aux_op(enum isl_aux_state initial_state,
enum isl_aux_usage usage,
enum isl_aux_op op);
/**
* Return the isl_aux_state entered after performing a write.
*
* NOTE: full_surface should be true if the write covers the entire
* slice. Setting it to false in this case will still result in a
* correct (but imprecise) aux state.
*
* @invariant if usage is not ISL_AUX_USAGE_NONE, then initial_state is
* possible with the given usage.
* @invariant usage can be ISL_AUX_USAGE_NONE iff:
* * the main surface is valid, or
* * the main surface is being invalidated/replaced.
*/
enum isl_aux_state
isl_aux_state_transition_write(enum isl_aux_state initial_state,
enum isl_aux_usage usage,
bool full_surface);
bool
isl_aux_usage_has_fast_clears(enum isl_aux_usage usage);
static inline bool
isl_aux_usage_has_hiz(enum isl_aux_usage usage)
{
return usage == ISL_AUX_USAGE_HIZ ||
usage == ISL_AUX_USAGE_HIZ_CCS_WT ||
usage == ISL_AUX_USAGE_HIZ_CCS;
}
static inline bool
isl_aux_usage_has_mcs(enum isl_aux_usage usage)
{
return usage == ISL_AUX_USAGE_MCS ||
usage == ISL_AUX_USAGE_MCS_CCS;
}
static inline bool
isl_aux_usage_has_ccs(enum isl_aux_usage usage)
{
return usage == ISL_AUX_USAGE_CCS_D ||
usage == ISL_AUX_USAGE_CCS_E ||
usage == ISL_AUX_USAGE_GEN12_CCS_E ||
usage == ISL_AUX_USAGE_MC ||
usage == ISL_AUX_USAGE_HIZ_CCS_WT ||
usage == ISL_AUX_USAGE_HIZ_CCS ||
usage == ISL_AUX_USAGE_MCS_CCS ||
usage == ISL_AUX_USAGE_STC_CCS;
}
static inline bool
isl_aux_state_has_valid_primary(enum isl_aux_state state)
{
return state == ISL_AUX_STATE_RESOLVED ||
state == ISL_AUX_STATE_PASS_THROUGH ||
state == ISL_AUX_STATE_AUX_INVALID;
}
static inline bool
isl_aux_state_has_valid_aux(enum isl_aux_state state)
{
return state != ISL_AUX_STATE_AUX_INVALID;
}
const struct isl_drm_modifier_info * ATTRIBUTE_CONST
isl_drm_modifier_get_info(uint64_t modifier);
static inline bool
isl_drm_modifier_has_aux(uint64_t modifier)
{
return isl_drm_modifier_get_info(modifier)->aux_usage != ISL_AUX_USAGE_NONE;
}
/** Returns the default isl_aux_state for the given modifier.
*
* If we have a modifier which supports compression, then the auxiliary data
* could be in state other than ISL_AUX_STATE_AUX_INVALID. In particular, it
* can be in any of the following:
*
* - ISL_AUX_STATE_CLEAR
* - ISL_AUX_STATE_PARTIAL_CLEAR
* - ISL_AUX_STATE_COMPRESSED_CLEAR
* - ISL_AUX_STATE_COMPRESSED_NO_CLEAR
* - ISL_AUX_STATE_RESOLVED
* - ISL_AUX_STATE_PASS_THROUGH
*
* If the modifier does not support fast-clears, then we are guaranteed
* that the surface is at least partially resolved and the first three not
* possible. We return ISL_AUX_STATE_COMPRESSED_CLEAR if the modifier
* supports fast clears and ISL_AUX_STATE_COMPRESSED_NO_CLEAR if it does not
* because they are the least common denominator of the set of possible aux
* states and will yield a valid interpretation of the aux data.
*
* For modifiers with no aux support, ISL_AUX_STATE_AUX_INVALID is returned.
