gm107/ir: add fp64 rsq
Acked-by: Ilia Mirkin <imirkin@alum.mit.edu> Cc: 19.0 <mesa-stable@lists.freedesktop.org>
This commit is contained in:

committed by
Ilia Mirkin

parent
815a8e59c6
commit
cce4955721
@@ -269,8 +269,84 @@ rcp_result_denorm:
|
||||
rcp_end:
|
||||
ret
|
||||
|
||||
// RSQ F64
|
||||
//
|
||||
// INPUT: $r0d
|
||||
// OUTPUT: $r0d
|
||||
// CLOBBER: $r2 - $r9, $p0 - $p1
|
||||
//
|
||||
gm107_rsq_f64:
|
||||
sched (st 0x0) (st 0x0) (st 0x0)
|
||||
// Before getting initial result rsqrt64h, two special cases should be
|
||||
// handled first.
|
||||
// 1. NaN: set the highest bit in mantissa so it'll be surely recognized
|
||||
// as NaN in rsqrt64h
|
||||
sched (st 0xd wr 0x0 wt 0x3f) (st 0xd wt 0x1) (st 0xd)
|
||||
dsetp gtu and $p0 1 abs $r0 0x7ff0000000000000 1
|
||||
$p0 lop32i or $r1 $r1 0x00080000
|
||||
lop32i and $r2 $r1 0x7fffffff
|
||||
// 2. denorms and small normal values: using their original value will
|
||||
// lose precision either at rsqrt64h or the first step in newton-raphson
|
||||
// steps below. Take 2 as a threshold in exponent field, and multiply
|
||||
// with 2^54 if the exponent is smaller or equal. (will multiply 2^27
|
||||
// to recover in the end)
|
||||
sched (st 0xd) (st 0xd) (st 0xd)
|
||||
bfe u32 $r3 $r1 0xb14
|
||||
isetp le u32 and $p1 1 $r3 0x2 1
|
||||
lop or 1 $r2 $r0 $r2
|
||||
sched (st 0xd wr 0x0) (st 0xd wr 0x0 wt 0x1) (st 0xd)
|
||||
$p1 dmul $r0 $r0 0x4350000000000000
|
||||
mufu rsq64h $r5 $r1
|
||||
// rsqrt64h will give correct result for 0/inf/nan, the following logic
|
||||
// checks whether the input is one of those (exponent is 0x7ff or all 0
|
||||
// except for the sign bit)
|
||||
iset ne u32 and $r6 $r3 0x7ff 1
|
||||
sched (st 0xd) (st 0xd) (st 0xd)
|
||||
lop and 1 $r2 $r2 $r6
|
||||
isetp ne u32 and $p0 1 $r2 0x0 1
|
||||
$p0 bra #rsq_norm
|
||||
// For 0/inf/nan, make sure the sign bit agrees with input and return
|
||||
sched (st 0xd) (st 0xd) (st 0xd wt 0x1)
|
||||
lop32i and $r1 $r1 0x80000000
|
||||
mov $r0 0x0 0xf
|
||||
lop or 1 $r1 $r1 $r5
|
||||
sched (st 0xd) (st 0xf) (st 0xf)
|
||||
ret
|
||||
nop 0
|
||||
nop 0
|
||||
rsq_norm:
|
||||
// For others, do 4 Newton-Raphson steps with the formula:
|
||||
// RSQ_{n + 1} = RSQ_{n} * (1.5 - 0.5 * x * RSQ_{n} * RSQ_{n})
|
||||
// In the code below, each step is written as:
|
||||
// tmp1 = 0.5 * x * RSQ_{n}
|
||||
// tmp2 = -RSQ_{n} * tmp1 + 0.5
|
||||
// RSQ_{n + 1} = RSQ_{n} * tmp2 + RSQ_{n}
|
||||
sched (st 0xd) (st 0xd wr 0x1) (st 0xd wr 0x1 rd 0x0 wt 0x3)
|
||||
mov $r4 0x0 0xf
|
||||
// 0x3f000000: 1/2
|
||||
f2f f32 f64 $r8 0x3f000000
|
||||
dmul $r2 $r0 $r8
|
||||
sched (st 0xd wr 0x0 wt 0x3) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1)
|
||||
dmul $r0 $r2 $r4
|
||||
dfma $r6 $r0 neg $r4 $r8
|
||||
