softpipe: Anisotropic filtering extension.
Reference implementation which produces high quality renderings. Based on Higher Quality Elliptical Weighted Avarage Filter (EWA). Signed-off-by: Brian Paul <brianp@vmware.com>
This commit is contained in:

committed by
Brian Paul

parent
b438005d96
commit
f4537f99cc
@@ -81,7 +81,7 @@ softpipe_get_param(struct pipe_screen *screen, enum pipe_cap param)
|
||||
case PIPE_CAP_SM3:
|
||||
return 1;
|
||||
case PIPE_CAP_ANISOTROPIC_FILTER:
|
||||
return 0;
|
||||
return 1;
|
||||
case PIPE_CAP_POINT_SPRITE:
|
||||
return 1;
|
||||
case PIPE_CAP_MAX_RENDER_TARGETS:
|
||||
@@ -161,7 +161,7 @@ softpipe_get_paramf(struct pipe_screen *screen, enum pipe_cap param)
|
||||
case PIPE_CAP_MAX_POINT_WIDTH_AA:
|
||||
return 255.0; /* arbitrary */
|
||||
case PIPE_CAP_MAX_TEXTURE_ANISOTROPY:
|
||||
return 16.0; /* not actually signficant at this time */
|
||||
return 16.0;
|
||||
case PIPE_CAP_MAX_TEXTURE_LOD_BIAS:
|
||||
return 16.0; /* arbitrary */
|
||||
default:
|
||||
|
@@ -1709,6 +1709,317 @@ mip_filter_none(struct tgsi_sampler *tgsi_sampler,
|
||||
}
|
||||
|
||||
|
||||
/* For anisotropic filtering */
|
||||
#define WEIGHT_LUT_SIZE 1024
|
||||
|
||||
static float *weightLut = NULL;
|
||||
|
||||
/**
|
||||
* Creates the look-up table used to speed-up EWA sampling
|
||||
*/
|
||||
static void
|
||||
create_filter_table(void)
|
||||
{
|
||||
unsigned i;
|
||||
if (!weightLut) {
|
||||
weightLut = (float *) malloc(WEIGHT_LUT_SIZE * sizeof(float));
|
||||
|
||||
for (i = 0; i < WEIGHT_LUT_SIZE; ++i) {
|
||||
float alpha = 2;
|
||||
float r2 = (float) i / (float) (WEIGHT_LUT_SIZE - 1);
|
||||
float weight = (float) exp(-alpha * r2);
|
||||
weightLut[i] = weight;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Elliptical weighted average (EWA) filter for producing high quality
|
||||
* anisotropic filtered results.
|
||||
* Based on the Higher Quality Elliptical Weighted Avarage Filter
|
||||
* published by Paul S. Heckbert in his Master's Thesis
|
||||
* "Fundamentals of Texture Mapping and Image Warping" (1989)
|
||||
*/
|
||||
static void
|
||||
img_filter_2d_ewa(struct tgsi_sampler *tgsi_sampler,
|
||||
const float s[QUAD_SIZE],
|
||||
const float t[QUAD_SIZE],
|
||||
const float p[QUAD_SIZE],
|
||||
const float c0[QUAD_SIZE],
|
||||
enum tgsi_sampler_control control,
|
||||
const float dudx, const float dvdx,
|
||||
const float dudy, const float dvdy,
|
||||
float rgba[NUM_CHANNELS][QUAD_SIZE])
|
||||
{
|
||||
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
|
||||
const struct pipe_resource *texture = samp->view->texture;
|
||||
|
||||
unsigned level0 = samp->level > 0 ? samp->level : 0;
|
||||
float scaling = 1.0 / (1 << level0);
|
||||
int width = u_minify(texture->width0, level0);
|
||||
int height = u_minify(texture->height0, level0);
|
||||
|
||||
float ux = dudx * scaling;
|
||||
float vx = dvdx * scaling;
|
||||
float uy = dudy * scaling;
|
||||
float vy = dvdy * scaling;
|
||||
|
||||
/* compute ellipse coefficients to bound the region:
|
||||
* A*x*x + B*x*y + C*y*y = F.
