nir/i965: use two slots from inputs_read for dvec3/dvec4 vertex input attributes
So far, input_reads was a bitmap tracking which vertex input locations were being used. In OpenGL, an attribute bigger than a vec4 (like a dvec3 or dvec4) consumes just one location, any other small attribute. So we mark the proper bit in inputs_read, and also the same bit in double_inputs_read if the attribute is a dvec3/dvec4. But in Vulkan, this is slightly different: a dvec3/dvec4 attribute consumes two locations, not just one. And hence two bits would be marked in inputs_read for the same vertex input attribute. To avoid handling two different situations in NIR, we just choose the latest one: in OpenGL, when creating NIR from GLSL/IR, any dvec3/dvec4 vertex input attribute is marked with two bits in the inputs_read bitmap (and also in the double_inputs_read), and following attributes are adjusted accordingly. As example, if in our GLSL/IR shader we have three attributes: layout(location = 0) vec3 attr0; layout(location = 1) dvec4 attr1; layout(location = 2) dvec3 attr2; then in our NIR shader we put attr0 in location 0, attr1 in locations 1 and 2, and attr2 in location 3 and 4. Checking carefully, basically we are using slots rather than locations in NIR. When emitting the vertices, we do a inverse map to know the corresponding location for each slot. v2 (Jason): - use two slots from inputs_read for dvec3/dvec4 NIR from GLSL/IR. v3 (Jason): - Fix commit log error. - Use ladder ifs and fix braces. - elements_double is divisible by 2, don't need DIV_ROUND_UP(). - Use if ladder instead of a switch. - Add comment about hardware restriction in 64bit vertex attributes. Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
This commit is contained in:
@@ -129,6 +129,19 @@ private:
|
||||
|
||||
} /* end of anonymous namespace */
|
||||
|
||||
static void
|
||||
nir_remap_attributes(nir_shader *shader)
|
||||
{
|
||||
nir_foreach_variable(var, &shader->inputs) {
|
||||
var->data.location += _mesa_bitcount_64(shader->info->double_inputs_read &
|
||||
BITFIELD64_MASK(var->data.location));
|
||||
}
|
||||
|
||||
/* Once the remap is done, reset double_inputs_read, so later it will have
|
||||
* which location/slots are doubles */
|
||||
shader->info->double_inputs_read = 0;
|
||||
}
|
||||
|
||||
nir_shader *
|
||||
glsl_to_nir(const struct gl_shader_program *shader_prog,
|
||||
gl_shader_stage stage,
|
||||
@@ -146,6 +159,13 @@ glsl_to_nir(const struct gl_shader_program *shader_prog,
|
||||
|
||||
nir_lower_constant_initializers(shader, (nir_variable_mode)~0);
|
||||
|
||||
/* Remap the locations to slots so those requiring two slots will occupy
|
||||
* two locations. For instance, if we have in the IR code a dvec3 attr0 in
|
||||
* location 0 and vec4 attr1 in location 1, in NIR attr0 will use
|
||||
* locations/slots 0 and 1, and attr1 will use location/slot 2 */
|
||||
if (shader->stage == MESA_SHADER_VERTEX)
|
||||
nir_remap_attributes(shader);
|
||||
|
||||
shader->info->name = ralloc_asprintf(shader, "GLSL%d", shader_prog->Name);
|
||||
if (shader_prog->Label)
|
||||
shader->info->label = ralloc_strdup(shader, shader_prog->Label);
|
||||
@@ -322,6 +342,14 @@ nir_visitor::visit(ir_variable *ir)
|
||||
var->data.compact = ir->type->without_array()->is_scalar();
|
||||
}
|
||||
}
|
||||
|
||||
/* Mark all the locations that require two slots */
|
||||
if (glsl_type_is_dual_slot(glsl_without_array(var->type))) {
|
||||
for (uint i = 0; i < glsl_count_attribute_slots(var->type, true); i++) {
|
||||
uint64_t bitfield = BITFIELD64_BIT(var->data.location + i);
|
||||
shader->info->double_inputs_read |= bitfield;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case ir_var_shader_out:
|
||||
|
@@ -53,11 +53,6 @@ set_io_mask(nir_shader *shader, nir_variable *var, int offset, int len)
|
||||
else
|
||||
shader->info->inputs_read |= bitfield;
|
||||
|
