radeonsi/gfx10: generate geometry shaders for NGG

Acked-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
This commit is contained in:
Nicolai Hähnle
2018-05-23 22:20:15 +02:00
committed by Marek Olšák
parent efe1cd4859
commit a04aa4be2b
4 changed files with 439 additions and 4 deletions

View File

@@ -27,12 +27,27 @@
#include "sid.h"
#include "util/u_memory.h"
#include "util/u_prim.h"
static LLVMValueRef get_wave_id_in_tg(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
}
static LLVMValueRef get_tgsize(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->param_merged_wave_info, 28, 4);
}
static LLVMValueRef get_thread_id_in_tg(struct si_shader_context *ctx)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp;
tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
LLVMConstInt(ctx->ac.i32, 64, false), "");
return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
}
static LLVMValueRef ngg_get_vtx_cnt(struct si_shader_context *ctx)
{
return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
@@ -263,3 +278,376 @@ void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi,
FREE(outputs);
}
static LLVMValueRef
ngg_gs_get_vertex_storage(struct si_shader_context *ctx)
{
const struct si_shader_selector *sel = ctx->shader->selector;
const struct tgsi_shader_info *info = &sel->info;
LLVMTypeRef elements[2] = {
LLVMArrayType(ctx->ac.i32, 4 * info->num_outputs),
LLVMArrayType(ctx->ac.i8, 4),
};
LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
}
/**
* Return a pointer to the LDS storage reserved for the N'th vertex, where N
* is in emit order; that is:
* - during the epilogue, N is the threadidx (relative to the entire threadgroup)
* - during vertex emit, i.e. while the API GS shader invocation is running,
* N = threadidx * gs_max_out_vertices + emitidx
*
* Goals of the LDS memory layout:
* 1. Eliminate bank conflicts on write for geometry shaders that have all emits
* in uniform control flow
* 2. Eliminate bank conflicts on read for export if, additionally, there is no
* culling
* 3. Agnostic to the number of waves (since we don't know it before compiling)
* 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
* 5. Avoid wasting memory.
*
* We use an AoS layout due to point 4 (this also helps point 3). In an AoS
* layout, elimination of bank conflicts requires that each vertex occupy an
* odd number of dwords. We use the additional dword to store the output stream
* index as well as a flag to indicate whether this vertex ends a primitive
* for rasterization.
*
* Swizzling is required to satisfy points 1 and 2 simultaneously.
*
* Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
* Indices are swizzled in groups of 32, which ensures point 1 without
* disturbing point 2.
*
* \return an LDS pointer to type {[N x i32], [4 x i8]}
*/
static LLVMValueRef
ngg_gs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vertexidx)
{
struct si_shader_selector *sel = ctx->shader->selector;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
/* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
unsigned write_stride_2exp = ffs(sel->gs_max_out_vertices) - 1;
if (write_stride_2exp) {
LLVMValueRef row =
LLVMBuildLShr(builder, vertexidx,
LLVMConstInt(ctx->ac.i32, 5, false), "");
LLVMValueRef swizzle =
LLVMBuildAnd(builder, row,
LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1,
false), "");
vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
}
return ac_build_gep0(&ctx->ac, storage, vertexidx);
}
static LLVMValueRef
ngg_gs_emit_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef gsthread,
LLVMValueRef emitidx)
{
struct si_shader_selector *sel = ctx->shader->selector;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp;
tmp = LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false);
tmp = LLVMBuildMul(builder, tmp, gsthread, "");
const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
return ngg_gs_vertex_ptr(ctx, vertexidx);
}
void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx,
unsigned stream,
LLVMValueRef *addrs)
{
const struct si_shader_selector *sel = ctx->shader->selector;
const struct tgsi_shader_info *info = &sel->info;
LLVMBuilderRef builder = ctx->ac.builder;
