i965: Move the back-end compiler to src/intel/compiler
Mostly a dummy git mv with a couple of noticable parts: - With the earlier header cleanups, nothing in src/intel depends files from src/mesa/drivers/dri/i965/ - Both Autoconf and Android builds are addressed. Thanks to Mauro and Tapani for the fixups in the latter - brw_util.[ch] is not really compiler specific, so it's moved to i965. v2: - move brw_eu_defines.h instead of brw_defines.h - remove no-longer applicable includes - add missing vulkan/ prefix in the Android build (thanks Tapani) v3: - don't list brw_defines.h in src/intel/Makefile.sources (Jason) - rebase on top of the oa patches [Emil Velikov: commit message, various small fixes througout] Signed-off-by: Emil Velikov <emil.velikov@collabora.com> Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
This commit is contained in:

committed by
Emil Velikov

parent
d0d4a5f43b
commit
700bebb958
558
src/intel/compiler/brw_vec4_reg_allocate.cpp
Normal file
558
src/intel/compiler/brw_vec4_reg_allocate.cpp
Normal file
@@ -0,0 +1,558 @@
|
||||
/*
|
||||
* Copyright © 2011 Intel Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice (including the next
|
||||
* paragraph) shall be included in all copies or substantial portions of the
|
||||
* Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include "util/register_allocate.h"
|
||||
#include "brw_vec4.h"
|
||||
#include "brw_cfg.h"
|
||||
|
||||
using namespace brw;
|
||||
|
||||
namespace brw {
|
||||
|
||||
static void
|
||||
assign(unsigned int *reg_hw_locations, backend_reg *reg)
|
||||
{
|
||||
if (reg->file == VGRF) {
|
||||
reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
|
||||
reg->offset %= REG_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
bool
|
||||
vec4_visitor::reg_allocate_trivial()
|
||||
{
|
||||
unsigned int hw_reg_mapping[this->alloc.count];
|
||||
bool virtual_grf_used[this->alloc.count];
|
||||
int next;
|
||||
|
||||
/* Calculate which virtual GRFs are actually in use after whatever
|
||||
* optimization passes have occurred.
|
||||
*/
|
||||
for (unsigned i = 0; i < this->alloc.count; i++) {
|
||||
virtual_grf_used[i] = false;
|
||||
}
|
||||
|
||||
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
|
||||
if (inst->dst.file == VGRF)
|
||||
virtual_grf_used[inst->dst.nr] = true;
|
||||
|
||||
for (unsigned i = 0; i < 3; i++) {
|
||||
if (inst->src[i].file == VGRF)
|
||||
virtual_grf_used[inst->src[i].nr] = true;
|
||||
}
|
||||
}
|
||||
|
||||
hw_reg_mapping[0] = this->first_non_payload_grf;
|
||||
next = hw_reg_mapping[0] + this->alloc.sizes[0];
|
||||
for (unsigned i = 1; i < this->alloc.count; i++) {
|
||||
if (virtual_grf_used[i]) {
|
||||
hw_reg_mapping[i] = next;
|
||||
next += this->alloc.sizes[i];
|
||||
}
|
||||
}
|
||||
prog_data->total_grf = next;
|
||||
|
||||
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
|
||||
assign(hw_reg_mapping, &inst->dst);
|
||||
assign(hw_reg_mapping, &inst->src[0]);
|
||||
assign(hw_reg_mapping, &inst->src[1]);
|
||||
assign(hw_reg_mapping, &inst->src[2]);
|
||||
}
|
||||
|
||||
if (prog_data->total_grf > max_grf) {
|
||||
fail("Ran out of regs on trivial allocator (%d/%d)\n",
|
||||
prog_data->total_grf, max_grf);
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
extern "C" void
|
||||
brw_vec4_alloc_reg_set(struct brw_compiler *compiler)
|
||||
{
|
||||
int base_reg_count =
|
||||
compiler->devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
|
||||
|
||||
/* After running split_virtual_grfs(), almost all VGRFs will be of size 1.
