glsl: Mark a set of array elements as accessed using a list of array_deref_range

Signed-off-by: Ian Romanick <ian.d.romanick@intel.com>
Cc: mesa-stable@lists.freedesktop.org
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
This commit is contained in:
Ian Romanick
2016-12-15 14:01:28 -08:00
parent 8d499f60c8
commit e92935089b
3 changed files with 253 additions and 0 deletions

View File

@@ -60,6 +60,14 @@ ir_array_refcount_entry::ir_array_refcount_entry(ir_variable *var)
num_bits = MAX2(1, var->type->arrays_of_arrays_size());
bits = new BITSET_WORD[BITSET_WORDS(num_bits)];
memset(bits, 0, BITSET_WORDS(num_bits) * sizeof(bits[0]));
/* Count the "depth" of the arrays-of-arrays. */
array_depth = 0;
for (const glsl_type *type = var->type;
type->is_array();
type = type->fields.array) {
array_depth++;
}
}
@@ -69,6 +77,53 @@ ir_array_refcount_entry::~ir_array_refcount_entry()
}
void
ir_array_refcount_entry::mark_array_elements_referenced(const array_deref_range *dr,
unsigned count)
{
if (count != array_depth)
return;
mark_array_elements_referenced(dr, count, 1, 0);
}
void
ir_array_refcount_entry::mark_array_elements_referenced(const array_deref_range *dr,
unsigned count,
unsigned scale,
unsigned linearized_index)
{
/* Walk through the list of array dereferences in least- to
* most-significant order. Along the way, accumulate the current
* linearized offset and the scale factor for each array-of-.
*/
for (unsigned i = 0; i < count; i++) {
if (dr[i].index < dr[i].size) {
linearized_index += dr[i].index * scale;
scale *= dr[i].size;
} else {
/* For each element in the current array, update the count and
* offset, then recurse to process the remaining arrays.
*
* There is some inefficency here if the last element in the
* array_deref_range list specifies the entire array. In that case,
* the loop will make recursive calls with count == 0. In the call,
* all that will happen is the bit will be set.
*/
for (unsigned j = 0; j < dr[i].size; j++) {
mark_array_elements_referenced(&dr[i + 1],
count - (i + 1),
scale * dr[i].size,
linearized_index + (j * scale));
}
return;
}
}
BITSET_SET(bits, linearized_index);
}
ir_array_refcount_entry *
ir_array_refcount_visitor::get_variable_entry(ir_variable *var)
{

View File

@@ -60,6 +60,34 @@ public:
/** Has the variable been referenced? */
bool is_referenced;
/**
* Mark a set of array elements as accessed.
*
* If every \c array_deref_range is for a single index, only a single
* element will be marked. If any \c array_deref_range is for an entire
* array-of-, then multiple elements will be marked.
*
* Items in the \c array_deref_range list appear in least- to
* most-significant order. This is the \b opposite order the indices
* appear in the GLSL shader text. An array access like
*
* x = y[1][i][3];
*
* would appear as
*
* { { 3, n }, { m, m }, { 1, p } }
*
* where n, m, and p are the sizes of the arrays-of-arrays.
*
* The set of marked array elements can later be queried by
* \c ::is_linearized_index_referenced.
*
* \param dr List of array_deref_range elements to be processed.
* \param count Number of array_deref_range elements to be processed.
*/
void mark_array_elements_referenced(const array_deref_range *dr,
unsigned count);
/** Has a linearized array index been referenced? */
bool is_linearized_index_referenced(unsigned linearized_index) const
{
@@ -80,6 +108,27 @@ private:
*/
unsigned num_bits;
/** Count of nested arrays in the type. */
unsigned array_depth;
/**
* Recursive part of the public mark_array_elements_referenced method.
*
* The recursion occurs when an entire array-of- is accessed. See the
* implementation for more details.
*
* \param dr List of array_deref_range elements to be
* processed.
* \param count Number of array_deref_range elements to be
* processed.
* \param scale Current offset scale.
* \param linearized_index Current accumulated linearized array index.
*/
void mark_array_elements_referenced(const array_deref_range *dr,
unsigned count,
unsigned scale,
unsigned linearized_index);
friend class array_refcount_test;
};