*/
static inline enum isl_aux_state
isl_drm_modifier_get_default_aux_state(uint64_t modifier)
{
const struct isl_drm_modifier_info *mod_info =
isl_drm_modifier_get_info(modifier);
if (!mod_info || mod_info->aux_usage == ISL_AUX_USAGE_NONE)
return ISL_AUX_STATE_AUX_INVALID;
assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E ||
mod_info->aux_usage == ISL_AUX_USAGE_GEN12_CCS_E ||
mod_info->aux_usage == ISL_AUX_USAGE_MC);
return mod_info->supports_clear_color ? ISL_AUX_STATE_COMPRESSED_CLEAR :
ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
}
struct isl_extent2d ATTRIBUTE_CONST
isl_get_interleaved_msaa_px_size_sa(uint32_t samples);
static inline bool
isl_surf_usage_is_display(isl_surf_usage_flags_t usage)
{
return usage & ISL_SURF_USAGE_DISPLAY_BIT;
}
static inline bool
isl_surf_usage_is_depth(isl_surf_usage_flags_t usage)
{
return usage & ISL_SURF_USAGE_DEPTH_BIT;
}
static inline bool
isl_surf_usage_is_stencil(isl_surf_usage_flags_t usage)
{
return usage & ISL_SURF_USAGE_STENCIL_BIT;
}
static inline bool
isl_surf_usage_is_depth_and_stencil(isl_surf_usage_flags_t usage)
{
return (usage & ISL_SURF_USAGE_DEPTH_BIT) &&
(usage & ISL_SURF_USAGE_STENCIL_BIT);
}
static inline bool
isl_surf_usage_is_depth_or_stencil(isl_surf_usage_flags_t usage)
{
return usage & (ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT);
}
static inline bool
isl_surf_info_is_z16(const struct isl_surf_init_info *info)
{
return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
(info->format == ISL_FORMAT_R16_UNORM);
}
static inline bool
isl_surf_info_is_z32_float(const struct isl_surf_init_info *info)
{
return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
(info->format == ISL_FORMAT_R32_FLOAT);
}
static inline struct isl_extent2d
isl_extent2d(uint32_t width, uint32_t height)
{
struct isl_extent2d e = { { 0 } };
e.width = width;
e.height = height;
return e;
}
static inline struct isl_extent3d
isl_extent3d(uint32_t width, uint32_t height, uint32_t depth)
{
struct isl_extent3d e = { { 0 } };
e.width = width;
e.height = height;
e.depth = depth;
return e;
}
static inline struct isl_extent4d
isl_extent4d(uint32_t width, uint32_t height, uint32_t depth,
uint32_t array_len)
{
struct isl_extent4d e = { { 0 } };
e.width = width;
e.height = height;
e.depth = depth;
e.array_len = array_len;
return e;
}
bool isl_color_value_is_zero(union isl_color_value value,
enum isl_format format);
bool isl_color_value_is_zero_one(union isl_color_value value,
enum isl_format format);
static inline bool
isl_swizzle_is_identity(struct isl_swizzle swizzle)
{
return swizzle.r == ISL_CHANNEL_SELECT_RED &&
swizzle.g == ISL_CHANNEL_SELECT_GREEN &&
swizzle.b == ISL_CHANNEL_SELECT_BLUE &&
swizzle.a == ISL_CHANNEL_SELECT_ALPHA;
}
bool
isl_swizzle_supports_rendering(const struct gen_device_info *devinfo,
struct isl_swizzle swizzle);
struct isl_swizzle
isl_swizzle_compose(struct isl_swizzle first, struct isl_swizzle second);
struct isl_swizzle
isl_swizzle_invert(struct isl_swizzle swizzle);
uint32_t isl_mocs(const struct isl_device *dev, isl_surf_usage_flags_t usage);
#define isl_surf_init(dev, surf, ...) \
isl_surf_init_s((dev), (surf), \
&(struct isl_surf_init_info) { __VA_ARGS__ });
bool
isl_surf_init_s(const struct isl_device *dev,
struct isl_surf *surf,
const struct isl_surf_init_info *restrict info);
