glsl: move to compiler/
Signed-off-by: Emil Velikov <emil.velikov@collabora.com> Acked-by: Matt Turner <mattst88@gmail.com> Acked-by: Jose Fonseca <jfonseca@vmware.com>
This commit is contained in:

committed by
Emil Velikov

parent
a39a8fbbaa
commit
eb63640c1d
524
src/compiler/glsl/opt_constant_propagation.cpp
Normal file
524
src/compiler/glsl/opt_constant_propagation.cpp
Normal file
@@ -0,0 +1,524 @@
|
||||
/*
|
||||
* Copyright © 2010 Intel Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* constant of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, constant, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above constantright notice and this permission notice (including the next
|
||||
* paragraph) shall be included in all copies or substantial portions of the
|
||||
* Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||||
* THE AUTHORS OR CONSTANTRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
/**
|
||||
* \file opt_constant_propagation.cpp
|
||||
*
|
||||
* Tracks assignments of constants to channels of variables, and
|
||||
* usage of those constant channels with direct usage of the constants.
|
||||
*
|
||||
* This can lead to constant folding and algebraic optimizations in
|
||||
* those later expressions, while causing no increase in instruction
|
||||
* count (due to constants being generally free to load from a
|
||||
* constant push buffer or as instruction immediate values) and
|
||||
* possibly reducing register pressure.
|
||||
*/
|
||||
|
||||
#include "ir.h"
|
||||
#include "ir_visitor.h"
|
||||
#include "ir_rvalue_visitor.h"
|
||||
#include "ir_basic_block.h"
|
||||
#include "ir_optimization.h"
|
||||
#include "compiler/glsl_types.h"
|
||||
#include "util/hash_table.h"
|
||||
|
||||
namespace {
|
||||
|
||||
class acp_entry : public exec_node
|
||||
{
|
||||
public:
|
||||
acp_entry(ir_variable *var, unsigned write_mask, ir_constant *constant)
|
||||
{
|
||||
assert(var);
|
||||
assert(constant);
|
||||
this->var = var;
|
||||
this->write_mask = write_mask;
|
||||
this->constant = constant;
|
||||
this->initial_values = write_mask;
|
||||
}
|
||||
|
||||
acp_entry(const acp_entry *src)
|
||||
{
|
||||
this->var = src->var;
|
||||
this->write_mask = src->write_mask;
|
||||
this->constant = src->constant;
|
||||
this->initial_values = src->initial_values;
|
||||
}
|
||||
|
||||
ir_variable *var;
|
||||
ir_constant *constant;
|
||||
unsigned write_mask;
|
||||
|
||||
/** Mask of values initially available in the constant. */
|
||||
unsigned initial_values;
|
||||
};
|
||||
|
||||
|
||||
class kill_entry : public exec_node
|
||||
{
|
||||
public:
|
||||
kill_entry(ir_variable *var, unsigned write_mask)
|
||||
{
|
||||
assert(var);
|
||||
this->var = var;
|
||||
this->write_mask = write_mask;
|
||||
}
|
||||
|
||||
ir_variable *var;
|
||||
unsigned write_mask;
|
||||
};
|
||||
|
||||
class ir_constant_propagation_visitor : public ir_rvalue_visitor {
|
||||
public:
|
||||
ir_constant_propagation_visitor()
|
||||
{
|
||||
progress = false;
|
||||
killed_all = false;
|
||||
mem_ctx = ralloc_context(0);
|
||||
this->acp = new(mem_ctx) exec_list;
|
||||
this->kills = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
|
||||
_mesa_key_pointer_equal);
|
||||
}
|
||||
~ir_constant_propagation_visitor()
|
||||
{
|
||||
ralloc_free(mem_ctx);
|
||||
}
|
||||
|
||||
virtual ir_visitor_status visit_enter(class ir_loop *);
|
||||
virtual ir_visitor_status visit_enter(class ir_function_signature *);
|
||||
virtual ir_visitor_status visit_enter(class ir_function *);
|
||||
virtual ir_visitor_status visit_leave(class ir_assignment *);
|
||||
virtual ir_visitor_status visit_enter(class ir_call *);
|
||||
virtual ir_visitor_status visit_enter(class ir_if *);
|
||||
|
||||
void add_constant(ir_assignment *ir);
|
||||
void constant_folding(ir_rvalue **rvalue);
|
||||
void constant_propagation(ir_rvalue **rvalue);
|
||||
void kill(ir_variable *ir, unsigned write_mask);
|
||||
void handle_if_block(exec_list *instructions);
|
||||
void handle_rvalue(ir_rvalue **rvalue);
|
||||
|
||||
/** List of acp_entry: The available constants to propagate */
|
||||
exec_list *acp;
|
||||
|
||||
/**
|
||||
* List of kill_entry: The masks of variables whose values were
|
||||
* killed in this block.
