mesa/format_utils: Add a general format conversion function

Most format conversion operations required by GL can be performed by
converting one channel at a time, shuffling the channels around, and
optionally filling missing channels with zeros and ones.  This adds a
function to do just that in a general, yet efficient, way.

v2:
 * Add better comments including full docs for functions
 * Don't use __typeof__
 * Use inline helpers instead of writing out conversions by hand,
 * Force full loop unrolling for better performance

v3: Add another set of parens around the MAX_INT macro

Signed-off-by: Jason Ekstrand <jason.ekstrand@intel.com>
Reviewed-by: Brian Paul <brianp@vmware.com>
This commit is contained in:
Jason Ekstrand
2014-07-11 08:41:49 -07:00
parent 452d64986b
commit d55f77b503
3 changed files with 912 additions and 0 deletions

View File

@@ -51,6 +51,7 @@ MAIN_FILES = \
$(SRCDIR)main/formats.c \
$(SRCDIR)main/format_pack.c \
$(SRCDIR)main/format_unpack.c \
$(SRCDIR)main/format_utils.c \
$(SRCDIR)main/framebuffer.c \
$(SRCDIR)main/get.c \
$(SRCDIR)main/genmipmap.c \

View File

@@ -0,0 +1,870 @@
/*
* Mesa 3-D graphics library
*
* Copyright (C) 2014 Intel Corporation All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "format_utils.h"
#include "glformats.h"
/* A bunch of format conversion macros and helper functions used below */
/* Only guaranteed to work for BITS <= 32 */
#define MAX_UINT(BITS) ((BITS) == 32 ? UINT32_MAX : ((1u << (BITS)) - 1))
#define MAX_INT(BITS) ((int)MAX_UINT((BITS) - 1))
/* Extends an integer of size SRC_BITS to one of size DST_BITS linearly */
#define EXTEND_NORMALIZED_INT(X, SRC_BITS, DST_BITS) \
(((X) * (int)(MAX_UINT(DST_BITS) / MAX_UINT(SRC_BITS))) + \
((DST_BITS % SRC_BITS) ? ((X) >> (SRC_BITS - DST_BITS % SRC_BITS)) : 0))
static inline float
unorm_to_float(unsigned x, unsigned src_bits)
{
return x * (1.0f / (float)MAX_UINT(src_bits));
}
static inline float
snorm_to_float(int x, unsigned src_bits)
{
if (x == -MAX_INT(src_bits))
return -1.0f;
else
return x * (1.0f / (float)MAX_INT(src_bits));
}
static inline uint16_t
unorm_to_half(unsigned x, unsigned src_bits)
{
return _mesa_float_to_half(unorm_to_float(x, src_bits));
}
static inline uint16_t
snorm_to_half(int x, unsigned src_bits)
{
return _mesa_float_to_half(snorm_to_float(x, src_bits));
}
static inline unsigned
float_to_unorm(float x, unsigned dst_bits)
{
if (x < 0.0f)
return 0;
else if (x > 1.0f)
return MAX_UINT(dst_bits);
else
return F_TO_I(x * MAX_UINT(dst_bits));
}
static inline unsigned
half_to_unorm(uint16_t x, unsigned dst_bits)
{
return float_to_unorm(_mesa_half_to_float(x), dst_bits);
}
static inline unsigned
unorm_to_unorm(unsigned x, unsigned src_bits, unsigned dst_bits)
{
if (src_bits < dst_bits)
return EXTEND_NORMALIZED_INT(x, src_bits, dst_bits);
else
return x >> (src_bits - dst_bits);
}
static inline unsigned
snorm_to_unorm(int x, unsigned src_bits, unsigned dst_bits)
{
if (x < 0)
return 0;
else
return unorm_to_unorm(x, src_bits - 1, dst_bits);
}
static inline int
float_to_snorm(float x, unsigned dst_bits)
{
if (x < -1.0f)
return -MAX_INT(dst_bits);
else if (x > 1.0f)
return MAX_INT(dst_bits);
else
return F_TO_I(x * MAX_INT(dst_bits));
}
static inline int
half_to_snorm(uint16_t x, unsigned dst_bits)