struct lp_build_if_state if_state;
LLVMValueRef tmp;
const LLVMValueRef vertexidx =
LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
/* If this thread has already emitted the declared maximum number of
* vertices, skip the write: excessive vertex emissions are not
* supposed to have any effect.
*/
const LLVMValueRef can_emit =
LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
LLVMConstInt(ctx->i32, sel->gs_max_out_vertices, false), "");
tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
lp_build_if(&if_state, &ctx->gallivm, can_emit);
const LLVMValueRef vertexptr =
ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
unsigned out_idx = 0;
for (unsigned i = 0; i < info->num_outputs; i++) {
for (unsigned chan = 0; chan < 4; chan++, out_idx++) {
if (!(info->output_usagemask[i] & (1 << chan)) ||
((info->output_streams[i] >> (2 * chan)) & 3) != stream)
continue;
LLVMValueRef out_val = LLVMBuildLoad(builder, addrs[4 * i + chan], "");
LLVMValueRef gep_idx[3] = {
ctx->ac.i32_0, /* implied C-style array */
ctx->ac.i32_0, /* first entry of struct */
LLVMConstInt(ctx->ac.i32, out_idx, false),
};
LLVMValueRef ptr = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
out_val = ac_to_integer(&ctx->ac, out_val);
LLVMBuildStore(builder, out_val, ptr);
}
}
assert(out_idx * 4 == sel->gsvs_vertex_size);
/* Determine and store whether this vertex completed a primitive. */
const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
tmp = LLVMConstInt(ctx->ac.i32, u_vertices_per_prim(sel->gs_output_prim) - 1, false);
const LLVMValueRef iscompleteprim =
LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
LLVMValueRef gep_idx[3] = {
ctx->ac.i32_0, /* implied C-style array */
ctx->ac.i32_1, /* second struct entry */
LLVMConstInt(ctx->ac.i32, stream, false),
};
const LLVMValueRef primflagptr =
LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
LLVMBuildStore(builder, tmp, primflagptr);
lp_build_endif(&if_state);
}
void gfx10_ngg_gs_emit_epilogue(struct si_shader_context *ctx)
{
const struct si_shader_selector *sel = ctx->shader->selector;
const struct tgsi_shader_info *info = &sel->info;
const unsigned verts_per_prim = u_vertices_per_prim(sel->gs_output_prim);
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
LLVMValueRef tmp, tmp2;
/* Zero out remaining (non-emitted) primitive flags.
*
* Note: Alternatively, we could pass the relevant gs_next_vertex to
* the emit threads via LDS. This is likely worse in the expected
* typical case where each GS thread emits the full set of
* vertices.
*/
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
ac_build_bgnloop(&ctx->ac, 5100);
const LLVMValueRef vertexidx =
LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), "");
ac_build_ifcc(&ctx->ac, tmp, 5101);
ac_build_break(&ctx->ac);
ac_build_endif(&ctx->ac, 5101);
tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
LLVMValueRef gep_idx[3] = {
ctx->ac.i32_0, /* implied C-style array */
ctx->ac.i32_1, /* second entry of struct */
LLVMConstInt(ctx->ac.i32, stream, false),
};
tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
LLVMBuildStore(builder, i8_0, tmp);
ac_build_endloop(&ctx->ac, 5100);
}
lp_build_endif(&ctx->merged_wrap_if_state);
ac_build_s_barrier(&ctx->ac);
const LLVMValueRef tid = get_thread_id_in_tg(ctx);
LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
/* TODO: streamout */
/* TODO: culling */
/* Determine vertex liveness. */
LLVMValueRef vertliveptr = lp_build_alloca(&ctx->gallivm, ctx->ac.i1, "vertexlive");
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
ac_build_ifcc(&ctx->ac, tmp, 5120);
{
for (unsigned i = 0; i < verts_per_prim; ++i) {
const LLVMValueRef primidx =
LLVMBuildAdd(builder, tid,
LLVMConstInt(ctx->ac.i32, i, false), "");
if (i > 0) {
tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
}
/* Load primitive liveness */
tmp = ngg_gs_vertex_ptr(ctx, primidx);
LLVMValueRef gep_idx[3] = {
ctx->ac.i32_0, /* implicit C-style array */
ctx->ac.i32_1, /* second value of struct */
ctx->ac.i32_0, /* stream 0 */
};
tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
tmp = LLVMBuildLoad(builder, tmp, "");
const LLVMValueRef primlive =
LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