|
||||
*/
|
||||
float A = vx*vx+vy*vy+1;
|
||||
float B = -2*(ux*vx+uy*vy);
|
||||
float C = ux*ux+uy*uy+1;
|
||||
float F = A*C-B*B/4.0;
|
||||
|
||||
/* check if it is an ellipse */
|
||||
/* ASSERT(F > 0.0); */
|
||||
|
||||
/* Compute the ellipse's (u,v) bounding box in texture space */
|
||||
float d = -B*B+4.0*C*A;
|
||||
float box_u = 2.0 / d * sqrt(d*C*F); /* box_u -> half of bbox with */
|
||||
float box_v = 2.0 / d * sqrt(A*d*F); /* box_v -> half of bbox height */
|
||||
|
||||
float rgba_temp[NUM_CHANNELS][QUAD_SIZE];
|
||||
float s_buffer[QUAD_SIZE];
|
||||
float t_buffer[QUAD_SIZE];
|
||||
float weight_buffer[QUAD_SIZE];
|
||||
unsigned buffer_next;
|
||||
int j;
|
||||
float den;// = 0.0F;
|
||||
float ddq;
|
||||
float U;// = u0 - tex_u;
|
||||
int v;
|
||||
|
||||
/* Scale ellipse formula to directly index the Filter Lookup Table.
|
||||
* i.e. scale so that F = WEIGHT_LUT_SIZE-1
|
||||
*/
|
||||
double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F;
|
||||
A *= formScale;
|
||||
B *= formScale;
|
||||
C *= formScale;
|
||||
/* F *= formScale; */ /* no need to scale F as we don't use it below here */
|
||||
|
||||
/* For each quad, the du and dx values are the same and so the ellipse is
|
||||
* also the same. Note that texel/image access can only be performed using
|
||||
* a quad, i.e. it is not possible to get the pixel value for a single
|
||||
* tex coord. In order to have a better performance, the access is buffered
|
||||
* using the s_buffer/t_buffer and weight_buffer. Only when the buffer is full,
|
||||
* then the pixel values are read from the image.
|
||||
*/
|
||||
ddq = 2 * A;
|
||||
|
||||
for (j = 0; j < QUAD_SIZE; j++) {
|
||||
/* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse
|
||||
* and incrementally update the value of Ax^2+Bxy*Cy^2; when this
|
||||
* value, q, is less than F, we're inside the ellipse
|
||||
*/
|
||||
float tex_u=-0.5 + s[j] * texture->width0 * scaling;
|
||||
float tex_v=-0.5 + t[j] * texture->height0 * scaling;
|
||||
|
||||
int u0 = floor(tex_u - box_u);
|
||||
int u1 = ceil (tex_u + box_u);
|
||||
int v0 = floor(tex_v - box_v);
|
||||
int v1 = ceil (tex_v + box_v);
|
||||
|
||||
float num[4] = {0.0F, 0.0F, 0.0F, 0.0F};
|
||||
buffer_next = 0;
|
||||
den = 0;
|
||||
U = u0 - tex_u;
|
||||
for (v = v0; v <= v1; ++v) {
|
||||
float V = v - tex_v;
|
||||
float dq = A * (2 * U + 1) + B * V;
|
||||
float q = (C * V + B * U) * V + A * U * U;
|
||||
|
||||
int u;
|
||||
for (u = u0; u <= u1; ++u) {
|
||||
/* Note that the ellipse has been pre-scaled so F = WEIGHT_LUT_SIZE - 1 */
|
||||
if (q < WEIGHT_LUT_SIZE) {
|
||||
/* as a LUT is used, q must never be negative;
|
||||
* should not happen, though
|
||||
*/
|
||||
const int qClamped = q >= 0.0F ? q : 0;
|
||||
float weight = weightLut[qClamped];
|
||||
|
||||
weight_buffer[buffer_next] = weight;
|
||||
s_buffer[buffer_next] = u / ((float) width);
|
||||
t_buffer[buffer_next] = v / ((float) height);
|
||||
|
||||
buffer_next++;
|
||||
if (buffer_next == QUAD_SIZE) {
|
||||
/* 4 texel coords are in the buffer -> read it now */
|
||||
int jj;
|
||||
/* it is assumed that samp->min_img_filter is set to
|
||||
* img_filter_2d_nearest or one of the
|
||||
* accelerated img_filter_2d_nearest_XXX functions.