{
return float_to_snorm(_mesa_half_to_float(x), dst_bits);
}
static inline int
unorm_to_snorm(unsigned x, unsigned src_bits, unsigned dst_bits)
{
return unorm_to_unorm(x, src_bits, dst_bits - 1);
}
static inline int
snorm_to_snorm(int x, unsigned src_bits, unsigned dst_bits)
{
if (x < -MAX_INT(src_bits))
return -MAX_INT(dst_bits);
else if (src_bits < dst_bits)
return EXTEND_NORMALIZED_INT(x, src_bits - 1, dst_bits - 1);
else
return x >> (src_bits - dst_bits);
}
static inline unsigned
float_to_uint(float x)
{
if (x < 0.0f)
return 0;
else
return x;
}
static inline unsigned
half_to_uint(uint16_t x)
{
if (_mesa_half_is_negative(x))
return 0;
else
return _mesa_float_to_half(x);
}
/**
* Attempts to perform the given swizzle-and-convert operation with memcpy
*
* This function determines if the given swizzle-and-convert operation can
* be done with a simple memcpy and, if so, does the memcpy. If not, it
* returns false and we fall back to the standard version below.
*
* The arguments are exactly the same as for _mesa_swizzle_and_convert
*
* \return true if it successfully performed the swizzle-and-convert
* operation with memcpy, false otherwise
*/
static bool
swizzle_convert_try_memcpy(void *dst, GLenum dst_type, int num_dst_channels,
const void *src, GLenum src_type, int num_src_channels,
const uint8_t swizzle[4], bool normalized, int count)
{
int i;
if (src_type != dst_type)
return false;
if (num_src_channels != num_dst_channels)
return false;
for (i = 0; i < num_dst_channels; ++i)
if (swizzle[i] != i && swizzle[i] != MESA_FORMAT_SWIZZLE_NONE)
return false;
memcpy(dst, src, count * num_src_channels * _mesa_sizeof_type(src_type));
return true;
}
/**
* Represents a single instance of the standard swizzle-and-convert loop
*
* Any swizzle-and-convert operation simply loops through the pixels and
* performs the transformation operation one pixel at a time. This macro
* embodies one instance of the conversion loop. This way we can do all
* control flow outside of the loop and allow the compiler to unroll
* everything inside the loop.
*
* Note: This loop is carefully crafted for performance. Be careful when
* changing it and run some benchmarks to ensure no performance regressions
* if you do.
*
* \param DST_TYPE the C datatype of the destination
* \param DST_CHANS the number of destination channels
* \param SRC_TYPE the C datatype of the source
* \param SRC_CHANS the number of source channels
* \param CONV an expression for converting from the source data,
* storred in the variable "src", to the destination
* format
*/
#define SWIZZLE_CONVERT_LOOP(DST_TYPE, DST_CHANS, SRC_TYPE, SRC_CHANS, CONV) \
for (s = 0; s < count; ++s) { \
for (j = 0; j < SRC_CHANS; ++j) { \
SRC_TYPE src = typed_src[j]; \
tmp[j] = CONV; \
} \
\
typed_dst[0] = tmp[swizzle_x]; \
if (DST_CHANS > 1) { \
typed_dst[1] = tmp[swizzle_y]; \
if (DST_CHANS > 2) { \
typed_dst[2] = tmp[swizzle_z]; \
if (DST_CHANS > 3) { \
typed_dst[3] = tmp[swizzle_w]; \
} \
} \
} \
typed_src += SRC_CHANS; \
typed_dst += DST_CHANS; \
} \
/**
* Represents a single swizzle-and-convert operation
*
* This macro represents everything done in a single swizzle-and-convert
* operation. The actual work is done by the SWIZZLE_CONVERT_LOOP macro.