void
isl_surf_get_tile_info(const struct isl_surf *surf,
struct isl_tile_info *tile_info);
bool
isl_surf_supports_ccs(const struct isl_device *dev,
const struct isl_surf *surf);
bool
isl_surf_get_hiz_surf(const struct isl_device *dev,
const struct isl_surf *surf,
struct isl_surf *hiz_surf);
bool
isl_surf_get_mcs_surf(const struct isl_device *dev,
const struct isl_surf *surf,
struct isl_surf *mcs_surf);
bool
isl_surf_get_ccs_surf(const struct isl_device *dev,
const struct isl_surf *surf,
struct isl_surf *aux_surf,
struct isl_surf *extra_aux_surf,
uint32_t row_pitch_B /**< Ignored if 0 */);
#define isl_surf_fill_state(dev, state, ...) \
isl_surf_fill_state_s((dev), (state), \
&(struct isl_surf_fill_state_info) { __VA_ARGS__ });
void
isl_surf_fill_state_s(const struct isl_device *dev, void *state,
const struct isl_surf_fill_state_info *restrict info);
#define isl_buffer_fill_state(dev, state, ...) \
isl_buffer_fill_state_s((dev), (state), \
&(struct isl_buffer_fill_state_info) { __VA_ARGS__ });
void
isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
const struct isl_buffer_fill_state_info *restrict info);
void
isl_null_fill_state(const struct isl_device *dev, void *state,
struct isl_extent3d size);
#define isl_emit_depth_stencil_hiz(dev, batch, ...) \
isl_emit_depth_stencil_hiz_s((dev), (batch), \
&(struct isl_depth_stencil_hiz_emit_info) { __VA_ARGS__ })
void
isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch,
const struct isl_depth_stencil_hiz_emit_info *restrict info);
void
isl_surf_fill_image_param(const struct isl_device *dev,
struct brw_image_param *param,
const struct isl_surf *surf,
const struct isl_view *view);
void
isl_buffer_fill_image_param(const struct isl_device *dev,
struct brw_image_param *param,
enum isl_format format,
uint64_t size);
/**
* Alignment of the upper-left sample of each subimage, in units of surface
* elements.
*/
static inline struct isl_extent3d
isl_surf_get_image_alignment_el(const struct isl_surf *surf)
{
return surf->image_alignment_el;
}
/**
* Alignment of the upper-left sample of each subimage, in units of surface
* samples.
*/
static inline struct isl_extent3d
isl_surf_get_image_alignment_sa(const struct isl_surf *surf)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
return isl_extent3d(fmtl->bw * surf->image_alignment_el.w,
fmtl->bh * surf->image_alignment_el.h,
fmtl->bd * surf->image_alignment_el.d);
}
/**
* Logical extent of level 0 in units of surface elements.
*/
static inline struct isl_extent4d
isl_surf_get_logical_level0_el(const struct isl_surf *surf)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
return isl_extent4d(DIV_ROUND_UP(surf->logical_level0_px.w, fmtl->bw),
DIV_ROUND_UP(surf->logical_level0_px.h, fmtl->bh),
DIV_ROUND_UP(surf->logical_level0_px.d, fmtl->bd),
surf->logical_level0_px.a);
}
/**
* Physical extent of level 0 in units of surface elements.
*/
static inline struct isl_extent4d
isl_surf_get_phys_level0_el(const struct isl_surf *surf)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
return isl_extent4d(DIV_ROUND_UP(surf->phys_level0_sa.w, fmtl->bw),
DIV_ROUND_UP(surf->phys_level0_sa.h, fmtl->bh),
DIV_ROUND_UP(surf->phys_level0_sa.d, fmtl->bd),
surf->phys_level0_sa.a);
}
/**
* Pitch between vertically adjacent surface elements, in bytes.
