glsl: drop non-nir path for atan in builtin functions

All drivers now use NIR. Here we drop the non NIR path and rename
the NIR path to drop the extra "_op" chars from the function names.

Reviewed-by: Emma Anholt <emma@anholt.net>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17308>
This commit is contained in:
Timothy Arceri
2022-06-30 15:37:23 +10:00
committed by Marge Bot
parent 589b03d02f
commit f533dfff55

View File

@@ -879,18 +879,6 @@ shader_integer_functions2_int64(const _mesa_glsl_parse_state *state)
return state->INTEL_shader_integer_functions2_enable && state->has_int64();
}
static bool
is_nir(const _mesa_glsl_parse_state *state)
{
return state->consts->ShaderCompilerOptions[state->stage].NirOptions;
}
static bool
is_not_nir(const _mesa_glsl_parse_state *state)
{
return !is_nir(state);
}
static bool
sparse_enabled(const _mesa_glsl_parse_state *state)
{
@@ -1110,8 +1098,6 @@ private:
B1(acos)
B1(atan2)
B1(atan)
B1(atan2_op)
B1(atan_op)
B1(sinh)
B1(cosh)
B1(tanh)
@@ -1964,14 +1950,6 @@ builtin_builder::create_builtins()
_atan2(glsl_type::vec2_type),
_atan2(glsl_type::vec3_type),
_atan2(glsl_type::vec4_type),
_atan_op(glsl_type::float_type),
_atan_op(glsl_type::vec2_type),
_atan_op(glsl_type::vec3_type),
_atan_op(glsl_type::vec4_type),
_atan2_op(glsl_type::float_type),
_atan2_op(glsl_type::vec2_type),
_atan2_op(glsl_type::vec3_type),
_atan2_op(glsl_type::vec4_type),
NULL);
F(sinh)
@@ -5936,158 +5914,6 @@ builtin_builder::_acos(const glsl_type *type)
return sig;
}
ir_function_signature *
builtin_builder::_atan2(const glsl_type *type)
{
const unsigned n = type->vector_elements;
ir_variable *y = in_var(type, "y");
ir_variable *x = in_var(type, "x");
MAKE_SIG(type, is_not_nir, 2, y, x);
/* If we're on the left half-plane rotate the coordinates π/2 clock-wise
* for the y=0 discontinuity to end up aligned with the vertical
* discontinuity of atan(s/t) along t=0. This also makes sure that we
* don't attempt to divide by zero along the vertical line, which may give
* unspecified results on non-GLSL 4.1-capable hardware.
*/
ir_variable *flip = body.make_temp(glsl_type::bvec(n), "flip");
body.emit(assign(flip, gequal(imm(0.0f, n), x)));
ir_variable *s = body.make_temp(type, "s");
body.emit(assign(s, csel(flip, abs(x), y)));
ir_variable *t = body.make_temp(type, "t");
body.emit(assign(t, csel(flip, y, abs(x))));
/* If the magnitude of the denominator exceeds some huge value, scale down
* the arguments in order to prevent the reciprocal operation from flushing
* its result to zero, which would cause precision problems, and for s
* infinite would cause us to return a NaN instead of the correct finite
* value.
*
* If fmin and fmax are respectively the smallest and largest positive
* normalized floating point values representable by the implementation,
* the constants below should be in agreement with:
*
* huge <= 1 / fmin
* scale <= 1 / fmin / fmax (for |t| >= huge)
*
* In addition scale should be a negative power of two in order to avoid
* loss of precision. The values chosen below should work for most usual
* floating point representations with at least the dynamic range of ATI's
* 24-bit representation.
*/
ir_constant *huge = imm(1e18f, n);
ir_variable *scale = body.make_temp(type, "scale");
body.emit(assign(scale, csel(gequal(abs(t), huge),
imm(0.25f, n), imm(1.0f, n))));
ir_variable *rcp_scaled_t = body.make_temp(type, "rcp_scaled_t");
body.emit(assign(rcp_scaled_t, rcp(mul(t, scale))));
ir_expression *s_over_t = mul(mul(s, scale), rcp_scaled_t);
/* For |x| = |y| assume tan = 1 even if infinite (i.e. pretend momentarily
* that ∞/∞ = 1) in order to comply with the rather artificial rules