* This macro acts as a wrapper that uses a nested switch to ensure that
* all looping parameters get unrolled.
*
* This macro makes assumptions about variables etc. in the calling
* function. Changes to _mesa_swizzle_and_convert may require changes to
* this macro.
*
* \param DST_TYPE the C datatype of the destination
* \param SRC_TYPE the C datatype of the source
* \param CONV an expression for converting from the source data,
* storred in the variable "src", to the destination
* format
*/
#define SWIZZLE_CONVERT(DST_TYPE, SRC_TYPE, CONV) \
do { \
const SRC_TYPE *typed_src = void_src; \
DST_TYPE *typed_dst = void_dst; \
DST_TYPE tmp[7]; \
tmp[4] = 0; \
tmp[5] = one; \
switch (num_dst_channels) { \
case 1: \
switch (num_src_channels) { \
case 1: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 1, SRC_TYPE, 1, CONV) \
break; \
case 2: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 1, SRC_TYPE, 2, CONV) \
break; \
case 3: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 1, SRC_TYPE, 3, CONV) \
break; \
case 4: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 1, SRC_TYPE, 4, CONV) \
break; \
} \
break; \
case 2: \
switch (num_src_channels) { \
case 1: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 2, SRC_TYPE, 1, CONV) \
break; \
case 2: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 2, SRC_TYPE, 2, CONV) \
break; \
case 3: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 2, SRC_TYPE, 3, CONV) \
break; \
case 4: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 2, SRC_TYPE, 4, CONV) \
break; \
} \
break; \
case 3: \
switch (num_src_channels) { \
case 1: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 3, SRC_TYPE, 1, CONV) \
break; \
case 2: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 3, SRC_TYPE, 2, CONV) \
break; \
case 3: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 3, SRC_TYPE, 3, CONV) \
break; \
case 4: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 3, SRC_TYPE, 4, CONV) \
break; \
} \
break; \
case 4: \
switch (num_src_channels) { \
case 1: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 4, SRC_TYPE, 1, CONV) \
break; \
case 2: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 4, SRC_TYPE, 2, CONV) \
break; \
case 3: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 4, SRC_TYPE, 3, CONV) \
break; \
case 4: \
SWIZZLE_CONVERT_LOOP(DST_TYPE, 4, SRC_TYPE, 4, CONV) \
break; \
} \
break; \
} \
} while (0);
/**
* Convert between array-based color formats.
*
* Most format conversion operations required by GL can be performed by
* converting one channel at a time, shuffling the channels around, and
* optionally filling missing channels with zeros and ones. This function
* does just that in a general, yet efficient, way.
*
* The swizzle parameter is an array of 4 numbers (see
* _mesa_get_format_swizzle) that describes where each channel in the
* destination should come from in the source. If swizzle[i] < 4 then it
* means that dst[i] = CONVERT(src[swizzle[i]]). If swizzle[i] is
* MESA_FORMAT_SWIZZLE_ZERO or MESA_FORMAT_SWIZZLE_ONE, the corresponding
* dst[i] will be filled with the appropreate representation of zero or one
* respectively.
*
* Under most circumstances, the source and destination images must be
* different as no care is taken not to clobber one with the other.
* However, if they have the same number of bits per pixel, it is safe to
* do an in-place conversion.
*
* \param[out] dst pointer to where the converted data should
* be stored
*
* \param[in] dst_type the destination GL type of the converted
* data (GL_BYTE, etc.)
*
* \param[in] num_dst_channels the number of channels in the converted
* data
*
* \param[in] src pointer to the source data
*
* \param[in] src_type the GL type of the source data (GL_BYTE,
* etc.)
*
* \param[in] num_src_channels the number of channels in the source data
* (the number of channels total, not just
* the number used)
*
* \param[in] swizzle describes how to get the destination data
* from the source data.