View File

@@ -62,6 +62,18 @@ public:
{
return entry.num_bits;
}
/**
* Wrapper to access private member "array_depth" of ir_array_refcount_entry
*
* The test class is a friend to ir_array_refcount_entry, but the
* individual tests are not part of the class. Since the friendliness of
* the test class does not extend to the tests, provide a wrapper.
*/
unsigned get_array_depth(const ir_array_refcount_entry &entry)
{
return entry.array_depth;
}
};
void
@@ -95,6 +107,7 @@ TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_scalar)
ASSERT_NE((void *)0, get_bits(entry));
EXPECT_FALSE(entry.is_referenced);
EXPECT_EQ(1, get_num_bits(entry));
EXPECT_EQ(0, get_array_depth(entry));
EXPECT_FALSE(entry.is_linearized_index_referenced(0));
}
@@ -108,6 +121,7 @@ TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_vector)
ASSERT_NE((void *)0, get_bits(entry));
EXPECT_FALSE(entry.is_referenced);
EXPECT_EQ(1, get_num_bits(entry));
EXPECT_EQ(0, get_array_depth(entry));
EXPECT_FALSE(entry.is_linearized_index_referenced(0));
}
@@ -121,6 +135,7 @@ TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_matrix)
ASSERT_NE((void *)0, get_bits(entry));
EXPECT_FALSE(entry.is_referenced);
EXPECT_EQ(1, get_num_bits(entry));
EXPECT_EQ(0, get_array_depth(entry));
EXPECT_FALSE(entry.is_linearized_index_referenced(0));
}
@@ -137,7 +152,141 @@ TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_array)
ASSERT_NE((void *)0, get_bits(entry));
EXPECT_FALSE(entry.is_referenced);
EXPECT_EQ(total_elements, get_num_bits(entry));
EXPECT_EQ(3, get_array_depth(entry));
for (unsigned i = 0; i < total_elements; i++)
EXPECT_FALSE(entry.is_linearized_index_referenced(i)) << "index = " << i;
}
TEST_F(array_refcount_test, mark_array_elements_referenced_simple)
{
ir_variable *const var =
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
"a",
ir_var_auto);
const unsigned total_elements = var->type->arrays_of_arrays_size();
ir_array_refcount_entry entry(var);
static const array_deref_range dr[] = {
{ 0, 5 }, { 1, 4 }, { 2, 3 }
};
const unsigned accessed_element = 0 + (1 * 5) + (2 * 4 * 5);
entry.mark_array_elements_referenced(dr, 3);
for (unsigned i = 0; i < total_elements; i++)
EXPECT_EQ(i == accessed_element, entry.is_linearized_index_referenced(i));
}
TEST_F(array_refcount_test, mark_array_elements_referenced_whole_first_array)
{
ir_variable *const var =
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
"a",
ir_var_auto);
ir_array_refcount_entry entry(var);
static const array_deref_range dr[] = {
{ 0, 5 }, { 1, 4 }, { 3, 3 }
};
entry.mark_array_elements_referenced(dr, 3);
for (unsigned i = 0; i < 3; i++) {
for (unsigned j = 0; j < 4; j++) {
for (unsigned k = 0; k < 5; k++) {
const bool accessed = (j == 1) && (k == 0);
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
EXPECT_EQ(accessed,
entry.is_linearized_index_referenced(linearized_index));
}
}
}
}
TEST_F(array_refcount_test, mark_array_elements_referenced_whole_second_array)
{
ir_variable *const var =
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
"a",
ir_var_auto);
ir_array_refcount_entry entry(var);
static const array_deref_range dr[] = {
{ 0, 5 }, { 4, 4 }, { 1, 3 }
};
entry.mark_array_elements_referenced(dr, 3);
for (unsigned i = 0; i < 3; i++) {
for (unsigned j = 0; j < 4; j++) {
for (unsigned k = 0; k < 5; k++) {
const bool accessed = (i == 1) && (k == 0);
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
EXPECT_EQ(accessed,
entry.is_linearized_index_referenced(linearized_index));
}
}
}
}
TEST_F(array_refcount_test, mark_array_elements_referenced_whole_third_array)
{
ir_variable *const var =
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
"a",
ir_var_auto);
ir_array_refcount_entry entry(var);
static const array_deref_range dr[] = {
{ 5, 5 }, { 2, 4 }, { 1, 3 }
};
entry.mark_array_elements_referenced(dr, 3);
for (unsigned i = 0; i < 3; i++) {
for (unsigned j = 0; j < 4; j++) {
for (unsigned k = 0; k < 5; k++) {
const bool accessed = (i == 1) && (j == 2);
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
EXPECT_EQ(accessed,
entry.is_linearized_index_referenced(linearized_index));
}
}
}
}
TEST_F(array_refcount_test, mark_array_elements_referenced_whole_first_and_third_arrays)
{
ir_variable *const var =
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
"a",
ir_var_auto);
ir_array_refcount_entry entry(var);
static const array_deref_range dr[] = {
{ 5, 5 }, { 3, 4 }, { 3, 3 }
};
entry.mark_array_elements_referenced(dr, 3);
for (unsigned i = 0; i < 3; i++) {
for (unsigned j = 0; j < 4; j++) {
for (unsigned k = 0; k < 5; k++) {
const bool accessed = (j == 3);
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
EXPECT_EQ(accessed,
entry.is_linearized_index_referenced(linearized_index));
}
}
}
}