|
||||
*/
|
||||
samp->min_img_filter(tgsi_sampler, s_buffer, t_buffer, p, NULL,
|
||||
tgsi_sampler_lod_bias, rgba_temp);
|
||||
for (jj = 0; jj < buffer_next; jj++) {
|
||||
num[0] += weight_buffer[jj] * rgba_temp[0][jj];
|
||||
num[1] += weight_buffer[jj] * rgba_temp[1][jj];
|
||||
num[2] += weight_buffer[jj] * rgba_temp[2][jj];
|
||||
num[3] += weight_buffer[jj] * rgba_temp[3][jj];
|
||||
}
|
||||
|
||||
buffer_next = 0;
|
||||
}
|
||||
|
||||
den += weight;
|
||||
}
|
||||
q += dq;
|
||||
dq += ddq;
|
||||
}
|
||||
}
|
||||
|
||||
/* if the tex coord buffer contains unread values, we will read them now.
|
||||
* Note that in most cases we have to read more pixel values than required,
|
||||
* however, as the img_filter_2d_nearest function(s) does not have a count
|
||||
* parameter, we need to read the whole quad and ignore the unused values
|
||||
*/
|
||||
if (buffer_next > 0) {
|
||||
int jj;
|
||||
/* it is assumed that samp->min_img_filter is set to
|
||||
* img_filter_2d_nearest or one of the
|
||||
* accelerated img_filter_2d_nearest_XXX functions.
|
||||
*/
|
||||
samp->min_img_filter(tgsi_sampler, s_buffer, t_buffer, p, NULL,
|
||||
tgsi_sampler_lod_bias, rgba_temp);
|
||||
for (jj = 0; jj < buffer_next; jj++) {
|
||||
num[0] += weight_buffer[jj] * rgba_temp[0][jj];
|
||||
num[1] += weight_buffer[jj] * rgba_temp[1][jj];
|
||||
num[2] += weight_buffer[jj] * rgba_temp[2][jj];
|
||||
num[3] += weight_buffer[jj] * rgba_temp[3][jj];
|
||||
}
|
||||
}
|
||||
|
||||
if (den <= 0.0F) {
|
||||
/* Reaching this place would mean
|
||||
* that no pixels intersected the ellipse.
|
||||
* This should never happen because
|
||||
* the filter we use always
|
||||
* intersects at least one pixel.
|
||||
*/
|
||||
|
||||
/*rgba[0]=0;
|
||||
rgba[1]=0;
|
||||
rgba[2]=0;
|
||||
rgba[3]=0;*/
|
||||
/* not enough pixels in resampling, resort to direct interpolation */
|
||||
samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba_temp);
|
||||
den = 1;
|
||||
num[0] = rgba_temp[0][j];
|
||||
num[1] = rgba_temp[1][j];
|
||||
num[2] = rgba_temp[2][j];
|
||||
num[3] = rgba_temp[3][j];
|
||||
}
|
||||
|
||||
rgba[0][j] = num[0] / den;
|
||||
rgba[1][j] = num[1] / den;
|
||||
rgba[2][j] = num[2] / den;
|
||||
rgba[3][j] = num[3] / den;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Sample 2D texture using an anisotropic filter.
|
||||
*/
|
||||
static void
|
||||
mip_filter_linear_aniso(struct tgsi_sampler *tgsi_sampler,
|
||||
const float s[QUAD_SIZE],
|
||||
const float t[QUAD_SIZE],
|
||||
const float p[QUAD_SIZE],
|
||||
const float c0[QUAD_SIZE],
|
||||
enum tgsi_sampler_control control,
|
||||
float rgba[NUM_CHANNELS][QUAD_SIZE])
|
||||
{
|
||||
struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
|
||||
const struct pipe_resource *texture = samp->view->texture;
|
||||
int level0;
|
||||
float lambda;
|
||||
float lod[QUAD_SIZE];
|
||||
|
||||
float s_to_u = u_minify(texture->width0, samp->view->u.tex.first_level);
|
||||
float t_to_v = u_minify(texture->height0, samp->view->u.tex.first_level);
|
||||
float dudx = (s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
|
||||
float dudy = (s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
|
||||
float dvdx = (t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
|
||||
float dvdy = (t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
|
||||
|
||||
if (control == tgsi_sampler_lod_bias) {
|
||||
/* note: instead of working with Px and Py, we will use the
|
||||
* squared length instead, to avoid sqrt.
