Instead of linked program pairs, keep a list of vertex programs translated for each fragment program.

This commit is contained in:
Brian
2007-09-28 15:39:09 -06:00
parent f14ece2d2c
commit 636480cc9c
5 changed files with 157 additions and 246 deletions

View File

@@ -51,105 +51,56 @@
#include "st_atom_shader.h"
/**
* Structure to describe a (vertex program, fragment program) pair
* which is linked together (used together to render something). This
* linkage basically servers the same purpose as the OpenGL Shading
* Language linker, but also applies to ARB programs and Mesa's
* fixed-function-generated programs.
*
* More background:
*
* The translation from Mesa programs to TGSI programs depends on the
* linkage between the vertex program and the fragment program. This is
* because we tightly pack the inputs and outputs of shaders into
* consecutive "slots".
*
* Suppose an app uses one vertex program "VP" (outputting pos, color and tex0)
* and two fragment programs:
* FP1: uses tex0 input only (input slot 0)
* FP2: uses color input only (input slot 0)
*
* When VP is used with FP1 we want VP.output[2] to match FP1.input[0], but
* when VP is used with FP2 we want VP.output[1] to match FP1.input[0].
*
* We don't want to re-translate the vertex and/or fragment programs
* each time the VP/FP bindings/linkings change. The solution is this
* structure which stores the translated TGSI shaders on a per-linkage
* basis.
*
* This represents a vertex program, especially translated to match
* the inputs of a particular fragment shader.
*/
struct linked_program_pair
struct translated_vertex_program
{
struct st_vertex_program *vprog; /**< never changes */
struct st_fragment_program *fprog; /**< never changes */
/** The fragment shader "signature" this vertex shader is meant for: */
GLbitfield frag_inputs;
struct tgsi_token vs_tokens[ST_FP_MAX_TOKENS];
struct tgsi_token fs_tokens[ST_FP_MAX_TOKENS];
/** Compared against master vertex program's serialNo: */
GLuint serialNo;
/** Maps VERT_RESULT_x to slot */
GLuint output_to_slot[VERT_RESULT_MAX];
/** The program in TGSI format */
struct tgsi_token tokens[ST_MAX_SHADER_TOKENS];
/** Pointer to the translated, cached vertex shader */
const struct cso_vertex_shader *vs;
const struct cso_fragment_shader *fs;
GLuint vertSerialNo, fragSerialNo;
/** maps a Mesa VERT_ATTRIB_x to a packed TGSI input index */
GLuint vp_input_to_index[MAX_VERTEX_PROGRAM_ATTRIBS];
/** maps a TGSI input index back to a Mesa VERT_ATTRIB_x */
GLuint vp_index_to_input[MAX_VERTEX_PROGRAM_ATTRIBS];
GLuint vp_result_to_slot[VERT_RESULT_MAX];
struct linked_program_pair *next;
struct translated_vertex_program *next; /**< next in linked list */
};
/** XXX temporary - use some kind of hash table instead */
static struct linked_program_pair *Pairs = NULL;
static void
find_and_remove(struct gl_program *prog)
{
struct linked_program_pair *pair, *prev = NULL, *next;
for (pair = Pairs; pair; pair = next) {
next = pair->next;
if (pair->vprog == (struct st_vertex_program *) prog ||
pair->fprog == (struct st_fragment_program *) prog) {
/* unlink */
if (prev)
prev->next = next;
else
Pairs = next;
/* delete pair->vs */
/* delete pair->fs */
free(pair);
}
else {
prev = pair;
}
}
}
/**
* Delete any known program pairs that use the given vertex program.
* Free data hanging off the st vert prog.
*/
void
st_remove_vertex_program(struct st_context *st, struct st_vertex_program *stvp)
{
find_and_remove(&stvp->Base.Base);
/* no-op, for now? */
}
/**
* Delete any known program pairs that use the given fragment program.
* Free data hanging off the st frag prog.
*/
void
st_remove_fragment_program(struct st_context *st,
struct st_fragment_program *stfp)
{
find_and_remove(&stfp->Base.Base);
struct translated_vertex_program *xvp, *next;
for (xvp = stfp->vertex_programs; xvp; xvp = next) {
next = xvp->next;
/* XXX free xvp->vs */
free(xvp);
}
}
@@ -187,182 +138,122 @@ vp_out_to_fp_in(GLuint vertResult)
/**
* Examine the outputs written by a vertex program and the inputs read
* by a fragment program to determine which match up and where they
* should be mapped into the generic shader output/input slots.
* \param vert_output_map returns the vertex output register mapping
* \param frag_input_map returns the fragment input register mapping
* Find a translated vertex program that corresponds to stvp and
* has outputs matched to stfp's inputs.
