pass arbitrary number of vertices to the shader execution cycle

This commit is contained in:
Zack Rusin
2008-04-12 15:45:28 -04:00
committed by Keith Whitwell
parent 4f550ab821
commit aadbb1d7fb
4 changed files with 148 additions and 145 deletions

View File

@@ -56,6 +56,8 @@ struct gallivm_cpu_engine;
struct draw_pt_middle_end;
struct draw_pt_front_end;
#define MAX_SHADER_VERTICES 128
/**
* Basic vertex info.
* Carry some useful information around with the vertices in the prim pipe.

View File

@@ -37,8 +37,6 @@
#include "draw_context.h"
#include "draw_vs.h"
#define MAX_SHADER_VERTICES 4
/**
* Run the vertex shader on all vertices in the vertex queue.
* Called by the draw module when the vertx cache needs to be flushed.
@@ -61,7 +59,7 @@ draw_vertex_shader_queue_flush(struct draw_context *draw)
for (i = 0; i < draw->vs.queue_nr; i += MAX_SHADER_VERTICES) {
struct vertex_header *dests[MAX_SHADER_VERTICES];
unsigned elts[MAX_SHADER_VERTICES];
int j, n = MIN2(MAX_SHADER_VERTICES, - i);
int j, n = MIN2(MAX_SHADER_VERTICES, draw->vs.queue_nr - i);
for (j = 0; j < n; j++) {
elts[j] = draw->vs.queue[i + j].elt;

View File

@@ -40,6 +40,7 @@
#include "tgsi/util/tgsi_parse.h"
#define MAX_TGSI_VERTICES 4
static void
vs_exec_prepare( struct draw_vertex_shader *shader,
@@ -71,14 +72,13 @@ vs_exec_run( struct draw_vertex_shader *shader,
struct vertex_header *vOut[] )
{
struct tgsi_exec_machine *machine = &draw->machine;
unsigned int j;
unsigned int i, j;
ALIGN16_DECL(struct tgsi_exec_vector, inputs, PIPE_MAX_ATTRIBS);
ALIGN16_DECL(struct tgsi_exec_vector, outputs, PIPE_MAX_ATTRIBS);
const float *scale = draw->viewport.scale;
const float *trans = draw->viewport.translate;
assert(count <= 4);
assert(draw->vertex_shader->info.output_semantic_name[0]
== TGSI_SEMANTIC_POSITION);
@@ -92,80 +92,82 @@ vs_exec_run( struct draw_vertex_shader *shader,
machine->Outputs = ALIGN16_ASSIGN(outputs);
}
draw->vertex_fetch.fetch_func( draw, machine, elts, count );
for (i = 0; i < count; i += MAX_TGSI_VERTICES) {
unsigned int max_vertices = MIN2(MAX_TGSI_VERTICES, count - i);
draw->vertex_fetch.fetch_func( draw, machine, &elts[i], max_vertices );
if (!draw->rasterizer->bypass_vs) {
/* run interpreter */
tgsi_exec_machine_run( machine );
}
/* store machine results */
for (j = 0; j < count; j++) {
unsigned slot;
float x, y, z, w;
/* Handle attr[0] (position) specially:
*
* XXX: Computing the clipmask should be done in the vertex
* program as a set of DP4 instructions appended to the
* user-provided code.
*/
x = vOut[j]->clip[0] = machine->Outputs[0].xyzw[0].f[j];
y = vOut[j]->clip[1] = machine->Outputs[0].xyzw[1].f[j];
z = vOut[j]->clip[2] = machine->Outputs[0].xyzw[2].f[j];
w = vOut[j]->clip[3] = machine->Outputs[0].xyzw[3].f[j];
if (!draw->rasterizer->bypass_clipping) {
vOut[j]->clipmask = compute_clipmask(vOut[j]->clip, draw->plane, draw->nr_planes);
/* divide by w */
w = 1.0f / w;
x *= w;
y *= w;
z *= w;
}
else {
vOut[j]->clipmask = 0;
