/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include "ir_reader.h" #include "glsl_parser_extras.h" #include "glsl_types.h" #include "s_expression.h" static void ir_read_error(s_expression *expr, const char *fmt, ...); static glsl_type *read_type(_mesa_glsl_parse_state *, s_expression *); static ir_instruction *read_instruction(_mesa_glsl_parse_state *, s_expression *); static ir_variable *read_declaration(_mesa_glsl_parse_state *, s_list *); static ir_return *read_return(_mesa_glsl_parse_state *, s_list *); static ir_rvalue *read_rvalue(_mesa_glsl_parse_state *, s_expression *); static ir_assignment *read_assignment(_mesa_glsl_parse_state *, s_list *); static ir_expression *read_expression(_mesa_glsl_parse_state *, s_list *); static ir_swizzle *read_swizzle(_mesa_glsl_parse_state *, s_list *); static ir_constant *read_constant(_mesa_glsl_parse_state *, s_list *); void _mesa_glsl_read_ir(_mesa_glsl_parse_state *state, exec_list *instructions, const char *src) { s_expression *expr = s_expression::read_expression(src); if (expr == NULL) { ir_read_error(NULL, "couldn't parse S-Expression."); state->error = true; return; } printf("S-Expression:\n"); expr->print(); printf("\n-------------\n"); _mesa_glsl_initialize_types(state); _mesa_glsl_initialize_variables(instructions, state); _mesa_glsl_initialize_constructors(instructions, state); _mesa_glsl_initialize_functions(instructions, state); // Read in a list of instructions s_list *list = SX_AS_LIST(expr); if (list == NULL) { ir_read_error(expr, "Expected ( ...); found an atom."); state->error = true; return; } foreach_iter(exec_list_iterator, it, list->subexpressions) { s_expression *sub = (s_expression*) it.get(); ir_instruction *ir = read_instruction(state, sub); if (ir == NULL) { ir_read_error(sub, "Invalid instruction.\n"); state->error = true; return; } instructions->push_tail(ir); } } static void ir_read_error(s_expression *expr, const char *fmt, ...) { char buf[1024]; int len; va_list ap; // FIXME: state->error = true; len = snprintf(buf, sizeof(buf), "error: "); va_start(ap, fmt); vsnprintf(buf + len, sizeof(buf) - len, fmt, ap); va_end(ap); printf("%s\n", buf); } static glsl_type * read_type(_mesa_glsl_parse_state *st, s_expression *expr) { s_list *list = SX_AS_LIST(expr); if (list != NULL) { s_symbol *type_sym = SX_AS_SYMBOL(list->subexpressions.get_head()); if (type_sym == NULL) { ir_read_error(expr, "expected type (array (...)) or (struct (...))"); return NULL; } if (strcmp(type_sym->value(), "array") == 0) assert(false); // FINISHME if (strcmp(type_sym->value(), "struct") == 0) assert(false); // FINISHME } s_symbol *type_sym = SX_AS_SYMBOL(expr); if (type_sym == NULL) { ir_read_error(expr, "expected (symbol or list)"); return NULL; } glsl_type *type = st->symbols->get_type(type_sym->value()); if (type == NULL) ir_read_error(expr, "invalid type: %s", type_sym->value()); return type; } static ir_instruction * read_instruction(_mesa_glsl_parse_state *st, s_expression *expr) { s_list *list = SX_AS_LIST(expr); if (list == NULL || list->subexpressions.is_empty()) return NULL; s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head()); if (tag == NULL) { ir_read_error(expr, "expected instruction tag"); return NULL; } ir_instruction *inst = NULL; if (strcmp(tag->value(), "declare") == 0) inst = read_declaration(st, list); else if (strcmp(tag->value(), "return") == 0) inst = read_return(st, list); else ir_read_error(expr, "unrecognized instruction tag: %s", tag->value()); return inst; } static ir_variable * read_declaration(_mesa_glsl_parse_state *st, s_list *list) { if (list->length() != 4) { ir_read_error(list, "expected (declare () )"); return NULL; } s_list *quals = SX_AS_LIST(list->subexpressions.head->next); if (quals == NULL) { ir_read_error(list, "expected a list of variable qualifiers"); return NULL; } s_expression *type_expr = (s_expression*) quals->next; glsl_type *type = read_type(st, type_expr); if (type == NULL) return NULL; s_symbol *var_name = SX_AS_SYMBOL(type_expr->next); if (var_name == NULL) { ir_read_error(list, "expected variable name, found non-symbol"); return NULL; } ir_variable *var = new ir_variable(type, var_name->value()); foreach_iter(exec_list_iterator, it, quals->subexpressions) { s_symbol *qualifier = SX_AS_SYMBOL(it.get()); if (qualifier == NULL) { ir_read_error(list, "qualifier list must contain only symbols"); delete var; return NULL; } // FINISHME: Check for duplicate/conflicting qualifiers. if (strcmp(qualifier->value(), "centroid") == 0) { var->centroid = 1; } else if (strcmp(qualifier->value(), "invariant") == 0) { var->invariant = 1; } else if (strcmp(qualifier->value(), "uniform") == 0) { var->mode = ir_var_uniform; } else if (strcmp(qualifier->value(), "auto") == 0) { var->mode = ir_var_auto; } else if (strcmp(qualifier->value(), "in") == 0) { var->mode = ir_var_in; } else if (strcmp(qualifier->value(), "out") == 0) { var->mode = ir_var_out; } else if (strcmp(qualifier->value(), "inout") == 0) { var->mode = ir_var_inout; } else if (strcmp(qualifier->value(), "smooth") == 0) { var->interpolation = ir_var_smooth; } else if (strcmp(qualifier->value(), "flat") == 0) { var->interpolation = ir_var_flat; } else if (strcmp(qualifier->value(), "noperspective") == 0) { var->interpolation = ir_var_noperspective; } else { ir_read_error(list, "unknown qualifier: %s", qualifier->value()); delete var; return NULL; } } // Add the variable to the symbol table st->symbols->add_variable(var_name->value(), var); return var; } static ir_return * read_return(_mesa_glsl_parse_state *st, s_list *list) { if (list->length() != 2) { ir_read_error(list, "expected (return )"); return NULL; } s_expression *expr = (s_expression*) list->subexpressions.head->next; ir_rvalue *retval = read_rvalue(st, expr); if (retval == NULL) { ir_read_error(list, "when reading return value"); return NULL; } return new ir_return(retval); } static ir_rvalue * read_rvalue(_mesa_glsl_parse_state *st, s_expression *expr) { s_list *list = SX_AS_LIST(expr); if (list == NULL || list->subexpressions.is_empty()) return NULL; s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head()); if (tag == NULL) { ir_read_error(expr, "expected rvalue tag"); return NULL; } ir_rvalue *rvalue = NULL; if (strcmp(tag->value(), "swiz") == 0) rvalue = read_swizzle(st, list); else if (strcmp(tag->value(), "assign") == 0) rvalue = read_assignment(st, list); else if (strcmp(tag->value(), "expression") == 0) rvalue = read_expression(st, list); // FINISHME: ir_call // FINISHME: dereference else if (strcmp(tag->value(), "constant") == 0) rvalue = read_constant(st, list); else ir_read_error(expr, "unrecognized rvalue tag: %s", tag->value()); return rvalue; } static ir_assignment * read_assignment(_mesa_glsl_parse_state *st, s_list *list) { if (list->length() != 4) { ir_read_error(list, "expected (assign )"); return NULL; } s_expression *cond_expr = (s_expression*) list->subexpressions.head->next; s_expression *lhs_expr = (s_expression*) cond_expr->next; s_expression *rhs_expr = (s_expression*) lhs_expr->next; // FINISHME: Deal with "true" condition ir_rvalue *condition = read_rvalue(st, cond_expr); if (condition == NULL) { ir_read_error(list, "when reading condition of assignment"); return NULL; } ir_rvalue *lhs = read_rvalue(st, lhs_expr); if (lhs == NULL) { ir_read_error(list, "when reading left-hand side of assignment"); return NULL; } ir_rvalue *rhs = read_rvalue(st, rhs_expr); if (rhs == NULL) { ir_read_error(list, "when reading right-hand side of assignment"); return NULL; } return new ir_assignment(lhs, rhs, condition); } static ir_expression * read_expression(_mesa_glsl_parse_state *st, s_list *list) { const unsigned list_length = list->length(); if (list_length < 4) { ir_read_error(list, "expected (expression " "[])"); return NULL; } s_expression *type_expr = (s_expression*) list->subexpressions.head->next; glsl_type *type = read_type(st, type_expr); if (type == NULL) return NULL; /* Read the operator */ s_symbol *op_sym = SX_AS_SYMBOL(type_expr->next); if (op_sym == NULL) { ir_read_error(list, "expected operator, found non-symbol"); return NULL; } ir_expression_operation op = ir_expression::get_operator(op_sym->value()); if (op == (ir_expression_operation) -1) { ir_read_error(list, "invalid operator: %s", op_sym->value()); return NULL; } /* Now that we know the operator, check for the right number of operands */ if (ir_expression::get_num_operands(op) == 2) { if (list_length != 5) { ir_read_error(list, "expected (expression %s )", op_sym->value()); return NULL; } } else { if (list_length != 4) { ir_read_error(list, "expected (expression %s )", op_sym->value()); return NULL; } } s_expression *exp1 = (s_expression*) (op_sym->next); ir_rvalue *arg1 = read_rvalue(st, exp1); if (arg1 == NULL) { ir_read_error(list, "when reading first operand of %s", op_sym->value()); return NULL; } ir_rvalue *arg2 = NULL; if (ir_expression::get_num_operands(op) == 2) { s_expression *exp2 = (s_expression*) (exp1->next); arg2 = read_rvalue(st, exp2); if (arg2 == NULL) { ir_read_error(list, "when reading second operand of %s", op_sym->value()); return NULL; } } return new ir_expression(op, type, arg1, arg2); } static ir_swizzle * read_swizzle(_mesa_glsl_parse_state *st, s_list *list) { if (list->length() != 3) { ir_read_error(list, "expected (swiz )"); return NULL; } s_symbol *swiz = SX_AS_SYMBOL(list->subexpressions.head->next); if (swiz == NULL) { ir_read_error(list, "expected a valid swizzle; found non-symbol"); return NULL; } unsigned num_components = strlen(swiz->value()); if (num_components > 4) { ir_read_error(list, "expected a valid swizzle; found %s", swiz->value()); return NULL; } s_expression *sub = (s_expression*) swiz->next; if (sub == NULL) { ir_read_error(list, "expected rvalue: (swizzle %s )", swiz->value()); return NULL; } ir_rvalue *rvalue = read_rvalue(st, sub); if (rvalue == NULL) return NULL; return ir_swizzle::create(rvalue, swiz->value(), num_components); } static ir_constant * read_constant(_mesa_glsl_parse_state *st, s_list *list) { if (list->length() != 3) { ir_read_error(list, "expected (constant ( ... ))"); return NULL; } s_expression *type_expr = (s_expression*) list->subexpressions.head->next; glsl_type *type = read_type(st, type_expr); if (type == NULL) return NULL; s_list *values = SX_AS_LIST(type_expr->next); if (values == NULL) { ir_read_error(list, "expected (constant ( ... ))"); return NULL; } const glsl_type *const base_type = type->get_base_type(); unsigned u[16]; int i[16]; float f[16]; bool b[16]; // Read in list of values (at most 16). int k = 0; foreach_iter(exec_list_iterator, it, values->subexpressions) { if (k >= 16) { ir_read_error(values, "expected at most 16 numbers"); return NULL; } s_expression *expr = (s_expression*) it.get(); if (base_type->base_type == GLSL_TYPE_FLOAT) { s_number *value = SX_AS_NUMBER(expr); if (value == NULL) { ir_read_error(values, "expected numbers"); return NULL; } f[k] = value->fvalue(); } else { s_int *value = SX_AS_INT(expr); if (value == NULL) { ir_read_error(values, "expected integers"); return NULL; } switch (base_type->base_type) { case GLSL_TYPE_UINT: { u[k] = value->value(); break; } case GLSL_TYPE_INT: { i[k] = value->value(); break; } case GLSL_TYPE_BOOL: { b[k] = value->value(); break; } default: ir_read_error(values, "unsupported constant type"); return NULL; } } ++k; } switch (base_type->base_type) { case GLSL_TYPE_UINT: return new ir_constant(type, u); case GLSL_TYPE_INT: return new ir_constant(type, i); case GLSL_TYPE_BOOL: return new ir_constant(type, b); case GLSL_TYPE_FLOAT: return new ir_constant(type, f); } return NULL; // should not be reached }