|
||||
*/
|
||||
float Px2 = dudx * dudx + dvdx * dvdx;
|
||||
float Py2 = dudy * dudy + dvdy * dvdy;
|
||||
|
||||
float Pmax2;
|
||||
float Pmin2;
|
||||
float e;
|
||||
const float maxEccentricity = samp->sampler->max_anisotropy * samp->sampler->max_anisotropy;
|
||||
|
||||
if (Px2 < Py2) {
|
||||
Pmax2 = Py2;
|
||||
Pmin2 = Px2;
|
||||
}
|
||||
else {
|
||||
Pmax2 = Px2;
|
||||
Pmin2 = Py2;
|
||||
}
|
||||
|
||||
/* if the eccentricity of the ellipse is too big, scale up the shorter
|
||||
* of the two vectors to limit the maximum amount of work per pixel
|
||||
*/
|
||||
e = Pmax2 / Pmin2;
|
||||
if (e > maxEccentricity) {
|
||||
/* float s=e / maxEccentricity;
|
||||
minor[0] *= s;
|
||||
minor[1] *= s;
|
||||
Pmin2 *= s; */
|
||||
Pmin2 = Pmax2 / maxEccentricity;
|
||||
}
|
||||
|
||||
/* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid
|
||||
* this since 0.5*log(x) = log(sqrt(x))
|
||||
*/
|
||||
lambda = 0.5 * util_fast_log2(Pmin2) + samp->sampler->lod_bias;
|
||||
compute_lod(samp->sampler, lambda, c0, lod);
|
||||
}
|
||||
else {
|
||||
assert(control == tgsi_sampler_lod_explicit);
|
||||
|
||||
memcpy(lod, c0, sizeof(lod));
|
||||
}
|
||||
|
||||
/* XXX: Take into account all lod values.
|
||||
*/
|
||||
lambda = lod[0];
|
||||
level0 = samp->view->u.tex.first_level + (int)lambda;
|
||||
|
||||
/* If the ellipse covers the whole image, we can
|
||||
* simply return the average of the whole image.
|
||||
*/
|
||||
if (level0 >= texture->last_level) {
|
||||
samp->level = texture->last_level;
|
||||
samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
|
||||
}
|
||||
else {
|
||||
/* don't bother interpolating between multiple LODs; it doesn't
|
||||
* seem to be worth the extra running time.
|
||||
*/
|
||||
samp->level = level0;
|
||||
img_filter_2d_ewa(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias,
|
||||
dudx, dvdx, dudy, dvdy, rgba);
|
||||
}
|
||||
|
||||
if (DEBUG_TEX) {
|
||||
print_sample(__FUNCTION__, rgba);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Specialized version of mip_filter_linear with hard-wired calls to
|
||||
@@ -2316,14 +2627,33 @@ sp_create_sampler_variant( const struct pipe_sampler_state *sampler,
|
||||
sampler->normalized_coords &&
|
||||
sampler->wrap_s == PIPE_TEX_WRAP_REPEAT &&
|
||||
sampler->wrap_t == PIPE_TEX_WRAP_REPEAT &&
|
||||
sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR)
|
||||
{
|
||||
sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
|
||||
samp->mip_filter = mip_filter_linear_2d_linear_repeat_POT;
|
||||
}
|
||||
else
|
||||
{
|
||||
else {
|
||||
samp->mip_filter = mip_filter_linear;
|
||||
}
|
||||
|
||||
/* Anisotropic filtering extension. */
|
||||
if (sampler->max_anisotropy > 1) {
|
||||
samp->mip_filter = mip_filter_linear_aniso;
|
||||
|
||||
/* Override min_img_filter:
|
||||
* min_img_filter needs to be set to NEAREST since we need to access
|
||||
* each texture pixel as it is and weight it later; using linear
|
||||
* filters will have incorrect results.
|
||||
* By setting the filter to NEAREST here, we can avoid calling the
|
||||
* generic img_filter_2d_nearest in the anisotropic filter function,
|
||||
* making it possible to use one of the accelerated implementations
|
||||
*/
|
||||
samp->min_img_filter = get_img_filter(key, PIPE_TEX_FILTER_NEAREST, sampler);
|
||||
|
||||
/* on first access create the lookup table containing the filter weights. */
|
||||
if (!weightLut) {
|
||||
create_filter_table();
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user