|
||||
*/
|
||||
hash_table *kills;
|
||||
|
||||
bool progress;
|
||||
|
||||
bool killed_all;
|
||||
|
||||
void *mem_ctx;
|
||||
};
|
||||
|
||||
|
||||
void
|
||||
ir_constant_propagation_visitor::constant_folding(ir_rvalue **rvalue) {
|
||||
|
||||
if (*rvalue == NULL || (*rvalue)->ir_type == ir_type_constant)
|
||||
return;
|
||||
|
||||
/* Note that we visit rvalues one leaving. So if an expression has a
|
||||
* non-constant operand, no need to go looking down it to find if it's
|
||||
* constant. This cuts the time of this pass down drastically.
|
||||
*/
|
||||
ir_expression *expr = (*rvalue)->as_expression();
|
||||
if (expr) {
|
||||
for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
|
||||
if (!expr->operands[i]->as_constant())
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/* Ditto for swizzles. */
|
||||
ir_swizzle *swiz = (*rvalue)->as_swizzle();
|
||||
if (swiz && !swiz->val->as_constant())
|
||||
return;
|
||||
|
||||
ir_constant *constant = (*rvalue)->constant_expression_value();
|
||||
if (constant) {
|
||||
*rvalue = constant;
|
||||
this->progress = true;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
ir_constant_propagation_visitor::constant_propagation(ir_rvalue **rvalue) {
|
||||
|
||||
if (this->in_assignee || !*rvalue)
|
||||
return;
|
||||
|
||||
const glsl_type *type = (*rvalue)->type;
|
||||
if (!type->is_scalar() && !type->is_vector())
|
||||
return;
|
||||
|
||||
ir_swizzle *swiz = NULL;
|
||||
ir_dereference_variable *deref = (*rvalue)->as_dereference_variable();
|
||||
if (!deref) {
|
||||
swiz = (*rvalue)->as_swizzle();
|
||||
if (!swiz)
|
||||
return;
|
||||
|
||||
deref = swiz->val->as_dereference_variable();
|
||||
if (!deref)
|
||||
return;
|
||||
}
|
||||
|
||||
ir_constant_data data;
|
||||
memset(&data, 0, sizeof(data));
|
||||
|
||||
for (unsigned int i = 0; i < type->components(); i++) {
|
||||
int channel;
|
||||
acp_entry *found = NULL;
|
||||
|
||||
if (swiz) {
|
||||
switch (i) {
|
||||
case 0: channel = swiz->mask.x; break;
|
||||
case 1: channel = swiz->mask.y; break;
|
||||
case 2: channel = swiz->mask.z; break;
|
||||
case 3: channel = swiz->mask.w; break;
|
||||
default: assert(!"shouldn't be reached"); channel = 0; break;
|
||||
}
|
||||
} else {
|
||||
channel = i;
|
||||
}
|
||||
|
||||
foreach_in_list(acp_entry, entry, this->acp) {
|
||||
if (entry->var == deref->var && entry->write_mask & (1 << channel)) {
|
||||
found = entry;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!found)
|
||||
return;
|
||||
|
||||
int rhs_channel = 0;
|
||||
for (int j = 0; j < 4; j++) {
|
||||
if (j == channel)
|
||||
break;
|
||||
if (found->initial_values & (1 << j))
|
||||
rhs_channel++;
|
||||
}
|
||||
|
||||
switch (type->base_type) {
|
||||
case GLSL_TYPE_FLOAT:
|
||||
data.f[i] = found->constant->value.f[rhs_channel];
|
||||
break;
|
||||
