anv: Implement pipeline statistics queries

In the end, pipeline statistics queries look a lot like occlusion
queries only with between 1 and 11 begin/end pairs being generated
instead of just the one.

Reviewed-By: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
This commit is contained in:
Ilia Mirkin
2016-11-27 14:23:23 -05:00
committed by Jason Ekstrand
parent dda54890f3
commit e675f57d4f
4 changed files with 226 additions and 12 deletions

View File

@@ -51,6 +51,7 @@ VkResult genX(CreateQueryPool)(
*/
uint32_t uint64s_per_slot = 1;
VkQueryPipelineStatisticFlags pipeline_statistics = 0;
switch (pCreateInfo->queryType) {
case VK_QUERY_TYPE_OCCLUSION:
/* Occlusion queries have two values: begin and end. */
@@ -61,7 +62,15 @@ VkResult genX(CreateQueryPool)(
uint64s_per_slot += 1;
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
return VK_ERROR_INCOMPATIBLE_DRIVER;
pipeline_statistics = pCreateInfo->pipelineStatistics;
/* We're going to trust this field implicitly so we need to ensure that
* no unhandled extension bits leak in.
*/
pipeline_statistics &= ANV_PIPELINE_STATISTICS_MASK;
/* Statistics queries have a min and max for every statistic */
uint64s_per_slot += 2 * _mesa_bitcount(pipeline_statistics);
break;
default:
assert(!"Invalid query type");
}
@@ -72,6 +81,7 @@ VkResult genX(CreateQueryPool)(
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
pool->type = pCreateInfo->queryType;
pool->pipeline_statistics = pipeline_statistics;
pool->stride = uint64s_per_slot * sizeof(uint64_t);
pool->slots = pCreateInfo->queryCount;
@@ -137,6 +147,7 @@ VkResult genX(GetQueryPoolResults)(
int ret;
assert(pool->type == VK_QUERY_TYPE_OCCLUSION ||
pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS ||
pool->type == VK_QUERY_TYPE_TIMESTAMP);
if (pData == NULL)
@@ -184,8 +195,27 @@ VkResult genX(GetQueryPoolResults)(
cpu_write_query_result(pData, flags, 0, slot[2] - slot[1]);
break;
}
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
unreachable("pipeline stats not supported");
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
uint32_t statistics = pool->pipeline_statistics;
uint32_t idx = 0;
while (statistics) {
uint32_t stat = u_bit_scan(&statistics);
uint64_t result = slot[idx * 2 + 2] - slot[idx * 2 + 1];
/* WaDividePSInvocationCountBy4:HSW,BDW */
if ((device->info.gen == 8 || device->info.is_haswell) &&
(1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT)
result >>= 2;
cpu_write_query_result(pData, flags, idx, result);
idx++;
}
assert(idx == _mesa_bitcount(pool->pipeline_statistics));
break;
}
case VK_QUERY_TYPE_TIMESTAMP: {
cpu_write_query_result(pData, flags, 0, slot[1]);
break;
@@ -197,8 +227,11 @@ VkResult genX(GetQueryPoolResults)(
status = VK_NOT_READY;
}
if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT)
cpu_write_query_result(pData, flags, 1, available);
if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
uint32_t idx = (pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS) ?