}
vOut[j]->edgeflag = 1;
if (!draw->identity_viewport) {
/* Viewport mapping */
vOut[j]->data[0][0] = x * scale[0] + trans[0];
vOut[j]->data[0][1] = y * scale[1] + trans[1];
vOut[j]->data[0][2] = z * scale[2] + trans[2];
vOut[j]->data[0][3] = w;
}
else {
vOut[j]->data[0][0] = x;
vOut[j]->data[0][1] = y;
vOut[j]->data[0][2] = z;
vOut[j]->data[0][3] = w;
if (!draw->rasterizer->bypass_vs) {
/* run interpreter */
tgsi_exec_machine_run( machine );
}
/* Remaining attributes are packed into sequential post-transform
* vertex attrib slots.
*/
for (slot = 1; slot < draw->num_vs_outputs; slot++) {
vOut[j]->data[slot][0] = machine->Outputs[slot].xyzw[0].f[j];
vOut[j]->data[slot][1] = machine->Outputs[slot].xyzw[1].f[j];
vOut[j]->data[slot][2] = machine->Outputs[slot].xyzw[2].f[j];
vOut[j]->data[slot][3] = machine->Outputs[slot].xyzw[3].f[j];
}
/* store machine results */
for (j = 0; j < max_vertices; j++) {
unsigned slot;
float x, y, z, w;
/* Handle attr[0] (position) specially:
*
* XXX: Computing the clipmask should be done in the vertex
* program as a set of DP4 instructions appended to the
* user-provided code.
*/
x = vOut[i + j]->clip[0] = machine->Outputs[0].xyzw[0].f[j];
y = vOut[i + j]->clip[1] = machine->Outputs[0].xyzw[1].f[j];
z = vOut[i + j]->clip[2] = machine->Outputs[0].xyzw[2].f[j];
w = vOut[i + j]->clip[3] = machine->Outputs[0].xyzw[3].f[j];
if (!draw->rasterizer->bypass_clipping) {
vOut[i + j]->clipmask = compute_clipmask(vOut[i + j]->clip, draw->plane,
draw->nr_planes);
/* divide by w */
w = 1.0f / w;
x *= w;
y *= w;
z *= w;
}
else {
vOut[i + j]->clipmask = 0;
}
vOut[i + j]->edgeflag = 1;
if (!draw->identity_viewport) {
/* Viewport mapping */
vOut[i + j]->data[0][0] = x * scale[0] + trans[0];
vOut[i + j]->data[0][1] = y * scale[1] + trans[1];
vOut[i + j]->data[0][2] = z * scale[2] + trans[2];
vOut[i + j]->data[0][3] = w;
}
else {
vOut[i + j]->data[0][0] = x;
vOut[i + j]->data[0][1] = y;
vOut[i + j]->data[0][2] = z;
vOut[i + j]->data[0][3] = w;
}
/* Remaining attributes are packed into sequential post-transform
* vertex attrib slots.
*/
for (slot = 1; slot < draw->num_vs_outputs; slot++) {
vOut[i + j]->data[slot][0] = machine->Outputs[slot].xyzw[0].f[j];
vOut[i + j]->data[slot][1] = machine->Outputs[slot].xyzw[1].f[j];
vOut[i + j]->data[slot][2] = machine->Outputs[slot].xyzw[2].f[j];
vOut[i + j]->data[slot][3] = machine->Outputs[slot].xyzw[3].f[j];
}
#if 0 /*DEBUG*/
printf("Post xform vert:\n");
for (slot = 0; slot < draw->num_vs_outputs; slot++) {
printf("%d: %f %f %f %f\n", slot,
vOut[j]->data[slot][0],
vOut[j]->data[slot][1],
vOut[j]->data[slot][2],
vOut[j]->data[slot][3]);
}
#endif
} /* loop over vertices */
printf("%d) Post xform vert:\n", i + j);
for (slot = 0; slot < draw->num_vs_outputs; slot++) {
printf("\t%d: %f %f %f %f\n", slot,
vOut[i + j]->data[slot][0],
vOut[i + j]->data[slot][1],
vOut[i + j]->data[slot][2],
vOut[i + j]->data[slot][3]);
}
#endif
} /* loop over vertices */
}
}

