anv/meta: Split anv_meta_blit.c into three files

The new organization is as follows:
* anv_meta_blit.c: Blit and state setup/teardown commands
* anv_meta_copy.c: Copy and update commands
* anv_meta_blit2d.c: 2D Blitter API commands

Also, change the formatting to contain most lines
within 80 columns.

Signed-off-by: Nanley Chery <nanley.g.chery@intel.com>
Reviewed-by: Anuj Phogat <anuj.phogat@gmail.com>
This commit is contained in:
Nanley Chery
2016-03-07 15:15:33 -08:00
parent f391683922
commit 627728cce5
4 changed files with 662 additions and 606 deletions

View File

@@ -83,7 +83,9 @@ VULKAN_SOURCES = \
anv_intel.c \ anv_intel.c \
anv_meta.c \ anv_meta.c \
anv_meta_blit.c \ anv_meta_blit.c \
anv_meta_blit2d.c \
anv_meta_clear.c \ anv_meta_clear.c \
anv_meta_copy.c \
anv_meta_resolve.c \ anv_meta_resolve.c \
anv_nir_apply_dynamic_offsets.c \ anv_nir_apply_dynamic_offsets.c \
anv_nir_apply_pipeline_layout.c \ anv_nir_apply_pipeline_layout.c \

View File

@@ -119,47 +119,6 @@ meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer,
(1 << VK_DYNAMIC_STATE_VIEWPORT)); (1 << VK_DYNAMIC_STATE_VIEWPORT));
} }
void
anv_meta_begin_blit2d(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_saved_state *save)
{
meta_prepare_blit(cmd_buffer, save);
}
/* Returns the user-provided VkBufferImageCopy::imageOffset in units of
* elements rather than texels. One element equals one texel or one block
* if Image is uncompressed or compressed, respectively.
*/
static struct VkOffset3D
meta_region_offset_el(const struct anv_image * image,
const struct VkOffset3D * offset)
{
const struct isl_format_layout * isl_layout = image->format->isl_layout;
return (VkOffset3D) {
.x = offset->x / isl_layout->bw,
.y = offset->y / isl_layout->bh,
.z = offset->z / isl_layout->bd,
};
}
/* Returns the user-provided VkBufferImageCopy::imageExtent in units of
* elements rather than texels. One element equals one texel or one block
* if Image is uncompressed or compressed, respectively.
*/
static struct VkExtent3D
meta_region_extent_el(const VkFormat format,
const struct VkExtent3D * extent)
{
const struct isl_format_layout * isl_layout =
anv_format_for_vk_format(format)->isl_layout;
return (VkExtent3D) {
.width = DIV_ROUND_UP(extent->width , isl_layout->bw),
.height = DIV_ROUND_UP(extent->height, isl_layout->bh),
.depth = DIV_ROUND_UP(extent->depth , isl_layout->bd),
};
}
void void
meta_emit_blit(struct anv_cmd_buffer *cmd_buffer, meta_emit_blit(struct anv_cmd_buffer *cmd_buffer,
struct anv_image *src_image, struct anv_image *src_image,
@@ -194,8 +153,10 @@ meta_emit_blit(struct anv_cmd_buffer *cmd_buffer,
dest_offset.y + dest_extent.height, dest_offset.y + dest_extent.height,
}, },
.tex_coord = { .tex_coord = {
(float)(src_offset.x + src_extent.width) / (float)src_iview->extent.width, (float)(src_offset.x + src_extent.width)
(float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height, / (float)src_iview->extent.width,
(float)(src_offset.y + src_extent.height)
/ (float)src_iview->extent.height,
(float)src_offset.z / (float)src_iview->extent.depth, (float)src_offset.z / (float)src_iview->extent.depth,
}, },
}; };
@@ -207,7 +168,8 @@ meta_emit_blit(struct anv_cmd_buffer *cmd_buffer,
}, },
.tex_coord = { .tex_coord = {
(float)src_offset.x / (float)src_iview->extent.width, (float)src_offset.x / (float)src_iview->extent.width,
(float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height, (float)(src_offset.y + src_extent.height) /
(float)src_iview->extent.height,