|
||||
* SEND-from-GRF sources cannot be split, so we also need classes for each
|
||||
* potential message length.
|
||||
*/
|
||||
const int class_count = MAX_VGRF_SIZE;
|
||||
int class_sizes[MAX_VGRF_SIZE];
|
||||
|
||||
for (int i = 0; i < class_count; i++)
|
||||
class_sizes[i] = i + 1;
|
||||
|
||||
/* Compute the total number of registers across all classes. */
|
||||
int ra_reg_count = 0;
|
||||
for (int i = 0; i < class_count; i++) {
|
||||
ra_reg_count += base_reg_count - (class_sizes[i] - 1);
|
||||
}
|
||||
|
||||
ralloc_free(compiler->vec4_reg_set.ra_reg_to_grf);
|
||||
compiler->vec4_reg_set.ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
|
||||
ralloc_free(compiler->vec4_reg_set.regs);
|
||||
compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
|
||||
if (compiler->devinfo->gen >= 6)
|
||||
ra_set_allocate_round_robin(compiler->vec4_reg_set.regs);
|
||||
ralloc_free(compiler->vec4_reg_set.classes);
|
||||
compiler->vec4_reg_set.classes = ralloc_array(compiler, int, class_count);
|
||||
|
||||
/* Now, add the registers to their classes, and add the conflicts
|
||||
* between them and the base GRF registers (and also each other).
|
||||
*/
|
||||
int reg = 0;
|
||||
unsigned *q_values[MAX_VGRF_SIZE];
|
||||
for (int i = 0; i < class_count; i++) {
|
||||
int class_reg_count = base_reg_count - (class_sizes[i] - 1);
|
||||
compiler->vec4_reg_set.classes[i] = ra_alloc_reg_class(compiler->vec4_reg_set.regs);
|
||||
|
||||
q_values[i] = new unsigned[MAX_VGRF_SIZE];
|
||||
|
||||
for (int j = 0; j < class_reg_count; j++) {
|
||||
ra_class_add_reg(compiler->vec4_reg_set.regs, compiler->vec4_reg_set.classes[i], reg);
|
||||
|
||||
compiler->vec4_reg_set.ra_reg_to_grf[reg] = j;
|
||||
|
||||
for (int base_reg = j;
|
||||
base_reg < j + class_sizes[i];
|
||||
base_reg++) {
|
||||
ra_add_reg_conflict(compiler->vec4_reg_set.regs, base_reg, reg);
|
||||
}
|
||||
|
||||
reg++;
|
||||
}
|
||||
|
||||
for (int j = 0; j < class_count; j++) {
|
||||
/* Calculate the q values manually because the algorithm used by
|
||||
* ra_set_finalize() to do it has higher complexity affecting the
|
||||
* start-up time of some applications. q(i, j) is just the maximum
|
||||
* number of registers from class i a register from class j can
|
||||
* conflict with.
|
||||
*/
|
||||
q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
|
||||
}
|
||||
}
|
||||
assert(reg == ra_reg_count);
|
||||
|
||||
for (int reg = 0; reg < base_reg_count; reg++)
|
||||
ra_make_reg_conflicts_transitive(compiler->vec4_reg_set.regs, reg);
|
||||
|
||||
ra_set_finalize(compiler->vec4_reg_set.regs, q_values);
|
||||
|
||||
for (int i = 0; i < MAX_VGRF_SIZE; i++)
|
||||
delete[] q_values[i];
|
||||
}
|
||||
|
||||
void
|
||||
vec4_visitor::setup_payload_interference(struct ra_graph *g,
|
||||
int first_payload_node,
|
||||
int reg_node_count)
|
||||
{
|
||||
int payload_node_count = this->first_non_payload_grf;
|
||||
|
||||
for (int i = 0; i < payload_node_count; i++) {
|
||||
/* Mark each payload reg node as being allocated to its physical register.
|
||||
*
|
||||
* The alternative would be to have per-physical register classes, which
|
||||
* would just be silly.