case GLSL_TYPE_DOUBLE:
|
||||
data.d[i] = found->constant->value.d[rhs_channel];
|
||||
break;
|
||||
case GLSL_TYPE_INT:
|
||||
data.i[i] = found->constant->value.i[rhs_channel];
|
||||
break;
|
||||
case GLSL_TYPE_UINT:
|
||||
data.u[i] = found->constant->value.u[rhs_channel];
|
||||
break;
|
||||
case GLSL_TYPE_BOOL:
|
||||
data.b[i] = found->constant->value.b[rhs_channel];
|
||||
break;
|
||||
default:
|
||||
assert(!"not reached");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
*rvalue = new(ralloc_parent(deref)) ir_constant(type, &data);
|
||||
this->progress = true;
|
||||
}
|
||||
|
||||
void
|
||||
ir_constant_propagation_visitor::handle_rvalue(ir_rvalue **rvalue)
|
||||
{
|
||||
constant_propagation(rvalue);
|
||||
constant_folding(rvalue);
|
||||
}
|
||||
|
||||
ir_visitor_status
|
||||
ir_constant_propagation_visitor::visit_enter(ir_function_signature *ir)
|
||||
{
|
||||
/* Treat entry into a function signature as a completely separate
|
||||
* block. Any instructions at global scope will be shuffled into
|
||||
* main() at link time, so they're irrelevant to us.
|
||||
*/
|
||||
exec_list *orig_acp = this->acp;
|
||||
hash_table *orig_kills = this->kills;
|
||||
bool orig_killed_all = this->killed_all;
|
||||
|
||||
this->acp = new(mem_ctx) exec_list;
|
||||
this->kills = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
|
||||
_mesa_key_pointer_equal);
|
||||
this->killed_all = false;
|
||||
|
||||
visit_list_elements(this, &ir->body);
|
||||
|
||||
this->kills = orig_kills;
|
||||
this->acp = orig_acp;
|
||||
this->killed_all = orig_killed_all;
|
||||
|
||||
return visit_continue_with_parent;
|
||||
}
|
||||
|
||||
ir_visitor_status
|
||||
ir_constant_propagation_visitor::visit_leave(ir_assignment *ir)
|
||||
{
|
||||
constant_folding(&ir->rhs);
|
||||
|
||||
if (this->in_assignee)
|
||||
return visit_continue;
|
||||
|
||||
unsigned kill_mask = ir->write_mask;
|
||||
if (ir->lhs->as_dereference_array()) {
|
||||
/* The LHS of the assignment uses an array indexing operator (e.g. v[i]
|
||||
* = ...;). Since we only try to constant propagate vectors and
|
||||
* scalars, this means that either (a) array indexing is being used to
|
||||
* select a vector component, or (b) the variable in question is neither
|
||||
* a scalar or a vector, so we don't care about it. In the former case,
|
||||
* we want to kill the whole vector, since in general we can't predict
|
||||
* which vector component will be selected by array indexing. In the
|
||||
* latter case, it doesn't matter what we do, so go ahead and kill the
|
||||
* whole variable anyway.
|
||||
*
|
||||
* Note that if the array index is constant (e.g. v[2] = ...;), we could
|
||||
* in principle be smarter, but we don't need to, because a future
|
||||
* optimization pass will convert it to a simple assignment with the
|
||||
* correct mask.