*
* \param[in] normalized for integer types, this indicates whether
* the data should be considered as integers
* or as normalized integers;
*
* \param[in] count the number of pixels to convert
*/
void
_mesa_swizzle_and_convert(void *void_dst, GLenum dst_type, int num_dst_channels,
const void *void_src, GLenum src_type, int num_src_channels,
const uint8_t swizzle[4], bool normalized, int count)
{
int s, j;
register uint8_t swizzle_x, swizzle_y, swizzle_z, swizzle_w;
if (swizzle_convert_try_memcpy(void_dst, dst_type, num_dst_channels,
void_src, src_type, num_src_channels,
swizzle, normalized, count))
return;
swizzle_x = swizzle[0];
swizzle_y = swizzle[1];
swizzle_z = swizzle[2];
swizzle_w = swizzle[3];
switch (dst_type) {
case GL_FLOAT:
{
const float one = 1.0f;
switch (src_type) {
case GL_FLOAT:
SWIZZLE_CONVERT(float, float, src)
break;
case GL_HALF_FLOAT:
SWIZZLE_CONVERT(float, uint16_t, _mesa_half_to_float(src))
break;
case GL_UNSIGNED_BYTE:
if (normalized) {
SWIZZLE_CONVERT(float, uint8_t, unorm_to_float(src, 8))
} else {
SWIZZLE_CONVERT(float, uint8_t, src)
}
break;
case GL_BYTE:
if (normalized) {
SWIZZLE_CONVERT(float, int8_t, snorm_to_float(src, 8))
} else {
SWIZZLE_CONVERT(float, int8_t, src)
}
break;
case GL_UNSIGNED_SHORT:
if (normalized) {
SWIZZLE_CONVERT(float, uint16_t, unorm_to_float(src, 16))
} else {
SWIZZLE_CONVERT(float, uint16_t, src)
}
break;
case GL_SHORT:
if (normalized) {
SWIZZLE_CONVERT(float, int16_t, snorm_to_float(src, 16))
} else {
SWIZZLE_CONVERT(float, int16_t, src)
}
break;
case GL_UNSIGNED_INT:
if (normalized) {
SWIZZLE_CONVERT(float, uint32_t, unorm_to_float(src, 32))
} else {
SWIZZLE_CONVERT(float, uint32_t, src)
}
break;
case GL_INT:
if (normalized) {
SWIZZLE_CONVERT(float, int32_t, snorm_to_float(src, 32))
} else {
SWIZZLE_CONVERT(float, int32_t, src)
}
break;
default:
assert(!"Invalid channel type combination");
}
}
break;
case GL_HALF_FLOAT:
{
const uint16_t one = _mesa_float_to_half(1.0f);
switch (src_type) {
case GL_FLOAT:
SWIZZLE_CONVERT(uint16_t, float, _mesa_float_to_half(src))
break;
case GL_HALF_FLOAT:
SWIZZLE_CONVERT(uint16_t, uint16_t, src)
break;
case GL_UNSIGNED_BYTE:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, uint8_t, unorm_to_half(src, 8))
} else {
SWIZZLE_CONVERT(uint16_t, uint8_t, _mesa_float_to_half(src))
}
break;
case GL_BYTE:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, int8_t, snorm_to_half(src, 8))
} else {
SWIZZLE_CONVERT(uint16_t, int8_t, _mesa_float_to_half(src))
}
break;
case GL_UNSIGNED_SHORT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, uint16_t, unorm_to_half(src, 16))
} else {
SWIZZLE_CONVERT(uint16_t, uint16_t, _mesa_float_to_half(src))
}
break;
case GL_SHORT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, int16_t, snorm_to_half(src, 16))
} else {
SWIZZLE_CONVERT(uint16_t, int16_t, _mesa_float_to_half(src))
}
break;
case GL_UNSIGNED_INT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, uint32_t, unorm_to_half(src, 32))
} else {
SWIZZLE_CONVERT(uint16_t, uint32_t, _mesa_float_to_half(src))
}