||||
/* double inputs read is only for vertex inputs */
|
||||
if (shader->stage == MESA_SHADER_VERTEX &&
|
||||
glsl_type_is_dual_slot(glsl_without_array(var->type)))
|
||||
shader->info->double_inputs_read |= bitfield;
|
||||
|
||||
if (shader->stage == MESA_SHADER_FRAGMENT) {
|
||||
shader->info->fs.uses_sample_qualifier |= var->data.sample;
|
||||
}
|
||||
@@ -83,26 +78,21 @@ static void
|
||||
mark_whole_variable(nir_shader *shader, nir_variable *var)
|
||||
{
|
||||
const struct glsl_type *type = var->type;
|
||||
bool is_vertex_input = false;
|
||||
|
||||
if (nir_is_per_vertex_io(var, shader->stage)) {
|
||||
assert(glsl_type_is_array(type));
|
||||
type = glsl_get_array_element(type);
|
||||
}
|
||||
|
||||
if (shader->stage == MESA_SHADER_VERTEX &&
|
||||
var->data.mode == nir_var_shader_in)
|
||||
is_vertex_input = true;
|
||||
|
||||
const unsigned slots =
|
||||
var->data.compact ? DIV_ROUND_UP(glsl_get_length(type), 4)
|
||||
: glsl_count_attribute_slots(type, is_vertex_input);
|
||||
: glsl_count_attribute_slots(type, false);
|
||||
|
||||
set_io_mask(shader, var, 0, slots);
|
||||
}
|
||||
|
||||
static unsigned
|
||||
get_io_offset(nir_deref_var *deref, bool is_vertex_input)
|
||||
get_io_offset(nir_deref_var *deref)
|
||||
{
|
||||
unsigned offset = 0;
|
||||
|
||||
@@ -117,7 +107,7 @@ get_io_offset(nir_deref_var *deref, bool is_vertex_input)
|
||||
return -1;
|
||||
}
|
||||
|
||||
offset += glsl_count_attribute_slots(tail->type, is_vertex_input) *
|
||||
offset += glsl_count_attribute_slots(tail->type, false) *
|
||||
deref_array->base_offset;
|
||||
}
|
||||
/* TODO: we can get the offset for structs here see nir_lower_io() */
|
||||
@@ -163,12 +153,7 @@ try_mask_partial_io(nir_shader *shader, nir_deref_var *deref)
|
||||
return false;
|
||||
}
|
||||
|
||||
bool is_vertex_input = false;
|
||||
if (shader->stage == MESA_SHADER_VERTEX &&
|
||||
var->data.mode == nir_var_shader_in)
|
||||
is_vertex_input = true;
|
||||
|
||||
unsigned offset = get_io_offset(deref, is_vertex_input);
|
||||
unsigned offset = get_io_offset(deref);
|
||||
if (offset == -1)
|
||||
return false;
|
||||
|
||||
@@ -184,8 +169,7 @@ try_mask_partial_io(nir_shader *shader, nir_deref_var *deref)
|
||||
}
|
||||
|
||||
/* double element width for double types that takes two slots */
|
||||
if (!is_vertex_input &&
|
||||
glsl_type_is_dual_slot(glsl_without_array(type))) {
|
||||
if (glsl_type_is_dual_slot(glsl_without_array(type))) {
|
||||
elem_width *= 2;
|
||||
}
|
||||
|
||||
@@ -220,13 +204,27 @@ gather_intrinsic_info(nir_intrinsic_instr *instr, nir_shader *shader)
|
||||
case nir_intrinsic_interp_var_at_sample:
|
||||
case nir_intrinsic_interp_var_at_offset:
|
||||
case nir_intrinsic_load_var:
|
||||
case nir_intrinsic_store_var:
|
||||
if (instr->variables[0]->var->data.mode == nir_var_shader_in ||
|
||||
instr->variables[0]->var->data.mode == nir_var_shader_out) {
|
||||
case nir_intrinsic_store_var: {
|
||||
nir_variable *var = instr->variables[0]->var;
|
||||
|
||||
if (var->data.mode == nir_var_shader_in ||
|
||||
var->data.mode == nir_var_shader_out) {
|
||||
if (!try_mask_partial_io(shader, instr->variables[0]))
|
||||
mark_whole_variable(shader, instr->variables[0]->var);
|
||||
mark_whole_variable(shader, var);
|
||||
|
||||
/* We need to track which input_reads bits correspond to a
|
||||
* dvec3/dvec4 input attribute */
|
||||
if (shader->stage == MESA_SHADER_VERTEX &&
|
||||
var->data.mode == nir_var_shader_in &&
|
||||
glsl_type_is_dual_slot(glsl_without_array(var->type))) {
|
||||
for (uint i = 0; i < glsl_count_attribute_slots(var->type, false); i++) {
|
||||
int idx = var->data.location + i;
|
||||
shader->info->double_inputs_read |= BITFIELD64_BIT(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case nir_intrinsic_load_draw_id:
|
||||
case nir_intrinsic_load_front_face:
|
||||
|
Reference in New Issue
Block a user