*/
static inline uint32_t
isl_surf_get_row_pitch_B(const struct isl_surf *surf)
{
return surf->row_pitch_B;
}
/**
* Pitch between vertically adjacent surface elements, in units of surface elements.
*/
static inline uint32_t
isl_surf_get_row_pitch_el(const struct isl_surf *surf)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
assert(surf->row_pitch_B % (fmtl->bpb / 8) == 0);
return surf->row_pitch_B / (fmtl->bpb / 8);
}
/**
* Pitch between physical array slices, in rows of surface elements.
*/
static inline uint32_t
isl_surf_get_array_pitch_el_rows(const struct isl_surf *surf)
{
return surf->array_pitch_el_rows;
}
/**
* Pitch between physical array slices, in units of surface elements.
*/
static inline uint32_t
isl_surf_get_array_pitch_el(const struct isl_surf *surf)
{
return isl_surf_get_array_pitch_el_rows(surf) *
isl_surf_get_row_pitch_el(surf);
}
/**
* Pitch between physical array slices, in rows of surface samples.
*/
static inline uint32_t
isl_surf_get_array_pitch_sa_rows(const struct isl_surf *surf)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
return fmtl->bh * isl_surf_get_array_pitch_el_rows(surf);
}
/**
* Pitch between physical array slices, in bytes.
*/
static inline uint32_t
isl_surf_get_array_pitch(const struct isl_surf *surf)
{
return isl_surf_get_array_pitch_sa_rows(surf) * surf->row_pitch_B;
}
/**
* Calculate the offset, in units of surface samples, to a subimage in the
* surface.
*
* @invariant level < surface levels
* @invariant logical_array_layer < logical array length of surface
* @invariant logical_z_offset_px < logical depth of surface at level
*/
void
isl_surf_get_image_offset_sa(const struct isl_surf *surf,
uint32_t level,
uint32_t logical_array_layer,
uint32_t logical_z_offset_px,
uint32_t *x_offset_sa,
uint32_t *y_offset_sa);
/**
* Calculate the offset, in units of surface elements, to a subimage in the
* surface.
*
* @invariant level < surface levels
* @invariant logical_array_layer < logical array length of surface
* @invariant logical_z_offset_px < logical depth of surface at level
*/
void
isl_surf_get_image_offset_el(const struct isl_surf *surf,
uint32_t level,
uint32_t logical_array_layer,
uint32_t logical_z_offset_px,
uint32_t *x_offset_el,
uint32_t *y_offset_el);
/**
* Calculate the offset, in bytes and intratile surface samples, to a
* subimage in the surface.
*
* This is equivalent to calling isl_surf_get_image_offset_el, passing the
* result to isl_tiling_get_intratile_offset_el, and converting the tile
* offsets to samples.
*
* @invariant level < surface levels
* @invariant logical_array_layer < logical array length of surface
* @invariant logical_z_offset_px < logical depth of surface at level
*/
void
isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
uint32_t level,
uint32_t logical_array_layer,
uint32_t logical_z_offset_px,
uint32_t *offset_B,
uint32_t *x_offset_sa,
uint32_t *y_offset_sa);
/**
* Calculate the range in bytes occupied by a subimage, to the nearest tile.
*
* The range returned will be the smallest memory range in which the give
* subimage fits, rounded to even tiles. Intel images do not usually have a
* direct subimage -> range mapping so the range returned may contain data
* from other sub-images. The returned range is a half-open interval where
* all of the addresses within the subimage are < end_tile_B.
*
* @invariant level < surface levels
* @invariant logical_array_layer < logical array length of surface
* @invariant logical_z_offset_px < logical depth of surface at level
*/
void
isl_surf_get_image_range_B_tile(const struct isl_surf *surf,
uint32_t level,
uint32_t logical_array_layer,
uint32_t logical_z_offset_px,
uint32_t *start_tile_B,
uint32_t *end_tile_B);
/**
* Create an isl_surf that represents a particular subimage in the surface.