|
||||
*/
|
||||
ra_set_node_reg(g, first_payload_node + i, i);
|
||||
|
||||
/* For now, just mark each payload node as interfering with every other
|
||||
* node to be allocated.
|
||||
*/
|
||||
for (int j = 0; j < reg_node_count; j++) {
|
||||
ra_add_node_interference(g, first_payload_node + i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool
|
||||
vec4_visitor::reg_allocate()
|
||||
{
|
||||
unsigned int hw_reg_mapping[alloc.count];
|
||||
int payload_reg_count = this->first_non_payload_grf;
|
||||
|
||||
/* Using the trivial allocator can be useful in debugging undefined
|
||||
* register access as a result of broken optimization passes.
|
||||
*/
|
||||
if (0)
|
||||
return reg_allocate_trivial();
|
||||
|
||||
calculate_live_intervals();
|
||||
|
||||
int node_count = alloc.count;
|
||||
int first_payload_node = node_count;
|
||||
node_count += payload_reg_count;
|
||||
struct ra_graph *g =
|
||||
ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count);
|
||||
|
||||
for (unsigned i = 0; i < alloc.count; i++) {
|
||||
int size = this->alloc.sizes[i];
|
||||
assert(size >= 1 && size <= MAX_VGRF_SIZE);
|
||||
ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]);
|
||||
|
||||
for (unsigned j = 0; j < i; j++) {
|
||||
if (virtual_grf_interferes(i, j)) {
|
||||
ra_add_node_interference(g, i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Certain instructions can't safely use the same register for their
|
||||
* sources and destination. Add interference.
|
||||
*/
|
||||
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
|
||||
if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
|
||||
for (unsigned i = 0; i < 3; i++) {
|
||||
if (inst->src[i].file == VGRF) {
|
||||
ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
setup_payload_interference(g, first_payload_node, node_count);
|
||||
|
||||
if (!ra_allocate(g)) {
|
||||
/* Failed to allocate registers. Spill a reg, and the caller will
|
||||
* loop back into here to try again.
|
||||
*/
|
||||
int reg = choose_spill_reg(g);
|
||||
if (this->no_spills) {
|
||||
fail("Failure to register allocate. Reduce number of live "
|
||||
"values to avoid this.");
|
||||
} else if (reg == -1) {
|
||||
fail("no register to spill\n");
|
||||
} else {
|
||||
spill_reg(reg);
|
||||
}
|
||||
ralloc_free(g);
|
||||
return false;
|
||||
}
|
||||
|
||||
/* Get the chosen virtual registers for each node, and map virtual
|
||||
* regs in the register classes back down to real hardware reg
|
||||
* numbers.
|
||||
*/
|
||||
prog_data->total_grf = payload_reg_count;
|
||||
for (unsigned i = 0; i < alloc.count; i++) {
|
||||
int reg = ra_get_node_reg(g, i);
|
||||
|
||||
hw_reg_mapping[i] = compiler->vec4_reg_set.ra_reg_to_grf[reg];
|
||||
prog_data->total_grf = MAX2(prog_data->total_grf,
|
||||
hw_reg_mapping[i] + alloc.sizes[i]);
|
||||
}
|
||||
|
||||
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
|
||||
assign(hw_reg_mapping, &inst->dst);
|
||||
assign(hw_reg_mapping, &inst->src[0]);
|
||||
assign(hw_reg_mapping, &inst->src[1]);
|
||||
assign(hw_reg_mapping, &inst->src[2]);
|
||||
}
|
||||
|
||||
ralloc_free(g);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* When we decide to spill a register, instead of blindly spilling every use,
|
||||
* save unspills when the spill register is used (read) in consecutive
|
||||
* instructions. This can potentially save a bunch of unspills that would
|
||||
* have very little impact in register allocation anyway.
|
||||
*
|
||||
* Notice that we need to account for this behavior when spilling a register
|
||||
* and when evaluating spilling costs. This function is designed so it can
|
||||
* be called from both places and avoid repeating the logic.