_mesa_bitcount(pool->pipeline_statistics) : 1;
cpu_write_query_result(pData, flags, idx, available);
}
pData += stride;
if (pData >= data_end)
@@ -256,6 +289,40 @@ void genX(CmdResetQueryPool)(
}
}
static const uint32_t vk_pipeline_stat_to_reg[] = {
GENX(IA_VERTICES_COUNT_num),
GENX(IA_PRIMITIVES_COUNT_num),
GENX(VS_INVOCATION_COUNT_num),
GENX(GS_INVOCATION_COUNT_num),
GENX(GS_PRIMITIVES_COUNT_num),
GENX(CL_INVOCATION_COUNT_num),
GENX(CL_PRIMITIVES_COUNT_num),
GENX(PS_INVOCATION_COUNT_num),
GENX(HS_INVOCATION_COUNT_num),
GENX(DS_INVOCATION_COUNT_num),
GENX(CS_INVOCATION_COUNT_num),
};
static void
emit_pipeline_stat(struct anv_cmd_buffer *cmd_buffer, uint32_t stat,
struct anv_bo *bo, uint32_t offset)
{
STATIC_ASSERT(ANV_PIPELINE_STATISTICS_MASK ==
(1 << ARRAY_SIZE(vk_pipeline_stat_to_reg)) - 1);
assert(stat < ARRAY_SIZE(vk_pipeline_stat_to_reg));
uint32_t reg = vk_pipeline_stat_to_reg[stat];
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), lrm) {
lrm.RegisterAddress = reg,
lrm.MemoryAddress = (struct anv_address) { bo, offset };
}
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), lrm) {
lrm.RegisterAddress = reg + 4,
lrm.MemoryAddress = (struct anv_address) { bo, offset + 4 };
}
}
void genX(CmdBeginQuery)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
@@ -284,7 +351,23 @@ void genX(CmdBeginQuery)(
emit_ps_depth_count(cmd_buffer, &pool->bo, query * pool->stride + 8);
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
/* TODO: This might only be necessary for certain stats */
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.CommandStreamerStallEnable = true;
pc.StallAtPixelScoreboard = true;
}
uint32_t statistics = pool->pipeline_statistics;
uint32_t offset = query * pool->stride + 8;
while (statistics) {
uint32_t stat = u_bit_scan(&statistics);
emit_pipeline_stat(cmd_buffer, stat, &pool->bo, offset);
offset += 16;
}
break;
}
default:
unreachable("");
}
@@ -304,7 +387,25 @@ void genX(CmdEndQuery)(
emit_query_availability(cmd_buffer, &pool->bo, query * pool->stride);
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
/* TODO: This might only be necessary for certain stats */
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.CommandStreamerStallEnable = true;
pc.StallAtPixelScoreboard = true;
}
uint32_t statistics = pool->pipeline_statistics;
uint32_t offset = query * pool->stride + 16;
while (statistics) {
uint32_t stat = u_bit_scan(&statistics);
emit_pipeline_stat(cmd_buffer, stat, &pool->bo, offset);
offset += 16;
}
emit_query_availability(cmd_buffer, &pool->bo, query * pool->stride);
break;
}
default:
unreachable("");
}
@@ -400,6 +501,90 @@ emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
}
}
static void
emit_load_alu_reg_imm32(struct anv_batch *batch, uint32_t reg, uint32_t imm)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = reg;
lri.DataDWord = imm;
}
}
static void
emit_load_alu_reg_imm64(struct anv_batch *batch, uint32_t reg, uint64_t imm)
{
emit_load_alu_reg_imm32(batch, reg, (uint32_t)imm);
emit_load_alu_reg_imm32(batch, reg + 4, (uint32_t)(imm >> 32));
}
static void
emit_load_alu_reg_reg32(struct anv_batch *batch, uint32_t src, uint32_t dst)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
lrr.SourceRegisterAddress = src;
lrr.DestinationRegisterAddress = dst;
}
}
/*
* GPR0 = GPR0 & ((1ull << n) - 1);
*/
static void
keep_gpr0_lower_n_bits(struct anv_batch *batch, uint32_t n)
{
assert(n < 64);
emit_load_alu_reg_imm64(batch, CS_GPR(1), (1ull << n) - 1);
uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
dw[1] = alu(OPCODE_LOAD, OPERAND_SRCA, OPERAND_R0);
dw[2] = alu(OPCODE_LOAD, OPERAND_SRCB, OPERAND_R1);
dw[3] = alu(OPCODE_AND, 0, 0);
dw[4] = alu(OPCODE_STORE, OPERAND_R0, OPERAND_ACCU);
}
/*
* GPR0 = GPR0 << 30;
*/
static void
shl_gpr0_by_30_bits(struct anv_batch *batch)
{
/* First we mask 34 bits of GPR0 to prevent overflow */
keep_gpr0_lower_n_bits(batch, 34);
const uint32_t outer_count = 5;
const uint32_t inner_count = 6;
STATIC_ASSERT(outer_count * inner_count == 30);
const uint32_t cmd_len = 1 + inner_count * 4;
/* We'll emit 5 commands, each shifting GPR0 left by 6 bits, for a total of
* 30 left shifts.