tmp = LLVMBuildLoad(builder, vertliveptr, "");
tmp = LLVMBuildOr(builder, tmp, primlive, ""),
LLVMBuildStore(builder, tmp, vertliveptr);
if (i > 0)
ac_build_endif(&ctx->ac, 5121 + i);
}
}
ac_build_endif(&ctx->ac, 5120);
/* Inclusive scan addition across the current wave. */
LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
struct ac_wg_scan vertlive_scan = {};
vertlive_scan.op = nir_op_iadd;
vertlive_scan.enable_reduce = true;
vertlive_scan.enable_exclusive = true;
vertlive_scan.src = vertlive;
vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->i32_0);
vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
vertlive_scan.numwaves = get_tgsize(ctx);
vertlive_scan.maxwaves = 8;
ac_build_wg_scan(&ctx->ac, &vertlive_scan);
/* Skip all exports (including index exports) when possible. At least on
* early gfx10 revisions this is also to avoid hangs.
*/
LLVMValueRef have_exports =
LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
num_emit_threads =
LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
/* Allocate export space. Send this message as early as possible, to
* hide the latency of the SQ <-> SPI roundtrip.
*
* Note: We could consider compacting primitives for export as well.
* PA processes 1 non-null prim / clock, but it fetches 4 DW of
* prim data per clock and skips null primitives at no additional
* cost. So compacting primitives can only be beneficial when
* there are 4 or more contiguous null primitives in the export
* (in the common case of single-dword prim exports).
*/
build_sendmsg_gs_alloc_req(ctx, vertlive_scan.result_reduce, num_emit_threads);
/* Setup the reverse vertex compaction permutation. We re-use stream 1
* of the primitive liveness flags, relying on the fact that each
* threadgroup can have at most 256 threads. */
ac_build_ifcc(&ctx->ac, vertlive, 5130);
{
tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
LLVMValueRef gep_idx[3] = {
ctx->ac.i32_0, /* implicit C-style array */
ctx->ac.i32_1, /* second value of struct */
ctx->ac.i32_1, /* stream 1 */
};
tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
LLVMBuildStore(builder, tmp2, tmp);
}
ac_build_endif(&ctx->ac, 5130);
ac_build_s_barrier(&ctx->ac);
/* Export primitive data */
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
ac_build_ifcc(&ctx->ac, tmp, 5140);
{
struct ngg_prim prim = {};
prim.num_vertices = verts_per_prim;
tmp = ngg_gs_vertex_ptr(ctx, tid);
LLVMValueRef gep_idx[3] = {
ctx->ac.i32_0, /* implicit C-style array */
ctx->ac.i32_1, /* second value of struct */
ctx->ac.i32_0, /* primflag */
};
tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
tmp = LLVMBuildLoad(builder, tmp, "");
prim.isnull = LLVMBuildICmp(builder, LLVMIntEQ, tmp,
LLVMConstInt(ctx->ac.i8, 0, false), "");
for (unsigned i = 0; i < verts_per_prim; ++i) {
prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
prim.edgeflag[i] = ctx->ac.i1false;
}
build_export_prim(ctx, &prim);
}
ac_build_endif(&ctx->ac, 5140);
/* Export position and parameter data */
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
ac_build_ifcc(&ctx->ac, tmp, 5145);
{
struct si_shader_output_values *outputs = NULL;
outputs = MALLOC(info->num_outputs * sizeof(outputs[0]));
tmp = ngg_gs_vertex_ptr(ctx, tid);
LLVMValueRef gep_idx[3] = {
ctx->ac.i32_0, /* implicit C-style array */
ctx->ac.i32_1, /* second value of struct */
ctx->ac.i32_1, /* stream 1: source data index */
};
tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
tmp = LLVMBuildLoad(builder, tmp, "");
tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
unsigned out_idx = 0;
gep_idx[1] = ctx->ac.i32_0;
for (unsigned i = 0; i < info->num_outputs; i++) {
outputs[i].semantic_name = info->output_semantic_name[i];
outputs[i].semantic_index = info->output_semantic_index[i];
for (unsigned j = 0; j < 4; j++, out_idx++) {
gep_idx[2] = LLVMConstInt(ctx->ac.i32, out_idx, false);
tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
tmp = LLVMBuildLoad(builder, tmp, "");
outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
outputs[i].vertex_stream[j] =
(info->output_streams[i] >> (2 * j)) & 3;
}
}
si_llvm_export_vs(ctx, outputs, info->num_outputs);
FREE(outputs);
}
ac_build_endif(&ctx->ac, 5145);
}