|
||||
*
|
||||
* - When we call this function from spill_reg(), we pass in scratch_reg the
|
||||
* actual unspill/spill register that we want to reuse in the current
|
||||
* instruction.
|
||||
*
|
||||
* - When we call this from evaluate_spill_costs(), we pass the register for
|
||||
* which we are evaluating spilling costs.
|
||||
*
|
||||
* In either case, we check if the previous instructions read scratch_reg until
|
||||
* we find one that writes to it with a compatible mask or does not read/write
|
||||
* scratch_reg at all.
|
||||
*/
|
||||
static bool
|
||||
can_use_scratch_for_source(const vec4_instruction *inst, unsigned i,
|
||||
unsigned scratch_reg)
|
||||
{
|
||||
assert(inst->src[i].file == VGRF);
|
||||
bool prev_inst_read_scratch_reg = false;
|
||||
|
||||
/* See if any previous source in the same instructions reads scratch_reg */
|
||||
for (unsigned n = 0; n < i; n++) {
|
||||
if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg)
|
||||
prev_inst_read_scratch_reg = true;
|
||||
}
|
||||
|
||||
/* Now check if previous instructions read/write scratch_reg */
|
||||
for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev;
|
||||
!prev_inst->is_head_sentinel();
|
||||
prev_inst = (vec4_instruction *) prev_inst->prev) {
|
||||
|
||||
/* If the previous instruction writes to scratch_reg then we can reuse
|
||||
* it if the write is not conditional and the channels we write are
|
||||
* compatible with our read mask
|
||||
*/
|
||||
if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) {
|
||||
return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) &&
|
||||
(brw_mask_for_swizzle(inst->src[i].swizzle) &
|
||||
~prev_inst->dst.writemask) == 0;
|
||||
}
|
||||
|
||||
/* Skip scratch read/writes so that instructions generated by spilling
|
||||
* other registers (that won't read/write scratch_reg) do not stop us from
|
||||
* reusing scratch_reg for this instruction.
|
||||
*/
|
||||
if (prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE ||
|
||||
prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ)
|
||||
continue;
|
||||
|
||||
/* If the previous instruction does not write to scratch_reg, then check
|
||||
* if it reads it
|
||||
*/
|
||||
int n;
|
||||
for (n = 0; n < 3; n++) {
|
||||
if (prev_inst->src[n].file == VGRF &&
|
||||
prev_inst->src[n].nr == scratch_reg) {
|
||||
prev_inst_read_scratch_reg = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (n == 3) {
|
||||
/* The previous instruction does not read scratch_reg. At this point,
|
||||
* if no previous instruction has read scratch_reg it means that we
|
||||
* will need to unspill it here and we can't reuse it (so we return
|
||||
* false). Otherwise, if we found at least one consecutive instruction
|
||||
* that read scratch_reg, then we know that we got here from
|
||||
* evaluate_spill_costs (since for the spill_reg path any block of
|
||||
* consecutive instructions using scratch_reg must start with a write
|
||||
* to that register, so we would've exited the loop in the check for
|
||||
* the write that we have at the start of this loop), and in that case
|
||||
* it means that we found the point at which the scratch_reg would be
|
||||
* unspilled. Since we always unspill a full vec4, it means that we
|
||||
* have all the channels available and we can just return true to
|
||||
* signal that we can reuse the register in the current instruction
|
||||
* too.
|
||||
*/
|
||||
return prev_inst_read_scratch_reg;
|
||||
}
|
||||
}
|
||||
|
||||
return prev_inst_read_scratch_reg;
|
||||
}
|
||||
|
||||
static inline unsigned
|
||||
spill_cost_for_type(enum brw_reg_type type)
|
||||
{
|
||||
/* Spilling of a 64-bit register involves emitting 2 32-bit scratch
|
||||
* messages plus the 64b/32b shuffling code.