break;
case GL_INT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, int32_t, snorm_to_half(src, 32))
} else {
SWIZZLE_CONVERT(uint16_t, int32_t, _mesa_float_to_half(src))
}
break;
default:
assert(!"Invalid channel type combination");
}
}
break;
case GL_UNSIGNED_BYTE:
{
const uint8_t one = normalized ? UINT8_MAX : 1;
switch (src_type) {
case GL_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, float, float_to_unorm(src, 8))
} else {
SWIZZLE_CONVERT(uint8_t, float, (src < 0) ? 0 : src)
}
break;
case GL_HALF_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, uint16_t, half_to_unorm(src, 8))
} else {
SWIZZLE_CONVERT(uint8_t, uint16_t, half_to_uint(src))
}
break;
case GL_UNSIGNED_BYTE:
SWIZZLE_CONVERT(uint8_t, uint8_t, src)
break;
case GL_BYTE:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, int8_t, snorm_to_unorm(src, 8, 8))
} else {
SWIZZLE_CONVERT(uint8_t, int8_t, (src < 0) ? 0 : src)
}
break;
case GL_UNSIGNED_SHORT:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, uint16_t, unorm_to_unorm(src, 16, 8))
} else {
SWIZZLE_CONVERT(uint8_t, uint16_t, src)
}
break;
case GL_SHORT:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, int16_t, snorm_to_unorm(src, 16, 8))
} else {
SWIZZLE_CONVERT(uint8_t, int16_t, (src < 0) ? 0 : src)
}
break;
case GL_UNSIGNED_INT:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, uint32_t, unorm_to_unorm(src, 32, 8))
} else {
SWIZZLE_CONVERT(uint8_t, uint32_t, src)
}
break;
case GL_INT:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, int32_t, snorm_to_unorm(src, 32, 8))
} else {
SWIZZLE_CONVERT(uint8_t, int32_t, (src < 0) ? 0 : src)
}
break;
default:
assert(!"Invalid channel type combination");
}
}
break;
case GL_BYTE:
{
const int8_t one = normalized ? INT8_MAX : 1;
switch (src_type) {
case GL_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, float, float_to_snorm(src, 8))
} else {
SWIZZLE_CONVERT(uint8_t, float, src)
}
break;
case GL_HALF_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint8_t, uint16_t, half_to_snorm(src, 8))
} else {
SWIZZLE_CONVERT(uint8_t, uint16_t, _mesa_half_to_float(src))
}
break;
case GL_UNSIGNED_BYTE:
if (normalized) {
SWIZZLE_CONVERT(int8_t, uint8_t, unorm_to_snorm(src, 8, 8))
} else {
SWIZZLE_CONVERT(int8_t, uint8_t, src)
}
break;
case GL_BYTE:
SWIZZLE_CONVERT(int8_t, int8_t, src)
break;
case GL_UNSIGNED_SHORT:
if (normalized) {
SWIZZLE_CONVERT(int8_t, uint16_t, unorm_to_snorm(src, 16, 8))
} else {
SWIZZLE_CONVERT(int8_t, uint16_t, src)
}
break;
case GL_SHORT:
if (normalized) {
SWIZZLE_CONVERT(int8_t, int16_t, snorm_to_snorm(src, 16, 8))
} else {
SWIZZLE_CONVERT(int8_t, int16_t, src)
}
break;
case GL_UNSIGNED_INT:
if (normalized) {
SWIZZLE_CONVERT(int8_t, uint32_t, unorm_to_snorm(src, 32, 8))
} else {
SWIZZLE_CONVERT(int8_t, uint32_t, src)
}
break;
case GL_INT:
if (normalized) {
SWIZZLE_CONVERT(int8_t, int32_t, snorm_to_snorm(src, 32, 8))
} else {
SWIZZLE_CONVERT(int8_t, int32_t, src)
}
break;
default:
assert(!"Invalid channel type combination");
}
}
break;
case GL_UNSIGNED_SHORT:
{