(float)src_offset.z / (float)src_iview->extent.depth, (float)src_offset.z / (float)src_iview->extent.depth,
}, },
}; };
@@ -380,444 +342,6 @@ meta_finish_blit(struct anv_cmd_buffer *cmd_buffer,
anv_meta_restore(saved_state, cmd_buffer); anv_meta_restore(saved_state, cmd_buffer);
} }
void
anv_meta_end_blit2d(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_saved_state *save)
{
meta_finish_blit(cmd_buffer, save);
}
static VkFormat
vk_format_for_size(int bs)
{
/* The choice of UNORM and UINT formats is very intentional here. Most of
* the time, we want to use a UINT format to avoid any rounding error in
* the blit. For stencil blits, R8_UINT is required by the hardware.
* (It's the only format allowed in conjunction with W-tiling.) Also we
* intentionally use the 4-channel formats whenever we can. This is so
* that, when we do a RGB <-> RGBX copy, the two formats will line up even
* though one of them is 3/4 the size of the other. The choice of UNORM
* vs. UINT is also very intentional because Haswell doesn't handle 8 or
* 16-bit RGB UINT formats at all so we have to use UNORM there.
* Fortunately, the only time we should ever use two different formats in
* the table below is for RGB -> RGBA blits and so we will never have any
* UNORM/UINT mismatch.
*/
switch (bs) {
case 1: return VK_FORMAT_R8_UINT;
case 2: return VK_FORMAT_R8G8_UINT;
case 3: return VK_FORMAT_R8G8B8_UNORM;
case 4: return VK_FORMAT_R8G8B8A8_UNORM;
case 6: return VK_FORMAT_R16G16B16_UNORM;
case 8: return VK_FORMAT_R16G16B16A16_UNORM;
case 12: return VK_FORMAT_R32G32B32_UINT;
case 16: return VK_FORMAT_R32G32B32A32_UINT;
default:
unreachable("Invalid format block size");
}
}
static struct anv_meta_blit2d_surf
blit_surf_for_image(const struct anv_image* image,
const struct isl_surf *img_isl_surf)
{
return (struct anv_meta_blit2d_surf) {
.bo = image->bo,
.tiling = img_isl_surf->tiling,
.base_offset = image->offset,
.bs = isl_format_get_layout(img_isl_surf->format)->bs,
.pitch = isl_surf_get_row_pitch(img_isl_surf),
};
}
void
anv_meta_blit2d(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_blit2d_surf *src,
struct anv_meta_blit2d_surf *dst,
unsigned num_rects,
struct anv_meta_blit2d_rect *rects)
{
VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
VkFormat src_format = vk_format_for_size(src->bs);
VkFormat dst_format = vk_format_for_size(dst->bs);
VkImageUsageFlags src_usage = VK_IMAGE_USAGE_SAMPLED_BIT;
VkImageUsageFlags dst_usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
for (unsigned r = 0; r < num_rects; ++r) {
/* Create VkImages */
VkImageCreateInfo image_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.imageType = VK_IMAGE_TYPE_2D,
.format = 0, /* TEMPLATE */
.extent = {
.width = 0, /* TEMPLATE */
.height = 0, /* TEMPLATE */
.depth = 1,
},
.mipLevels = 1,
.arrayLayers = 1,
.samples = 1,
.tiling = 0, /* TEMPLATE */
.usage = 0, /* TEMPLATE */
};
struct anv_image_create_info anv_image_info = {
.vk_info = &image_info,
.isl_tiling_flags = 0, /* TEMPLATE */
};
/* The image height is the rect height + src/dst y-offset from the
* tile-aligned base address.
*/
struct isl_tile_info tile_info;
anv_image_info.isl_tiling_flags = 1 << src->tiling;
image_info.tiling = anv_image_info.isl_tiling_flags == ISL_TILING_LINEAR_BIT ?
VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL;
image_info.usage = src_usage;
image_info.format = src_format,
isl_tiling_get_info(&cmd_buffer->device->isl_dev, src->tiling, src->bs, &tile_info);
image_info.extent.height = rects[r].height +
rects[r].src_y % tile_info.height;
image_info.extent.width = src->pitch / src->bs;