|
||||
*/
|
||||
return type_sz(type) == 8 ? 2.25f : 1.0f;
|
||||
}
|
||||
|
||||
void
|
||||
vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill)
|
||||
{
|
||||
float loop_scale = 1.0;
|
||||
|
||||
unsigned *reg_type_size = (unsigned *)
|
||||
ralloc_size(NULL, this->alloc.count * sizeof(unsigned));
|
||||
|
||||
for (unsigned i = 0; i < this->alloc.count; i++) {
|
||||
spill_costs[i] = 0.0;
|
||||
no_spill[i] = alloc.sizes[i] != 1 && alloc.sizes[i] != 2;
|
||||
reg_type_size[i] = 0;
|
||||
}
|
||||
|
||||
/* Calculate costs for spilling nodes. Call it a cost of 1 per
|
||||
* spill/unspill we'll have to do, and guess that the insides of
|
||||
* loops run 10 times.
|
||||
*/
|
||||
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
|
||||
for (unsigned int i = 0; i < 3; i++) {
|
||||
if (inst->src[i].file == VGRF && !no_spill[inst->src[i].nr]) {
|
||||
/* We will only unspill src[i] it it wasn't unspilled for the
|
||||
* previous instruction, in which case we'll just reuse the scratch
|
||||
* reg for this instruction.
|
||||
*/
|
||||
if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) {
|
||||
spill_costs[inst->src[i].nr] +=
|
||||
loop_scale * spill_cost_for_type(inst->src[i].type);
|
||||
if (inst->src[i].reladdr ||
|
||||
inst->src[i].offset >= REG_SIZE)
|
||||
no_spill[inst->src[i].nr] = true;
|
||||
|
||||
/* We don't support unspills of partial DF reads.
|
||||
*
|
||||
* Our 64-bit unspills are implemented with two 32-bit scratch
|
||||
* messages, each one reading that for both SIMD4x2 threads that
|
||||
* we need to shuffle into correct 64-bit data. Ensure that we
|
||||
* are reading data for both threads.
|
||||
*/
|
||||
if (type_sz(inst->src[i].type) == 8 && inst->exec_size != 8)
|
||||
no_spill[inst->src[i].nr] = true;
|
||||
}
|
||||
|
||||
/* We can't spill registers that mix 32-bit and 64-bit access (that
|
||||
* contain 64-bit data that is operated on via 32-bit instructions)
|
||||
*/
|
||||
unsigned type_size = type_sz(inst->src[i].type);
|
||||
if (reg_type_size[inst->src[i].nr] == 0)
|
||||
reg_type_size[inst->src[i].nr] = type_size;
|
||||
else if (reg_type_size[inst->src[i].nr] != type_size)
|
||||
no_spill[inst->src[i].nr] = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (inst->dst.file == VGRF && !no_spill[inst->dst.nr]) {
|
||||
spill_costs[inst->dst.nr] +=
|
||||
loop_scale * spill_cost_for_type(inst->dst.type);
|
||||
if (inst->dst.reladdr || inst->dst.offset >= REG_SIZE)
|
||||
no_spill[inst->dst.nr] = true;
|
||||
|
||||
/* We don't support spills of partial DF writes.
|
||||
*
|
||||
* Our 64-bit spills are implemented with two 32-bit scratch messages,
|
||||
* each one writing that for both SIMD4x2 threads. Ensure that we
|
||||
* are writing data for both threads.
|
||||
*/
|
||||
if (type_sz(inst->dst.type) == 8 && inst->exec_size != 8)
|
||||
no_spill[inst->dst.nr] = true;
|
||||
|
||||
/* FROM_DOUBLE opcodes are setup so that they use a dst register
|
||||
* with a size of 2 even if they only produce a single-precison
|
||||
* result (this is so that the opcode can use the larger register to
|
||||
* produce a 64-bit aligned intermediary result as required by the
|
||||
* hardware during the conversion process). This creates a problem for
|
||||
* spilling though, because when we attempt to emit a spill for the
|
||||
* dst we see a 32-bit destination and emit a scratch write that
|
||||
* allocates a single spill register.