|
||||
*/
|
||||
kill_mask = ~0;
|
||||
}
|
||||
kill(ir->lhs->variable_referenced(), kill_mask);
|
||||
|
||||
add_constant(ir);
|
||||
|
||||
return visit_continue;
|
||||
}
|
||||
|
||||
ir_visitor_status
|
||||
ir_constant_propagation_visitor::visit_enter(ir_function *ir)
|
||||
{
|
||||
(void) ir;
|
||||
return visit_continue;
|
||||
}
|
||||
|
||||
ir_visitor_status
|
||||
ir_constant_propagation_visitor::visit_enter(ir_call *ir)
|
||||
{
|
||||
/* Do constant propagation on call parameters, but skip any out params */
|
||||
foreach_two_lists(formal_node, &ir->callee->parameters,
|
||||
actual_node, &ir->actual_parameters) {
|
||||
ir_variable *sig_param = (ir_variable *) formal_node;
|
||||
ir_rvalue *param = (ir_rvalue *) actual_node;
|
||||
if (sig_param->data.mode != ir_var_function_out
|
||||
&& sig_param->data.mode != ir_var_function_inout) {
|
||||
ir_rvalue *new_param = param;
|
||||
handle_rvalue(&new_param);
|
||||
if (new_param != param)
|
||||
param->replace_with(new_param);
|
||||
else
|
||||
param->accept(this);
|
||||
}
|
||||
}
|
||||
|
||||
/* Since we're unlinked, we don't (necssarily) know the side effects of
|
||||
* this call. So kill all copies.
|
||||
*/
|
||||
acp->make_empty();
|
||||
this->killed_all = true;
|
||||
|
||||
return visit_continue_with_parent;
|
||||
}
|
||||
|
||||
void
|
||||
ir_constant_propagation_visitor::handle_if_block(exec_list *instructions)
|
||||
{
|
||||
exec_list *orig_acp = this->acp;
|
||||
hash_table *orig_kills = this->kills;
|
||||
bool orig_killed_all = this->killed_all;
|
||||
|
||||
this->acp = new(mem_ctx) exec_list;
|
||||
this->kills = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
|
||||
_mesa_key_pointer_equal);
|
||||
this->killed_all = false;
|
||||
|
||||
/* Populate the initial acp with a constant of the original */
|
||||
foreach_in_list(acp_entry, a, orig_acp) {
|
||||
this->acp->push_tail(new(this->mem_ctx) acp_entry(a));
|
||||
}
|
||||
|
||||
visit_list_elements(this, instructions);
|
||||
|
||||
if (this->killed_all) {
|
||||
orig_acp->make_empty();
|
||||
}
|
||||
|
||||
hash_table *new_kills = this->kills;
|
||||
this->kills = orig_kills;
|
||||
this->acp = orig_acp;
|
||||
this->killed_all = this->killed_all || orig_killed_all;
|
||||
|
||||
hash_entry *htk;
|
||||
hash_table_foreach(new_kills, htk) {
|
||||
kill_entry *k = (kill_entry *) htk->data;
|
||||
kill(k->var, k->write_mask);
|
||||
}
|
||||
}
|
||||
|
||||
ir_visitor_status
|
||||
ir_constant_propagation_visitor::visit_enter(ir_if *ir)
|
||||
{
|
||||
ir->condition->accept(this);
|
||||
handle_rvalue(&ir->condition);
|
||||
|
||||
handle_if_block(&ir->then_instructions);
|
||||
handle_if_block(&ir->else_instructions);
|
||||
|
||||
/* handle_if_block() already descended into the children. */
|
||||
return visit_continue_with_parent;
|
||||
}
|
||||
|
||||
ir_visitor_status
|
||||
ir_constant_propagation_visitor::visit_enter(ir_loop *ir)
|
||||
{
|
||||
exec_list *orig_acp = this->acp;
|
||||
hash_table *orig_kills = this->kills;
|
||||
bool orig_killed_all = this->killed_all;
|
||||
|
||||
/* FINISHME: For now, the initial acp for loops is totally empty.
|
||||
* We could go through once, then go through again with the acp
|
||||
* cloned minus the killed entries after the first run through.