* inherited from IEEE 754-2008, namely:
*
* "atan2(±∞, −∞) is ±3π/4
* atan2(±∞, +∞) is ±π/4"
*
* Note that this is inconsistent with the rules for the neighborhood of
* zero that are based on iterated limits:
*
* "atan2(±0, 0) is ±π
* atan2(±0, +0) is ±0"
*
* but GLSL specifically allows implementations to deviate from IEEE rules
* at (0,0), so we take that license (i.e. pretend that 0/0 = 1 here as
* well).
*/
ir_expression *tan = csel(equal(abs(x), abs(y)),
imm(1.0f, n), abs(s_over_t));
/* Calculate the arctangent and fix up the result if we had flipped the
* coordinate system.
*/
ir_variable *arc = body.make_temp(type, "arc");
do_atan(body, type, arc, tan);
body.emit(assign(arc, add(arc, mul(b2f(flip), imm(M_PI_2f)))));
/* Rather convoluted calculation of the sign of the result. When x < 0 we
* cannot use fsign because we need to be able to distinguish between
* negative and positive zero. Unfortunately we cannot use bitwise
* arithmetic tricks either because of back-ends without integer support.
* When x >= 0 rcp_scaled_t will always be non-negative so this won't be
* able to distinguish between negative and positive zero, but we don't
* care because atan2 is continuous along the whole positive y = 0
* half-line, so it won't affect the result significantly.
*/
body.emit(ret(csel(less(min2(y, rcp_scaled_t), imm(0.0f, n)),
neg(arc), arc)));
return sig;
}
void
builtin_builder::do_atan(ir_factory &body, const glsl_type *type, ir_variable *res, operand y_over_x)
{
/*
* range-reduction, first step:
*
* / y_over_x if |y_over_x| <= 1.0;
* x = <
* \ 1.0 / y_over_x otherwise
*/
ir_variable *x = body.make_temp(type, "atan_x");
body.emit(assign(x, div(min2(abs(y_over_x),
imm(1.0f)),
max2(abs(y_over_x),
imm(1.0f)))));
/*
* approximate atan by evaluating polynomial:
*
* x * 0.9999793128310355 - x^3 * 0.3326756418091246 +
* x^5 * 0.1938924977115610 - x^7 * 0.1173503194786851 +
* x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444
*/
ir_variable *tmp = body.make_temp(type, "atan_tmp");
body.emit(assign(tmp, mul(x, x)));
body.emit(assign(tmp, mul(add(mul(sub(mul(add(mul(sub(mul(add(mul(imm(-0.0121323213173444f),
tmp),
imm(0.0536813784310406f)),
tmp),
imm(0.1173503194786851f)),
tmp),
imm(0.1938924977115610f)),
tmp),
imm(0.3326756418091246f)),
tmp),
imm(0.9999793128310355f)),
x)));
/* range-reduction fixup */
body.emit(assign(tmp, add(tmp,
mul(b2f(greater(abs(y_over_x),
imm(1.0f, type->components()))),
add(mul(tmp,
imm(-2.0f)),
imm(M_PI_2f))))));
/* sign fixup */
body.emit(assign(res, mul(tmp, sign(y_over_x))));
}
ir_function_signature *
builtin_builder::_atan(const glsl_type *type)
{
ir_variable *y_over_x = in_var(type, "y_over_x");
MAKE_SIG(type, is_not_nir, 1, y_over_x);
ir_variable *tmp = body.make_temp(type, "tmp");
do_atan(body, type, tmp, y_over_x);
body.emit(ret(tmp));
return sig;
}
ir_function_signature *
builtin_builder::_sinh(const glsl_type *type)
{
@@ -6180,7 +6006,7 @@ UNOP(exp, ir_unop_exp, always_available)
UNOP(log, ir_unop_log, always_available)
UNOP(exp2, ir_unop_exp2, always_available)
UNOP(log2, ir_unop_log2, always_available)
UNOP(atan_op, ir_unop_atan, is_nir)
UNOP(atan, ir_unop_atan, always_available)
UNOPA(sqrt, ir_unop_sqrt)
UNOPA(inversesqrt, ir_unop_rsq)
@@ -6381,9 +6207,9 @@ builtin_builder::_isinf(builtin_available_predicate avail, const glsl_type *type
}
ir_function_signature *
builtin_builder::_atan2_op(const glsl_type *x_type)
builtin_builder::_atan2(const glsl_type *x_type)
{
return binop(is_nir, ir_binop_atan2, x_type, x_type, x_type);
return binop(always_available, ir_binop_atan2, x_type, x_type, x_type);
}
ir_function_signature *