* This performs vertex and fragment translation (to TGSI) when needed.
*/
static GLuint
link_outputs_to_inputs(GLbitfield outputsWritten,
GLbitfield inputsRead,
GLuint vert_output_map[],
GLuint frag_input_map[])
static struct translated_vertex_program *
find_translated_vp(struct st_context *st,
struct st_vertex_program *stvp,
struct st_fragment_program *stfp)
{
static const GLuint UNUSED = ~0;
GLint vert_slot_to_attr[50], frag_slot_to_attr[50];
GLuint outAttr, inAttr;
GLuint numIn = 0, dummySlot;
for (inAttr = 0; inAttr < FRAG_ATTRIB_MAX; inAttr++) {
if (inputsRead & (1 << inAttr)) {
frag_input_map[inAttr] = numIn;
frag_slot_to_attr[numIn] = inAttr;
numIn++;
}
else {
frag_input_map[inAttr] = UNUSED;
}
}
for (outAttr = 0; outAttr < VERT_RESULT_MAX; outAttr++) {
if (outputsWritten & (1 << outAttr)) {
/* see if the frag prog wants this vert output */
GLint fpIn = vp_out_to_fp_in(outAttr);
if (fpIn >= 0) {
GLuint frag_slot = frag_input_map[fpIn];
vert_output_map[outAttr] = frag_slot;
vert_slot_to_attr[frag_slot] = outAttr;
}
else {
vert_output_map[outAttr] = UNUSED;
}
}
else {
vert_output_map[outAttr] = UNUSED;
}
}
struct translated_vertex_program *xvp;
const GLbitfield fragInputsRead
= stfp->Base.Base.InputsRead | FRAG_BIT_WPOS;
/*
* We'll map all unused vertex program outputs to this slot.
* We'll also map all undefined fragment program inputs to this slot.
* Translate fragment program if needed.
*/
dummySlot = numIn;
if (!stfp->fs) {
GLuint inAttr, numIn = 0;
/* Map vert program outputs that aren't used to the dummy slot */
for (outAttr = 0; outAttr < VERT_RESULT_MAX; outAttr++) {
if (outputsWritten & (1 << outAttr)) {
if (vert_output_map[outAttr] == UNUSED)
vert_output_map[outAttr] = dummySlot;
for (inAttr = 0; inAttr < FRAG_ATTRIB_MAX; inAttr++) {
if (fragInputsRead & (1 << inAttr)) {
stfp->input_to_slot[inAttr] = numIn;
numIn++;
}
else {
stfp->input_to_slot[inAttr] = UNUSED;
}
}
stfp->num_input_slots = numIn;
(void) st_translate_fragment_program(st, stfp,
stfp->input_to_slot,
stfp->tokens,
ST_MAX_SHADER_TOKENS);
assert(stfp->fs);
}
/* Map frag program inputs that aren't defined to the dummy slot */
for (inAttr = 0; inAttr < FRAG_ATTRIB_MAX; inAttr++) {
if (inputsRead & (1 << inAttr)) {
if (frag_input_map[inAttr] == UNUSED)
frag_input_map[inAttr] = dummySlot;
}
}
#if 0
printf("vOut W slot\n");
for (outAttr = 0; outAttr < VERT_RESULT_MAX; outAttr++) {
printf("%4d %c %4d\n", outAttr,
" *"[(outputsWritten >> outAttr) & 1],
vert_output_map[outAttr]);
}
printf("vIn R slot\n");
for (inAttr = 0; inAttr < FRAG_ATTRIB_MAX; inAttr++) {
printf("%3d %c %4d\n", inAttr,
" *"[(inputsRead >> inAttr) & 1],
frag_input_map[inAttr]);
}
#endif
return numIn;
}
static struct linked_program_pair *
lookup_program_pair(struct st_context *st,
struct st_vertex_program *vprog,
struct st_fragment_program *fprog)
{
struct linked_program_pair *pair;
/* search */
for (pair = Pairs; pair; pair = pair->next) {
if (pair->vprog == vprog && pair->fprog == fprog) {
/* found it */
/* See if we've got a translated vertex program whose outputs match
* the fragment program's inputs.
* XXX This could be a hash lookup, using InputsRead as the key.
*/
for (xvp = stfp->vertex_programs; xvp; xvp = xvp->next) {
if (xvp->frag_inputs == stfp->Base.Base.InputsRead) {
break;
}
}
/*
* Examine the outputs of the vertex shader and the inputs of the
* fragment shader to determine how to match both to a common set
* of slots.
