glsl: Fix software 64-bit integer to 32-bit float conversions.

The current implementation was broken for any integers between 2^24
and 2^30 (it would return zero for me on ICL).  The reason is that for
such integers we wouldn't take the 'if (0 <= shiftCount)' early return
path, however 'shiftCount + 7' would be positive, leading to a
negative 'count' argument passed to __shift64RightJamming(), which
would give undefined results.

This reworks the affected conversion functions to use either
__shortShift64Left() or __shift64RightJamming() based on the sign of
the final shift count, which should avoid the problem.  In addition
this should qualify as a clean-up/optimization -- This implementation
of the conversion functions translates to 7 instructions less than the
original on Intel hardware.

This fixes the 'KHR-GL46.shader_ballot_tests.ShaderBallotFunctionBallot'
conformance tests on soft fp64 hardware with large enough subgroup
size (>16).

Fixes: d5cf6e92b4 "glsl: Add built-in functions to do uint64_to_fp32(uint64_t)"
Fixes: c9d333a6b7 "glsl: Add built-in functions to do int64_to_fp32(int64_t)"
Cc: Sagar Ghuge <sagar.ghuge@intel.com>
Reviewed-by: Sagar Ghuge <sagar.ghuge@intel.com>
This commit is contained in:
Francisco Jerez
2019-12-27 14:10:31 -08:00
parent 8b7a42d6d0
commit a30bb25a7a

View File

@@ -1299,43 +1299,35 @@ __fp64_to_fp32(uint64_t __a)
float
__uint64_to_fp32(uint64_t __a)
{
uint zFrac = 0u;
uvec2 aFrac = unpackUint2x32(__a);
int shiftCount = __countLeadingZeros32(mix(aFrac.y, aFrac.x, aFrac.y == 0u));
shiftCount -= mix(40, 8, aFrac.y == 0u);
int shiftCount = mix(__countLeadingZeros32(aFrac.y) - 33,
__countLeadingZeros32(aFrac.x) - 1,
aFrac.y == 0u);
if (0 <= shiftCount) {
if (0 <= shiftCount)
__shortShift64Left(aFrac.y, aFrac.x, shiftCount, aFrac.y, aFrac.x);
bool is_zero = (aFrac.y | aFrac.x) == 0u;
return mix(__packFloat32(0u, 0x95 - shiftCount, aFrac.x), 0, is_zero);
}
else
__shift64RightJamming(aFrac.y, aFrac.x, -shiftCount, aFrac.y, aFrac.x);
shiftCount += 7;
__shift64RightJamming(aFrac.y, aFrac.x, -shiftCount, aFrac.y, aFrac.x);
zFrac = mix(aFrac.x<<shiftCount, aFrac.x, shiftCount < 0);
return __roundAndPackFloat32(0u, 0x9C - shiftCount, zFrac);
return __roundAndPackFloat32(0u, 0x9C - shiftCount, aFrac.x);
}
float
__int64_to_fp32(int64_t __a)
{
uint zFrac = 0u;
uint aSign = uint(__a < 0);
uint64_t absA = mix(uint64_t(__a), uint64_t(-__a), __a < 0);
uvec2 aFrac = unpackUint2x32(absA);
int shiftCount = __countLeadingZeros32(mix(aFrac.y, aFrac.x, aFrac.y == 0u));
shiftCount -= mix(40, 8, aFrac.y == 0u);
int shiftCount = mix(__countLeadingZeros32(aFrac.y) - 33,
__countLeadingZeros32(aFrac.x) - 1,
aFrac.y == 0u);
if (0 <= shiftCount) {
if (0 <= shiftCount)
__shortShift64Left(aFrac.y, aFrac.x, shiftCount, aFrac.y, aFrac.x);
bool is_zero = (aFrac.y | aFrac.x) == 0u;
return mix(__packFloat32(aSign, 0x95 - shiftCount, aFrac.x), 0, absA == 0u);
}
else
__shift64RightJamming(aFrac.y, aFrac.x, -shiftCount, aFrac.y, aFrac.x);
shiftCount += 7;
__shift64RightJamming(aFrac.y, aFrac.x, -shiftCount, aFrac.y, aFrac.x);
zFrac = mix(aFrac.x<<shiftCount, aFrac.x, shiftCount < 0);
return __roundAndPackFloat32(aSign, 0x9C - shiftCount, zFrac);
return __roundAndPackFloat32(aSign, 0x9C - shiftCount, aFrac.x);
}
/* Returns the result of converting the single-precision floating-point value