VkImage src_image;
anv_image_create(vk_device, &anv_image_info,
&cmd_buffer->pool->alloc, &src_image);
anv_image_info.isl_tiling_flags = 1 << dst->tiling;
image_info.tiling = anv_image_info.isl_tiling_flags == ISL_TILING_LINEAR_BIT ?
VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL;
image_info.usage = dst_usage;
image_info.format = dst_format,
isl_tiling_get_info(&cmd_buffer->device->isl_dev, dst->tiling, dst->bs, &tile_info);
image_info.extent.height = rects[r].height +
rects[r].dst_y % tile_info.height;
image_info.extent.width = dst->pitch / dst->bs;
VkImage dst_image;
anv_image_create(vk_device, &anv_image_info,
&cmd_buffer->pool->alloc, &dst_image);
/* We could use a vk call to bind memory, but that would require
* creating a dummy memory object etc. so there's really no point.
*/
anv_image_from_handle(src_image)->bo = src->bo;
anv_image_from_handle(src_image)->offset = src->base_offset;
anv_image_from_handle(dst_image)->bo = dst->bo;
anv_image_from_handle(dst_image)->offset = dst->base_offset;
/* Create VkImageViews */
VkImageViewCreateInfo iview_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = 0, /* TEMPLATE */
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = 0, /* TEMPLATE */
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1
},
};
uint32_t img_o = 0;
iview_info.image = src_image;
iview_info.format = src_format;
VkOffset3D src_offset_el = {0};
isl_surf_get_image_intratile_offset_el_xy(&cmd_buffer->device->isl_dev,
&anv_image_from_handle(src_image)->
color_surface.isl,
rects[r].src_x,
rects[r].src_y,
&img_o,
(uint32_t*)&src_offset_el.x,
(uint32_t*)&src_offset_el.y);
struct anv_image_view src_iview;
anv_image_view_init(&src_iview, cmd_buffer->device,
&iview_info, cmd_buffer, img_o, src_usage);
iview_info.image = dst_image;
iview_info.format = dst_format;
VkOffset3D dst_offset_el = {0};
isl_surf_get_image_intratile_offset_el_xy(&cmd_buffer->device->isl_dev,
&anv_image_from_handle(dst_image)->
color_surface.isl,
rects[r].dst_x,
rects[r].dst_y,
&img_o,
(uint32_t*)&dst_offset_el.x,
(uint32_t*)&dst_offset_el.y);
struct anv_image_view dst_iview;
anv_image_view_init(&dst_iview, cmd_buffer->device,
&iview_info, cmd_buffer, img_o, dst_usage);
/* Perform blit */
meta_emit_blit(cmd_buffer,
anv_image_from_handle(src_image),
&src_iview,
src_offset_el,
(VkExtent3D){rects[r].width, rects[r].height, 1},
anv_image_from_handle(dst_image),
&dst_iview,
dst_offset_el,
(VkExtent3D){rects[r].width, rects[r].height, 1},
VK_FILTER_NEAREST);
anv_DestroyImage(vk_device, src_image, &cmd_buffer->pool->alloc);
anv_DestroyImage(vk_device, dst_image, &cmd_buffer->pool->alloc);
}
}
static void
do_buffer_copy(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *src, uint64_t src_offset,
struct anv_bo *dest, uint64_t dest_offset,
int width, int height, int bs)
{
struct anv_meta_blit2d_surf b_src = {
.bo = src,
.tiling = ISL_TILING_LINEAR,
.base_offset = src_offset,
.bs = bs,
.pitch = width * bs,
};
struct anv_meta_blit2d_surf b_dst = {
.bo = dest,
.tiling = ISL_TILING_LINEAR,
.base_offset = dest_offset,
.bs = bs,
.pitch = width * bs,
};
struct anv_meta_blit2d_rect rect = {
.width = width,
.height = height,
};
anv_meta_blit2d(cmd_buffer,
&b_src,
&b_dst,
1,
&rect);
}
void anv_CmdCopyBuffer(
VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkBuffer destBuffer,
uint32_t regionCount,
const VkBufferCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
ANV_FROM_HANDLE(anv_buffer, dest_buffer, destBuffer);
struct anv_meta_saved_state saved_state;