*/
if (!pair) {
pair = CALLOC_STRUCT(linked_program_pair);
if (pair) {
pair->vprog = vprog;
pair->fprog = fprog;
/* No? Allocate translated vp object now */
if (!xvp) {
xvp = CALLOC_STRUCT(translated_vertex_program);
xvp->frag_inputs = fragInputsRead;
xvp->next = stfp->vertex_programs;
stfp->vertex_programs = xvp;
}
/* See if we need to translate vertex program to TGSI form */
if (xvp->serialNo != stvp->serialNo) {
GLuint outAttr, dummySlot;
const GLbitfield outputsWritten = stvp->Base.Base.OutputsWritten;
/* Compute mapping of vertex program outputs to slots, which depends
* on the fragment program's input->slot mapping.
*/
for (outAttr = 0; outAttr < VERT_RESULT_MAX; outAttr++) {
/* set default: */
xvp->output_to_slot[outAttr] = UNUSED;
if (outputsWritten & (1 << outAttr)) {
/* see if the frag prog wants this vert output */
GLint fpIn = vp_out_to_fp_in(outAttr);
if (fpIn >= 0) {
xvp->output_to_slot[outAttr] = stfp->input_to_slot[fpIn];
}
}
}
/* Unneeded vertex program outputs will go to this slot.
* We could use this info to do dead code elimination in the
* vertex program.
*/
dummySlot = stfp->num_input_slots;
/* Map vert program outputs that aren't used to the dummy slot */
for (outAttr = 0; outAttr < VERT_RESULT_MAX; outAttr++) {
if (outputsWritten & (1 << outAttr)) {
if (xvp->output_to_slot[outAttr] == UNUSED)
xvp->output_to_slot[outAttr] = dummySlot;
}
}
xvp->vs = st_translate_vertex_program(st, stvp,
xvp->output_to_slot,
xvp->tokens,
ST_MAX_SHADER_TOKENS);
assert(xvp->vs);
stvp->vs = NULL; /* don't want to use this */
/* translated VP is up to date now */
xvp->serialNo = stvp->serialNo;
}
return pair;
}
static void
link_shaders(struct st_context *st, struct linked_program_pair *pair)
{
struct st_vertex_program *vprog = pair->vprog;
struct st_fragment_program *fprog = pair->fprog;
assert(vprog);
assert(fprog);
if (pair->vertSerialNo != vprog->serialNo ||
pair->fragSerialNo != fprog->serialNo) {
/* re-link and re-translate */
GLuint vert_output_mapping[VERT_RESULT_MAX];
GLuint frag_input_mapping[FRAG_ATTRIB_MAX];
link_outputs_to_inputs(vprog->Base.Base.OutputsWritten,
fprog->Base.Base.InputsRead | FRAG_BIT_WPOS,
vert_output_mapping,
frag_input_mapping);
/* xlate vp to vs + vs tokens */
st_translate_vertex_program(st, vprog,
vert_output_mapping,
pair->vs_tokens, ST_FP_MAX_TOKENS);
pair->vprog = vprog;
/* temp hacks */
pair->vs = vprog->vs;
vprog->vs = NULL;
/* xlate fp to fs + fs tokens */
st_translate_fragment_program(st, fprog,
frag_input_mapping,
pair->fs_tokens, ST_FP_MAX_TOKENS);
pair->fprog = fprog;
/* temp hacks */
pair->fs = fprog->fs;
fprog->fs = NULL;
/* save pair */
pair->next = Pairs;
Pairs = pair;
pair->vertSerialNo = vprog->serialNo;
pair->fragSerialNo = fprog->serialNo;
}
return xvp;
}
static void
update_linkage( struct st_context *st )
{
struct linked_program_pair *pair;
struct st_vertex_program *stvp;
struct st_fragment_program *stfp;
struct translated_vertex_program *xvp;
/* find active shader and params -- Should be covered by
* ST_NEW_VERTEX_PROGRAM
@@ -392,23 +283,17 @@ update_linkage( struct st_context *st )
stfp = st_fragment_program(st->ctx->FragmentProgram._Current);
}
xvp = find_translated_vp(st, stvp, stfp);
pair = lookup_program_pair(st, stvp, stfp);
assert(pair);
link_shaders(st, pair);
/* Bind the vertex program and TGSI shader */
st->vp = stvp;
st->state.vs = pair->vs;
st->state.vs = xvp->vs;
st->pipe->bind_vs_state(st->pipe, st->state.vs->data);
/* Bind the fragment program and TGSI shader */
st->fp = stfp;
st->state.fs = pair->fs;
st->state.fs = stfp->fs;
st->pipe->bind_fs_state(st->pipe, st->state.fs->data);
st->vertex_result_to_slot = pair->vp_result_to_slot;
st->vertex_result_to_slot = xvp->output_to_slot;
}