intel/nir: Use nir_extract_bits in lower_mem_access_bit_sizes
The new helper solves most of the annoying problems with data wrangling in brw_nir_lower_mem_access_bit_sizes. Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com>
This commit is contained in:
@@ -85,8 +85,7 @@ lower_mem_load_bit_size(nir_builder *b, nir_intrinsic_instr *intrin)
|
||||
const unsigned bytes_read = num_components * (bit_size / 8);
|
||||
const unsigned align = nir_intrinsic_align(intrin);
|
||||
|
||||
nir_ssa_def *result[NIR_MAX_VEC_COMPONENTS] = { NULL, };
|
||||
|
||||
nir_ssa_def *result;
|
||||
nir_src *offset_src = nir_get_io_offset_src(intrin);
|
||||
if (bit_size < 32 && nir_src_is_const(*offset_src)) {
|
||||
/* The offset is constant so we can use a 32-bit load and just shift it
|
||||
@@ -102,21 +101,12 @@ lower_mem_load_bit_size(nir_builder *b, nir_intrinsic_instr *intrin)
|
||||
|
||||
nir_ssa_def *load = dup_mem_intrinsic(b, intrin, NULL, -load_offset,
|
||||
load_comps32, 32, 4);
|
||||
nir_ssa_def *unpacked[3];
|
||||
for (unsigned i = 0; i < load_comps32; i++)
|
||||
unpacked[i] = nir_unpack_bits(b, nir_channel(b, load, i), bit_size);
|
||||
|
||||
assert(load_offset % (bit_size / 8) == 0);
|
||||
const unsigned divisor = 32 / bit_size;
|
||||
|
||||
for (unsigned i = 0; i < num_components; i++) {
|
||||
unsigned load_i = i + load_offset / (bit_size / 8);
|
||||
result[i] = nir_channel(b, unpacked[load_i / divisor],
|
||||
load_i % divisor);
|
||||
}
|
||||
result = nir_extract_bits(b, &load, 1, load_offset * 8,
|
||||
num_components, bit_size);
|
||||
} else {
|
||||
/* Otherwise, we have to break it into smaller loads */
|
||||
unsigned res_idx = 0;
|
||||
nir_ssa_def *loads[8];
|
||||
unsigned num_loads = 0;
|
||||
int load_offset = 0;
|
||||
while (load_offset < bytes_read) {
|
||||
const unsigned bytes_left = bytes_read - load_offset;
|
||||
@@ -131,23 +121,19 @@ lower_mem_load_bit_size(nir_builder *b, nir_intrinsic_instr *intrin)
|
||||
load_comps = DIV_ROUND_UP(MIN2(bytes_left, 16), 4);
|
||||
}
|
||||
|
||||
nir_ssa_def *load = dup_mem_intrinsic(b, intrin, NULL, load_offset,
|
||||
load_comps, load_bit_size,
|
||||
align);
|
||||
|
||||
nir_ssa_def *unpacked = nir_bitcast_vector(b, load, bit_size);
|
||||
for (unsigned i = 0; i < unpacked->num_components; i++) {
|
||||
if (res_idx < num_components)
|
||||
result[res_idx++] = nir_channel(b, unpacked, i);
|
||||
}
|
||||
loads[num_loads++] = dup_mem_intrinsic(b, intrin, NULL, load_offset,
|
||||
load_comps, load_bit_size,
|
||||
align);
|
||||
|
||||
load_offset += load_comps * (load_bit_size / 8);
|
||||
}
|
||||
assert(num_loads <= ARRAY_SIZE(loads));
|
||||
result = nir_extract_bits(b, loads, num_loads, 0,
|
||||
num_components, bit_size);
|
||||
}
|
||||
|
||||
nir_ssa_def *vec_result = nir_vec(b, result, num_components);
|
||||
nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
|
||||
nir_src_for_ssa(vec_result));
|
||||
nir_src_for_ssa(result));
|
||||
nir_instr_remove(&intrin->instr);
|
||||
|
||||
return true;
|
||||
@@ -219,19 +205,11 @@ lower_mem_store_bit_size(nir_builder *b, nir_intrinsic_instr *intrin)
|
||||
if (store_bit_size == 24)
|
||||
store_bit_size = 16;
|
||||
}
|
||||
|
||||
const unsigned store_bytes = store_comps * (store_bit_size / 8);
|
||||
assert(store_bytes % byte_size == 0);
|
||||
const unsigned store_first_src_comp = start / byte_size;
|
||||
const unsigned store_src_comps = store_bytes / byte_size;
|
||||
assert(store_first_src_comp + store_src_comps <= num_components);
|
||||
|
||||
unsigned src_swiz[4] = { 0, };
|
||||
for (unsigned i = 0; i < store_src_comps; i++)
|
||||
src_swiz[i] = store_first_src_comp + i;
|
||||
nir_ssa_def *store_value =
|
||||
nir_swizzle(b, value, src_swiz, store_src_comps);
|
||||
nir_ssa_def *packed = nir_bitcast_vector(b, store_value, store_bit_size);
|
||||
nir_ssa_def *packed = nir_extract_bits(b, &value, 1, start * 8,
|
||||
store_comps, store_bit_size);
|
||||
|
||||
dup_mem_intrinsic(b, intrin, packed, start,
|
||||
store_comps, store_bit_size, store_align);
|
||||
|
Reference in New Issue
Block a user