|
||||
*/
|
||||
if (inst->opcode == VEC4_OPCODE_FROM_DOUBLE)
|
||||
no_spill[inst->dst.nr] = true;
|
||||
|
||||
/* We can't spill registers that mix 32-bit and 64-bit access (that
|
||||
* contain 64-bit data that is operated on via 32-bit instructions)
|
||||
*/
|
||||
unsigned type_size = type_sz(inst->dst.type);
|
||||
if (reg_type_size[inst->dst.nr] == 0)
|
||||
reg_type_size[inst->dst.nr] = type_size;
|
||||
else if (reg_type_size[inst->dst.nr] != type_size)
|
||||
no_spill[inst->dst.nr] = true;
|
||||
}
|
||||
|
||||
switch (inst->opcode) {
|
||||
|
||||
case BRW_OPCODE_DO:
|
||||
loop_scale *= 10;
|
||||
break;
|
||||
|
||||
case BRW_OPCODE_WHILE:
|
||||
loop_scale /= 10;
|
||||
break;
|
||||
|
||||
case SHADER_OPCODE_GEN4_SCRATCH_READ:
|
||||
case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
|
||||
for (int i = 0; i < 3; i++) {
|
||||
if (inst->src[i].file == VGRF)
|
||||
no_spill[inst->src[i].nr] = true;
|
||||
}
|
||||
if (inst->dst.file == VGRF)
|
||||
no_spill[inst->dst.nr] = true;
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
ralloc_free(reg_type_size);
|
||||
}
|
||||
|
||||
int
|
||||
vec4_visitor::choose_spill_reg(struct ra_graph *g)
|
||||
{
|
||||
float spill_costs[this->alloc.count];
|
||||
bool no_spill[this->alloc.count];
|
||||
|
||||
evaluate_spill_costs(spill_costs, no_spill);
|
||||
|
||||
for (unsigned i = 0; i < this->alloc.count; i++) {
|
||||
if (!no_spill[i])
|
||||
ra_set_node_spill_cost(g, i, spill_costs[i]);
|
||||
}
|
||||
|
||||
return ra_get_best_spill_node(g);
|
||||
}
|
||||
|
||||
void
|
||||
vec4_visitor::spill_reg(int spill_reg_nr)
|
||||
{
|
||||
assert(alloc.sizes[spill_reg_nr] == 1 || alloc.sizes[spill_reg_nr] == 2);
|
||||
unsigned int spill_offset = last_scratch;
|
||||
last_scratch += alloc.sizes[spill_reg_nr];
|
||||
|
||||
/* Generate spill/unspill instructions for the objects being spilled. */
|
||||
int scratch_reg = -1;
|
||||
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
|
||||
for (unsigned int i = 0; i < 3; i++) {
|
||||
if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) {
|
||||
if (scratch_reg == -1 ||
|
||||
!can_use_scratch_for_source(inst, i, scratch_reg)) {
|
||||
/* We need to unspill anyway so make sure we read the full vec4
|
||||
* in any case. This way, the cached register can be reused
|
||||
* for consecutive instructions that read different channels of
|
||||
* the same vec4.
|
||||
*/
|
||||
scratch_reg = alloc.allocate(alloc.sizes[spill_reg_nr]);
|
||||
src_reg temp = inst->src[i];
|
||||
temp.nr = scratch_reg;
|
||||
temp.offset = 0;
|
||||
temp.swizzle = BRW_SWIZZLE_XYZW;
|
||||
emit_scratch_read(block, inst,
|
||||
dst_reg(temp), inst->src[i], spill_offset);
|
||||
temp.offset = inst->src[i].offset;
|
||||
}
|
||||
assert(scratch_reg != -1);
|
||||
inst->src[i].nr = scratch_reg;
|
||||
}
|
||||
}
|
||||
|
||||
if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) {
|
||||
emit_scratch_write(block, inst, spill_offset);
|
||||
scratch_reg = inst->dst.nr;
|
||||
}
|
||||
}
|
||||
|
||||
invalidate_live_intervals();
|
||||
}
|
||||
|
||||
} /* namespace brw */
|
Reference in New Issue
Block a user