*/
for (int o = 0; o < outer_count; o++) {
/* Submit one MI_MATH to shift left by 6 bits */
uint32_t *dw = anv_batch_emitn(batch, cmd_len, GENX(MI_MATH));
dw++;
for (int i = 0; i < inner_count; i++, dw += 4) {
dw[0] = alu(OPCODE_LOAD, OPERAND_SRCA, OPERAND_R0);
dw[1] = alu(OPCODE_LOAD, OPERAND_SRCB, OPERAND_R0);
dw[2] = alu(OPCODE_ADD, 0, 0);
dw[3] = alu(OPCODE_STORE, OPERAND_R0, OPERAND_ACCU);
}
}
}
/*
* GPR0 = GPR0 >> 2;
*
* Note that the upper 30 bits of GPR are lost!
*/
static void
shr_gpr0_by_2_bits(struct anv_batch *batch)
{
shl_gpr0_by_30_bits(batch);
emit_load_alu_reg_reg32(batch, CS_GPR(0) + 4, CS_GPR(0));
emit_load_alu_reg_imm32(batch, CS_GPR(0) + 4, 0);
}
static void
gpu_write_query_result(struct anv_batch *batch,
struct anv_buffer *dst_buffer, uint32_t dst_offset,
@@ -459,7 +644,7 @@ void genX(CmdCopyQueryPoolResults)(
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
uint32_t slot_offset, dst_offset;
uint32_t slot_offset;
if (flags & VK_QUERY_RESULT_WAIT_BIT) {
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
@@ -469,7 +654,6 @@ void genX(CmdCopyQueryPoolResults)(
}
for (uint32_t i = 0; i < queryCount; i++) {
slot_offset = (firstQuery + i) * pool->stride;
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION:
@@ -479,6 +663,31 @@ void genX(CmdCopyQueryPoolResults)(
flags, 0, CS_GPR(2));
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
uint32_t statistics = pool->pipeline_statistics;
uint32_t idx = 0;
while (statistics) {
uint32_t stat = u_bit_scan(&statistics);
compute_query_result(&cmd_buffer->batch, OPERAND_R0,
&pool->bo, slot_offset + idx * 16 + 8);
/* WaDividePSInvocationCountBy4:HSW,BDW */
if ((cmd_buffer->device->info.gen == 8 ||
cmd_buffer->device->info.is_haswell) &&
(1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT) {
shr_gpr0_by_2_bits(&cmd_buffer->batch);
}
gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
flags, idx, CS_GPR(0));
idx++;
}
assert(idx == _mesa_bitcount(pool->pipeline_statistics));
break;
}
case VK_QUERY_TYPE_TIMESTAMP:
emit_load_alu_reg_u64(&cmd_buffer->batch,
CS_GPR(2), &pool->bo, slot_offset + 8);
@@ -491,10 +700,13 @@ void genX(CmdCopyQueryPoolResults)(
}
if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
uint32_t idx = (pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS) ?
_mesa_bitcount(pool->pipeline_statistics) : 1;
emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0),
&pool->bo, slot_offset);
gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
flags, 1, CS_GPR(0));
flags, idx, CS_GPR(0));
}
destOffset += destStride;