|
||||
*/
|
||||
this->acp = new(mem_ctx) exec_list;
|
||||
this->kills = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
|
||||
_mesa_key_pointer_equal);
|
||||
this->killed_all = false;
|
||||
|
||||
visit_list_elements(this, &ir->body_instructions);
|
||||
|
||||
if (this->killed_all) {
|
||||
orig_acp->make_empty();
|
||||
}
|
||||
|
||||
hash_table *new_kills = this->kills;
|
||||
this->kills = orig_kills;
|
||||
this->acp = orig_acp;
|
||||
this->killed_all = this->killed_all || orig_killed_all;
|
||||
|
||||
hash_entry *htk;
|
||||
hash_table_foreach(new_kills, htk) {
|
||||
kill_entry *k = (kill_entry *) htk->data;
|
||||
kill(k->var, k->write_mask);
|
||||
}
|
||||
|
||||
/* already descended into the children. */
|
||||
return visit_continue_with_parent;
|
||||
}
|
||||
|
||||
void
|
||||
ir_constant_propagation_visitor::kill(ir_variable *var, unsigned write_mask)
|
||||
{
|
||||
assert(var != NULL);
|
||||
|
||||
/* We don't track non-vectors. */
|
||||
if (!var->type->is_vector() && !var->type->is_scalar())
|
||||
return;
|
||||
|
||||
/* Remove any entries currently in the ACP for this kill. */
|
||||
foreach_in_list_safe(acp_entry, entry, this->acp) {
|
||||
if (entry->var == var) {
|
||||
entry->write_mask &= ~write_mask;
|
||||
if (entry->write_mask == 0)
|
||||
entry->remove();
|
||||
}
|
||||
}
|
||||
|
||||
/* Add this writemask of the variable to the list of killed
|
||||
* variables in this block.
|
||||
*/
|
||||
hash_entry *kill_hash_entry = _mesa_hash_table_search(this->kills, var);
|
||||
if (kill_hash_entry) {
|
||||
kill_entry *entry = (kill_entry *) kill_hash_entry->data;
|
||||
entry->write_mask |= write_mask;
|
||||
return;
|
||||
}
|
||||
/* Not already in the list. Make new entry. */
|
||||
_mesa_hash_table_insert(this->kills, var,
|
||||
new(this->mem_ctx) kill_entry(var, write_mask));
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds an entry to the available constant list if it's a plain assignment
|
||||
* of a variable to a variable.
|
||||
*/
|
||||
void
|
||||
ir_constant_propagation_visitor::add_constant(ir_assignment *ir)
|
||||
{
|
||||
acp_entry *entry;
|
||||
|
||||
if (ir->condition)
|
||||
return;
|
||||
|
||||
if (!ir->write_mask)
|
||||
return;
|
||||
|
||||
ir_dereference_variable *deref = ir->lhs->as_dereference_variable();
|
||||
ir_constant *constant = ir->rhs->as_constant();
|
||||
|
||||
if (!deref || !constant)
|
||||
return;
|
||||
|
||||
/* Only do constant propagation on vectors. Constant matrices,
|
||||
* arrays, or structures would require more work elsewhere.
|
||||
*/
|
||||
if (!deref->var->type->is_vector() && !deref->var->type->is_scalar())
|
||||
return;
|
||||
|
||||
/* We can't do copy propagation on buffer variables, since the underlying
|
||||
* memory storage is shared across multiple threads we can't be sure that
|
||||
* the variable value isn't modified between this assignment and the next
|
||||
* instruction where its value is read.
|
||||
*/
|
||||
if (deref->var->data.mode == ir_var_shader_storage ||
|
||||
deref->var->data.mode == ir_var_shader_shared)
|
||||
return;
|
||||
|
||||
entry = new(this->mem_ctx) acp_entry(deref->var, ir->write_mask, constant);
|
||||
this->acp->push_tail(entry);
|
||||
}
|
||||
|
||||
} /* unnamed namespace */
|
||||
|
||||
/**
|
||||
* Does a constant propagation pass on the code present in the instruction stream.
|
||||
*/
|
||||
bool
|
||||
do_constant_propagation(exec_list *instructions)
|
||||
{
|
||||
ir_constant_propagation_visitor v;
|
||||
|
||||
visit_list_elements(&v, instructions);
|
||||
|
||||
return v.progress;
|
||||
}
|
Reference in New Issue
Block a user