View File

@@ -3401,11 +3401,15 @@ static void si_set_ls_return_value_for_tcs(struct si_shader_context *ctx)
/* Pass GS inputs from ES to GS on GFX9. */
static void si_set_es_return_value_for_gs(struct si_shader_context *ctx)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef ret = ctx->return_value;
ret = si_insert_input_ptr(ctx, ret, 0, 0);
ret = si_insert_input_ptr(ctx, ret, 1, 1);
ret = si_insert_input_ret(ctx, ret, ctx->param_gs2vs_offset, 2);
if (ctx->shader->key.as_ngg)
ret = LLVMBuildInsertValue(builder, ret, ctx->gs_tg_info, 2, "");
else
ret = si_insert_input_ret(ctx, ret, ctx->param_gs2vs_offset, 2);
ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
@@ -3555,6 +3559,11 @@ static LLVMValueRef si_get_gs_wave_id(struct si_shader_context *ctx)
static void emit_gs_epilogue(struct si_shader_context *ctx)
{
if (ctx->shader->key.as_ngg) {
gfx10_ngg_gs_emit_epilogue(ctx);
return;
}
ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE,
si_get_gs_wave_id(ctx));
@@ -4192,6 +4201,12 @@ static void si_llvm_emit_vertex(struct ac_shader_abi *abi,
LLVMValueRef *addrs)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
if (ctx->shader->key.as_ngg) {
gfx10_ngg_gs_emit_vertex(ctx, stream, addrs);
return;
}
struct tgsi_shader_info *info = &ctx->shader->selector->info;
struct si_shader *shader = ctx->shader;
struct lp_build_if_state if_state;
@@ -4284,6 +4299,11 @@ static void si_llvm_emit_primitive(struct ac_shader_abi *abi,
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
if (ctx->shader->key.as_ngg) {
LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_0, ctx->gs_curprim_verts[stream]);
return;
}
/* Signal primitive cut */
ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8),
si_get_gs_wave_id(ctx));
@@ -6087,11 +6107,27 @@ static bool si_compile_tgsi_main(struct si_shader_context *ctx)
}
if (ctx->type == PIPE_SHADER_GEOMETRY) {
int i;
for (i = 0; i < 4; i++) {
for (unsigned i = 0; i < 4; i++) {
ctx->gs_next_vertex[i] =
ac_build_alloca(&ctx->ac, ctx->i32, "");
}
if (shader->key.as_ngg) {
for (unsigned i = 0; i < 4; ++i) {
ctx->gs_curprim_verts[i] =
lp_build_alloca(&ctx->gallivm, ctx->ac.i32, "");
}
LLVMTypeRef a8i32 = LLVMArrayType(ctx->i32, 8);
ctx->gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx->ac.module,
a8i32, "ngg_scratch", AC_ADDR_SPACE_LDS);
LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(a8i32));
LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
ctx->gs_ngg_emit = LLVMAddGlobalInAddressSpace(ctx->ac.module,
LLVMArrayType(ctx->i32, 0), "ngg_emit", AC_ADDR_SPACE_LDS);
LLVMSetLinkage(ctx->gs_ngg_emit, LLVMExternalLinkage);
LLVMSetAlignment(ctx->gs_ngg_emit, 4);
}
}
if (sel->force_correct_derivs_after_kill) {

View File

@@ -213,6 +213,9 @@ struct si_shader_context {
LLVMValueRef invoc0_tess_factors[6]; /* outer[4], inner[2] */
LLVMValueRef gs_next_vertex[4];
LLVMValueRef gs_curprim_verts[4];
LLVMValueRef gs_ngg_emit;
LLVMValueRef gs_ngg_scratch;
LLVMValueRef postponed_kill;
LLVMValueRef return_value;
@@ -382,5 +385,9 @@ LLVMValueRef si_unpack_param(struct si_shader_context *ctx,
void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi,
unsigned max_outputs,
LLVMValueRef *addrs);
void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx,
unsigned stream,
LLVMValueRef *addrs);
void gfx10_ngg_gs_emit_epilogue(struct si_shader_context *ctx);
#endif

View File

@@ -2386,7 +2386,11 @@ static void si_init_shader_selector_async(void *job, int thread_index)
}
}
/* The GS copy shader is always pre-compiled. */
/* The GS copy shader is always pre-compiled.
*
* TODO-GFX10: We could compile the GS copy shader on demand, since it
* is only used in the (rare) non-NGG case.
*/
if (sel->type == PIPE_SHADER_GEOMETRY) {
sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, compiler, sel, debug);
if (!sel->gs_copy_shader) {