const uint16_t one = normalized ? UINT16_MAX : 1;
switch (src_type) {
case GL_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, float, float_to_unorm(src, 16))
} else {
SWIZZLE_CONVERT(uint16_t, float, (src < 0) ? 0 : src)
}
break;
case GL_HALF_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, uint16_t, half_to_unorm(src, 16))
} else {
SWIZZLE_CONVERT(uint16_t, uint16_t, half_to_uint(src))
}
break;
case GL_UNSIGNED_BYTE:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, uint8_t, unorm_to_unorm(src, 8, 16))
} else {
SWIZZLE_CONVERT(uint16_t, uint8_t, src)
}
break;
case GL_BYTE:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, int8_t, snorm_to_unorm(src, 8, 16))
} else {
SWIZZLE_CONVERT(uint16_t, int8_t, (src < 0) ? 0 : src)
}
break;
case GL_UNSIGNED_SHORT:
SWIZZLE_CONVERT(uint16_t, uint16_t, src)
break;
case GL_SHORT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, int16_t, snorm_to_unorm(src, 16, 16))
} else {
SWIZZLE_CONVERT(uint16_t, int16_t, (src < 0) ? 0 : src)
}
break;
case GL_UNSIGNED_INT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, uint32_t, unorm_to_unorm(src, 32, 16))
} else {
SWIZZLE_CONVERT(uint16_t, uint32_t, src)
}
break;
case GL_INT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, int32_t, snorm_to_unorm(src, 32, 16))
} else {
SWIZZLE_CONVERT(uint16_t, int32_t, (src < 0) ? 0 : src)
}
break;
default:
assert(!"Invalid channel type combination");
}
}
break;
case GL_SHORT:
{
const int16_t one = normalized ? INT16_MAX : 1;
switch (src_type) {
case GL_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, float, float_to_snorm(src, 16))
} else {
SWIZZLE_CONVERT(uint16_t, float, src)
}
break;
case GL_HALF_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint16_t, uint16_t, half_to_snorm(src, 16))
} else {
SWIZZLE_CONVERT(uint16_t, uint16_t, _mesa_half_to_float(src))
}
break;
case GL_UNSIGNED_BYTE:
if (normalized) {
SWIZZLE_CONVERT(int16_t, uint8_t, unorm_to_snorm(src, 8, 16))
} else {
SWIZZLE_CONVERT(int16_t, uint8_t, src)
}
break;
case GL_BYTE:
if (normalized) {
SWIZZLE_CONVERT(int16_t, int8_t, snorm_to_snorm(src, 8, 16))
} else {
SWIZZLE_CONVERT(int16_t, int8_t, src)
}
break;
case GL_UNSIGNED_SHORT:
if (normalized) {
SWIZZLE_CONVERT(int16_t, uint16_t, unorm_to_snorm(src, 16, 16))
} else {
SWIZZLE_CONVERT(int16_t, uint16_t, src)
}
break;
case GL_SHORT:
SWIZZLE_CONVERT(int16_t, int16_t, src)
break;
case GL_UNSIGNED_INT:
if (normalized) {
SWIZZLE_CONVERT(int16_t, uint32_t, unorm_to_snorm(src, 32, 16))
} else {
SWIZZLE_CONVERT(int16_t, uint32_t, src)
}
break;
case GL_INT:
if (normalized) {
SWIZZLE_CONVERT(int16_t, int32_t, snorm_to_snorm(src, 32, 16))
} else {
SWIZZLE_CONVERT(int16_t, int32_t, src)
}
break;
default:
assert(!"Invalid channel type combination");
}
}
break;
case GL_UNSIGNED_INT:
{
const uint32_t one = normalized ? UINT32_MAX : 1;
switch (src_type) { case GL_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, float, float_to_unorm(src, 32))
} else {
SWIZZLE_CONVERT(uint32_t, float, (src < 0) ? 0 : src)
}
break;