*
* The newly created surface will have a single miplevel and array slice. The
* surface lives at the returned byte and intratile offsets, in samples.
*
* It is safe to call this function with surf == image_surf.
*
* @invariant level < surface levels
* @invariant logical_array_layer < logical array length of surface
* @invariant logical_z_offset_px < logical depth of surface at level
*/
void
isl_surf_get_image_surf(const struct isl_device *dev,
const struct isl_surf *surf,
uint32_t level,
uint32_t logical_array_layer,
uint32_t logical_z_offset_px,
struct isl_surf *image_surf,
uint32_t *offset_B,
uint32_t *x_offset_sa,
uint32_t *y_offset_sa);
/**
* @brief Calculate the intratile offsets to a surface.
*
* In @a base_address_offset return the offset from the base of the surface to
* the base address of the first tile of the subimage. In @a x_offset_B and
* @a y_offset_rows, return the offset, in units of bytes and rows, from the
* tile's base to the subimage's first surface element. The x and y offsets
* are intratile offsets; that is, they do not exceed the boundary of the
* surface's tiling format.
*/
void
isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
uint32_t bpb,
uint32_t row_pitch_B,
uint32_t total_x_offset_el,
uint32_t total_y_offset_el,
uint32_t *base_address_offset,
uint32_t *x_offset_el,
uint32_t *y_offset_el);
static inline void
isl_tiling_get_intratile_offset_sa(enum isl_tiling tiling,
enum isl_format format,
uint32_t row_pitch_B,
uint32_t total_x_offset_sa,
uint32_t total_y_offset_sa,
uint32_t *base_address_offset,
uint32_t *x_offset_sa,
uint32_t *y_offset_sa)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(format);
/* For computing the intratile offsets, we actually want a strange unit
* which is samples for multisampled surfaces but elements for compressed
* surfaces.
*/
assert(total_x_offset_sa % fmtl->bw == 0);
assert(total_y_offset_sa % fmtl->bh == 0);
const uint32_t total_x_offset = total_x_offset_sa / fmtl->bw;
const uint32_t total_y_offset = total_y_offset_sa / fmtl->bh;
isl_tiling_get_intratile_offset_el(tiling, fmtl->bpb, row_pitch_B,
total_x_offset, total_y_offset,
base_address_offset,
x_offset_sa, y_offset_sa);
*x_offset_sa *= fmtl->bw;
*y_offset_sa *= fmtl->bh;
}
/**
* @brief Get value of 3DSTATE_DEPTH_BUFFER.SurfaceFormat
*
* @pre surf->usage has ISL_SURF_USAGE_DEPTH_BIT
* @pre surf->format must be a valid format for depth surfaces
*/
uint32_t
isl_surf_get_depth_format(const struct isl_device *dev,
const struct isl_surf *surf);
/**
* @brief performs a copy from linear to tiled surface
*
*/
void
isl_memcpy_linear_to_tiled(uint32_t xt1, uint32_t xt2,
uint32_t yt1, uint32_t yt2,
char *dst, const char *src,
uint32_t dst_pitch, int32_t src_pitch,
bool has_swizzling,
enum isl_tiling tiling,
isl_memcpy_type copy_type);
/**
* @brief performs a copy from tiled to linear surface
*
*/
void
isl_memcpy_tiled_to_linear(uint32_t xt1, uint32_t xt2,
uint32_t yt1, uint32_t yt2,
char *dst, const char *src,
int32_t dst_pitch, uint32_t src_pitch,
bool has_swizzling,
enum isl_tiling tiling,
isl_memcpy_type copy_type);
#ifdef __cplusplus
}
#endif
#endif /* ISL_H */