This reverts commit 40b3abb4d1.
It is not clear that this commit was entirely correct, and unfortunately
it was pushed by error.
CC: Jason Ekstrand <jason@jlekstrand.net>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
This function is used in two different scenarios that for 32-bit
instructions are the same, but for 16-bit instructions are not.
One scenario is that in which we are working at a SIMD8 register
level and we need to know if a register is fully defined or written.
This is useful, for example, in the context of liveness analysis or
register allocation, where we work with units of registers.
The other scenario is that in which we want to know if an instruction
is writing a full scalar component or just some subset of it. This is
useful, for example, in the context of some optimization passes
like copy propagation.
For 32-bit instructions (or larger), a SIMD8 dispatch will always write
at least a full SIMD8 register (32B) if the write is not partial. The
function is_partial_write() checks this to determine if we have a partial
write. However, when we deal with 16-bit instructions, that logic disables
some optimizations that should be safe. For example, a SIMD8 16-bit MOV will
only update half of a SIMD register, but it is still a complete write of the
variable for a SIMD8 dispatch, so we should not prevent copy propagation in
this scenario because we don't write all 32 bytes in the SIMD register
or because the write starts at offset 16B (wehere we pack components Y or
W of 16-bit vectors).
This is a problem for SIMD8 executions (VS, TCS, TES, GS) of 16-bit
instructions, which lose a number of optimizations because of this, most
important of which is copy-propagation.
This patch splits is_partial_write() into is_partial_reg_write(), which
represents the current is_partial_write(), useful for things like
liveness analysis, and is_partial_var_write(), which considers
the dispatch size to check if we are writing a full variable (rather
than a full register) to decide if the write is partial or not, which
is what we really want in many optimization passes.
Then the patch goes on and rewrites all uses of is_partial_write() to use
one or the other version. Specifically, we use is_partial_var_write()
in the following places: copy propagation, cmod propagation, common
subexpression elimination, saturate propagation and sel peephole.
Notice that the semantics of is_partial_var_write() exactly match the
current implementation of is_partial_write() for anything that is
32-bit or larger, so no changes are expected for 32-bit instructions.
Tested against ~5000 tests involving 16-bit instructions in CTS produced
the following changes in instruction counts:
Patched | Master | % |
================================================
SIMD8 | 621,900 | 706,721 | -12.00% |
================================================
SIMD16 | 93,252 | 93,252 | 0.00% |
================================================
As expected, the change only affects SIMD8 dispatches.
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com>
By just assigning dst.type to src[i].type, we ensure that the offset at
the end of the loop actually offsets it by the right number of
registers. Otherwise, we'll get into a case where we copy with a Q type
and then offset with a D type and things get out of sync.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
Previously, we tried to combine all cases where the instruction being
CSE'd writes to more than one MOV worth of registers into one case with
a bit of special casing for LOAD_PAYLOAD. This commit splits things so
that LOAD_PAYLOAD is entirely it's own case. This makes tweaking the
LOAD_PAYLOAD case simpler in the next commit.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
The only reason it was it's own opcode was so that we could detect it
and adjust the source register based on the payload setup. Now that
we're using the ATTR file for FS inputs, there's no point in having a
magic opcode for this.
v2 (Jason Ekstrand):
- Break the bit which removes the CINTERP opcode into its own patch
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Reviewed-by: Matt Turner <mattst88@gmail.com>
Mostly a dummy git mv with a couple of noticable parts:
- With the earlier header cleanups, nothing in src/intel depends
files from src/mesa/drivers/dri/i965/
- Both Autoconf and Android builds are addressed. Thanks to Mauro and
Tapani for the fixups in the latter
- brw_util.[ch] is not really compiler specific, so it's moved to i965.
v2:
- move brw_eu_defines.h instead of brw_defines.h
- remove no-longer applicable includes
- add missing vulkan/ prefix in the Android build (thanks Tapani)
v3:
- don't list brw_defines.h in src/intel/Makefile.sources (Jason)
- rebase on top of the oa patches
[Emil Velikov: commit message, various small fixes througout]
Signed-off-by: Emil Velikov <emil.velikov@collabora.com>
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>