dfma $r4 $r4 $r6 $r4
|
||||
sched (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1)
|
||||
dmul $r0 $r2 $r4
|
||||
dfma $r6 $r0 neg $r4 $r8
|
||||
dfma $r4 $r4 $r6 $r4
|
||||
sched (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1)
|
||||
dmul $r0 $r2 $r4
|
||||
dfma $r6 $r0 neg $r4 $r8
|
||||
dfma $r4 $r4 $r6 $r4
|
||||
sched (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1)
|
||||
dmul $r0 $r2 $r4
|
||||
dfma $r6 $r0 neg $r4 $r8
|
||||
dfma $r4 $r4 $r6 $r4
|
||||
// Multiply 2^27 to result for small inputs to recover
|
||||
sched (st 0xd wr 0x0 wt 0x1) (st 0xd wt 0x1) (st 0xd)
|
||||
$p1 dmul $r4 $r4 0x41a0000000000000
|
||||
mov $r1 $r5 0xf
|
||||
mov $r0 $r4 0xf
|
||||
sched (st 0xd) (st 0xf) (st 0xf)
|
||||
ret
|
||||
nop 0
|
||||
nop 0
|
||||
|
@@ -182,7 +182,56 @@ uint64_t gm107_builtin_code[] = {
|
||||
/* 0x0558: rcp_end */
|
||||
0xe32000000007000f,
|
||||
/* 0x0560: gm107_rsq_f64 */
|
||||
0x001f8000fc0007e0,
|
||||
0x001fb401fda1ff0d,
|
||||
0x368c03fff0070087,
|
||||
0x0420008000000101,
|
||||
0x0407fffffff70102,
|
||||
0x001fb400fda007ed,
|
||||
0x38000000b1470103,
|
||||
0x366603800027030f,
|
||||
0x5c47020000270002,
|
||||
0x001fb401e1a0070d,
|
||||
0x3880004350010000,
|
||||
0x5080000000770105,
|
||||
0x365a03807ff70306,
|
||||
0x001fb400fda007ed,
|
||||
0x5c47000000670202,
|
||||
0x5b6a03800ff70207,
|
||||
0xe24000000400000f,
|
||||
0x003fb400fda007ed,
|
||||
0x0408000000070101,
|
||||
0x5c9807800ff70000,
|
||||
0x5c47020000570101,
|
||||
0x001fbc00fde007ed,
|
||||
0xe32000000007000f,
|
||||
0x50b0000000070f00,
|
||||
0x50b0000000070f00,
|
||||
/* 0x0620: rsq_norm */
|
||||
0x0060b400e5a007ed,
|
||||
0x5c9807800ff70004,
|
||||
0x38a8003f00070b08,
|
||||
0x5c80000000870002,
|
||||
0x003c3401e1a01f0d,
|
||||
0x5c80000000470200,
|
||||
0x5b71040000470006,
|
||||
0x5b70020000670404,
|
||||
0x003c3401e1a00f0d,
|
||||
0x5c80000000470200,
|
||||
0x5b71040000470006,
|
||||
0x5b70020000670404,
|
||||
0x003c3401e1a00f0d,
|
||||
0x5c80000000470200,
|
||||
0x5b71040000470006,
|
||||
0x5b70020000670404,
|
||||
0x003c3401e1a00f0d,
|
||||
0x5c80000000470200,
|
||||
0x5b71040000470006,
|
||||
0x5b70020000670404,
|
||||
0x001fb401fda00f0d,
|
||||
0x38800041a0010404,
|
||||
0x5c98078000570001,
|
||||
0x5c98078000470000,
|
||||
0x001fbc00fde007ed,
|
||||
0xe32000000007000f,
|
||||
0x50b0000000070f00,
|
||||
0x50b0000000070f00,
|
||||
|
@@ -129,7 +129,7 @@ NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
|
||||
bld.mkSplit(src, 4, i->getSrc(0));
|
||||
|
||||
int chip = prog->getTarget()->getChipset();
|
||||
if (chip >= NVISA_GK104_CHIPSET && (i->op == OP_RCP || chip < NVISA_GM107_CHIPSET)) {
|
||||
if (chip >= NVISA_GK104_CHIPSET) {
|
||||
handleRCPRSQLib(i, src);
|
||||
return;
|
||||
}
|
||||
|
Reference in New Issue
Block a user