View File

@@ -45,6 +45,7 @@
#include "tgsi/exec/tgsi_sse2.h"
#include "tgsi/util/tgsi_parse.h"
#define SSE_MAX_VERTICES 4
typedef void (XSTDCALL *codegen_function) (
const struct tgsi_exec_vector *input,
@@ -86,14 +87,13 @@ vs_sse_run( struct draw_vertex_shader *base,
{
struct draw_sse_vertex_shader *shader = (struct draw_sse_vertex_shader *)base;
struct tgsi_exec_machine *machine = &draw->machine;
unsigned int j;
unsigned int i, j;
ALIGN16_DECL(struct tgsi_exec_vector, inputs, PIPE_MAX_ATTRIBS);
ALIGN16_DECL(struct tgsi_exec_vector, outputs, PIPE_MAX_ATTRIBS);
const float *scale = draw->viewport.scale;
const float *trans = draw->viewport.translate;
assert(count <= 4);
assert(draw->vertex_shader->info.output_semantic_name[0]
== TGSI_SEMANTIC_POSITION);
@@ -108,77 +108,78 @@ vs_sse_run( struct draw_vertex_shader *base,
machine->Outputs = ALIGN16_ASSIGN(outputs);
}
/* Fetch vertices. This may at some point be integrated into the
* compiled shader -- that would require a reorganization where
* multiple versions of the compiled shader might exist,
* specialized for each fetch state.
*/
draw->vertex_fetch.fetch_func( draw, machine, elts, count );
if (!draw->rasterizer->bypass_vs) {
/* run compiled shader
*/
shader->func(machine->Inputs,
machine->Outputs,
machine->Consts,
machine->Temps,
shader->immediates);
}
/* XXX: Computing the clipmask and emitting results should be done
* in the vertex program as a set of instructions appended to
* the user-provided code.
*/
for (j = 0; j < count; j++) {
unsigned slot;
float x, y, z, w;
x = vOut[j]->clip[0] = machine->Outputs[0].xyzw[0].f[j];
y = vOut[j]->clip[1] = machine->Outputs[0].xyzw[1].f[j];
z = vOut[j]->clip[2] = machine->Outputs[0].xyzw[2].f[j];
w = vOut[j]->clip[3] = machine->Outputs[0].xyzw[3].f[j];
if (!draw->rasterizer->bypass_clipping) {
vOut[j]->clipmask = compute_clipmask(vOut[j]->clip, draw->plane, draw->nr_planes);
/* divide by w */
w = 1.0f / w;
x *= w;
y *= w;
z *= w;
}
else {
vOut[j]->clipmask = 0;
}
vOut[j]->edgeflag = 1;
if (!draw->identity_viewport) {
/* Viewport mapping */
vOut[j]->data[0][0] = x * scale[0] + trans[0];
vOut[j]->data[0][1] = y * scale[1] + trans[1];
vOut[j]->data[0][2] = z * scale[2] + trans[2];
vOut[j]->data[0][3] = w;
}
else {
vOut[j]->data[0][0] = x;
vOut[j]->data[0][1] = y;
vOut[j]->data[0][2] = z;
vOut[j]->data[0][3] = w;
}
/* Remaining attributes are packed into sequential post-transform
* vertex attrib slots.
for (i = 0; i < count; i += SSE_MAX_VERTICES) {
unsigned int max_vertices = MIN2(SSE_MAX_VERTICES, count - i);
/* Fetch vertices. This may at some point be integrated into the
* compiled shader -- that would require a reorganization where
* multiple versions of the compiled shader might exist,
* specialized for each fetch state.
*/
for (slot = 1; slot < draw->num_vs_outputs; slot++) {
vOut[j]->data[slot][0] = machine->Outputs[slot].xyzw[0].f[j];
vOut[j]->data[slot][1] = machine->Outputs[slot].xyzw[1].f[j];
vOut[j]->data[slot][2] = machine->Outputs[slot].xyzw[2].f[j];
vOut[j]->data[slot][3] = machine->Outputs[slot].xyzw[3].f[j];
draw->vertex_fetch.fetch_func(draw, machine, &elts[i], max_vertices);
if (!draw->rasterizer->bypass_vs) {
/* run compiled shader
*/
shader->func(machine->Inputs,
machine->Outputs,
machine->Consts,
machine->Temps,
shader->immediates);
}
}
/* XXX: Computing the clipmask and emitting results should be done
* in the vertex program as a set of instructions appended to
* the user-provided code.
*/
for (j = 0; j < max_vertices; j++) {
unsigned slot;
float x, y, z, w;
x = vOut[i + j]->clip[0] = machine->Outputs[0].xyzw[0].f[j];
y = vOut[i + j]->clip[1] = machine->Outputs[0].xyzw[1].f[j];
z = vOut[i + j]->clip[2] = machine->Outputs[0].xyzw[2].f[j];
w = vOut[i + j]->clip[3] = machine->Outputs[0].xyzw[3].f[j];
if (!draw->rasterizer->bypass_clipping) {
vOut[i + j]->clipmask = compute_clipmask(vOut[i + j]->clip, draw->plane,
draw->nr_planes);
/* divide by w */
w = 1.0f / w;
x *= w;
y *= w;
z *= w;
}
else {
vOut[i + j]->clipmask = 0;
}
vOut[j]->edgeflag = 1;
if (!draw->identity_viewport) {
/* Viewport mapping */
vOut[i + j]->data[0][0] = x * scale[0] + trans[0];
vOut[i + j]->data[0][1] = y * scale[1] + trans[1];
vOut[i + j]->data[0][2] = z * scale[2] + trans[2];
vOut[i + j]->data[0][3] = w;
}
else {
vOut[i + j]->data[0][0] = x;
vOut[i + j]->data[0][1] = y;
vOut[i + j]->data[0][2] = z;
vOut[i + j]->data[0][3] = w;
}
/* Remaining attributes are packed into sequential post-transform
* vertex attrib slots.
*/
for (slot = 1; slot < draw->num_vs_outputs; slot++) {
vOut[i + j]->data[slot][0] = machine->Outputs[slot].xyzw[0].f[j];
vOut[i + j]->data[slot][1] = machine->Outputs[slot].xyzw[1].f[j];
vOut[i + j]->data[slot][2] = machine->Outputs[slot].xyzw[2].f[j];
vOut[i + j]->data[slot][3] = machine->Outputs[slot].xyzw[3].f[j];
}
}
}
}