case GL_HALF_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, uint16_t, half_to_unorm(src, 32))
} else {
SWIZZLE_CONVERT(uint32_t, uint16_t, half_to_uint(src))
}
break;
case GL_UNSIGNED_BYTE:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, uint8_t, unorm_to_unorm(src, 8, 32))
} else {
SWIZZLE_CONVERT(uint32_t, uint8_t, src)
}
break;
case GL_BYTE:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, int8_t, snorm_to_unorm(src, 8, 32))
} else {
SWIZZLE_CONVERT(uint32_t, int8_t, (src < 0) ? 0 : src)
}
break;
case GL_UNSIGNED_SHORT:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, uint16_t, unorm_to_unorm(src, 16, 32))
} else {
SWIZZLE_CONVERT(uint32_t, uint16_t, src)
}
break;
case GL_SHORT:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, int16_t, snorm_to_unorm(src, 16, 32))
} else {
SWIZZLE_CONVERT(uint32_t, int16_t, (src < 0) ? 0 : src)
}
break;
case GL_UNSIGNED_INT:
SWIZZLE_CONVERT(uint32_t, uint32_t, src)
break;
case GL_INT:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, int32_t, snorm_to_unorm(src, 32, 32))
} else {
SWIZZLE_CONVERT(uint32_t, int32_t, (src < 0) ? 0 : src)
}
break;
default:
assert(!"Invalid channel type combination");
}
}
break;
case GL_INT:
{
const int32_t one = normalized ? INT32_MAX : 1;
switch (src_type) {
case GL_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, float, float_to_snorm(src, 32))
} else {
SWIZZLE_CONVERT(uint32_t, float, src)
}
break;
case GL_HALF_FLOAT:
if (normalized) {
SWIZZLE_CONVERT(uint32_t, uint16_t, half_to_snorm(src, 32))
} else {
SWIZZLE_CONVERT(uint32_t, uint16_t, _mesa_half_to_float(src))
}
break;
case GL_UNSIGNED_BYTE:
if (normalized) {
SWIZZLE_CONVERT(int32_t, uint8_t, unorm_to_snorm(src, 8, 32))
} else {
SWIZZLE_CONVERT(int32_t, uint8_t, src)
}
break;
case GL_BYTE:
if (normalized) {
SWIZZLE_CONVERT(int32_t, int8_t, snorm_to_snorm(src, 8, 32))
} else {
SWIZZLE_CONVERT(int32_t, int8_t, src)
}
break;
case GL_UNSIGNED_SHORT:
if (normalized) {
SWIZZLE_CONVERT(int32_t, uint16_t, unorm_to_snorm(src, 16, 32))
} else {
SWIZZLE_CONVERT(int32_t, uint16_t, src)
}
break;
case GL_SHORT:
if (normalized) {
SWIZZLE_CONVERT(int32_t, int16_t, snorm_to_snorm(src, 16, 32))
} else {
SWIZZLE_CONVERT(int32_t, int16_t, src)
}
break;
case GL_UNSIGNED_INT:
if (normalized) {
SWIZZLE_CONVERT(int32_t, uint32_t, unorm_to_snorm(src, 32, 32))
} else {
SWIZZLE_CONVERT(int32_t, uint32_t, src)
}
break;
case GL_INT:
SWIZZLE_CONVERT(int32_t, int32_t, src)
break;
default:
assert(!"Invalid channel type combination");
}
}
break;
default:
assert(!"Invalid channel type");
}
}

View File

@@ -0,0 +1,41 @@
/**
* \file format_utils.h
* A collection of format conversion utility functions.
*/
/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
* Copyright (C) 2014 Intel Corporation All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef FORMAT_UTILS_H
#define FORMAT_UTILS_H
#include "imports.h"
void
_mesa_swizzle_and_convert(void *dst, GLenum dst_type, int num_dst_channels,
const void *src, GLenum src_type, int num_src_channels,
const uint8_t swizzle[4], bool normalized, int count);
#endif