anv_meta_begin_blit2d(cmd_buffer, &saved_state);
for (unsigned r = 0; r < regionCount; r++) {
uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset;
uint64_t dest_offset = dest_buffer->offset + pRegions[r].dstOffset;
uint64_t copy_size = pRegions[r].size;
/* First, we compute the biggest format that can be used with the
* given offsets and size.
*/
int bs = 16;
int fs = ffs(src_offset) - 1;
if (fs != -1)
bs = MIN2(bs, 1 << fs);
assert(src_offset % bs == 0);
fs = ffs(dest_offset) - 1;
if (fs != -1)
bs = MIN2(bs, 1 << fs);
assert(dest_offset % bs == 0);
fs = ffs(pRegions[r].size) - 1;
if (fs != -1)
bs = MIN2(bs, 1 << fs);
assert(pRegions[r].size % bs == 0);
/* This is maximum possible width/height our HW can handle */
uint64_t max_surface_dim = 1 << 14;
/* First, we make a bunch of max-sized copies */
uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs;
while (copy_size >= max_copy_size) {
do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
dest_buffer->bo, dest_offset,
max_surface_dim, max_surface_dim, bs);
copy_size -= max_copy_size;
src_offset += max_copy_size;
dest_offset += max_copy_size;
}
uint64_t height = copy_size / (max_surface_dim * bs);
assert(height < max_surface_dim);
if (height != 0) {
uint64_t rect_copy_size = height * max_surface_dim * bs;
do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
dest_buffer->bo, dest_offset,
max_surface_dim, height, bs);
copy_size -= rect_copy_size;
src_offset += rect_copy_size;
dest_offset += rect_copy_size;
}
if (copy_size != 0) {
do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
dest_buffer->bo, dest_offset,
copy_size / bs, 1, bs);
}
}
anv_meta_end_blit2d(cmd_buffer, &saved_state);
}
void anv_CmdUpdateBuffer(
VkCommandBuffer commandBuffer,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize dataSize,
const uint32_t* pData)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
struct anv_meta_saved_state saved_state;
anv_meta_begin_blit2d(cmd_buffer, &saved_state);
/* We can't quite grab a full block because the state stream needs a
* little data at the top to build its linked list.
*/
const uint32_t max_update_size =
cmd_buffer->device->dynamic_state_block_pool.block_size - 64;
assert(max_update_size < (1 << 14) * 4);
while (dataSize) {
const uint32_t copy_size = MIN2(dataSize, max_update_size);
struct anv_state tmp_data =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, copy_size, 64);
memcpy(tmp_data.map, pData, copy_size);
int bs;
if ((copy_size & 15) == 0 && (dstOffset & 15) == 0) {
bs = 16;
} else if ((copy_size & 7) == 0 && (dstOffset & 7) == 0) {
bs = 8;
} else {
assert((copy_size & 3) == 0 && (dstOffset & 3) == 0);
bs = 4;
}
do_buffer_copy(cmd_buffer,
&cmd_buffer->device->dynamic_state_block_pool.bo,
tmp_data.offset,
dst_buffer->bo, dst_buffer->offset + dstOffset,
copy_size / bs, 1, bs);
dataSize -= copy_size;
dstOffset += copy_size;
pData = (void *)pData + copy_size;
}
anv_meta_end_blit2d(cmd_buffer, &saved_state);
}
void anv_CmdCopyImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage destImage,
VkImageLayout destImageLayout,
uint32_t regionCount,
const VkImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_image, dest_image, destImage);
struct anv_meta_saved_state saved_state;
/* From the Vulkan 1.0 spec:
*
* vkCmdCopyImage can be used to copy image data between multisample
* images, but both images must have the same number of samples.
*/
assert(src_image->samples == dest_image->samples);
anv_meta_begin_blit2d(cmd_buffer, &saved_state);
for (unsigned r = 0; r < regionCount; r++) {
assert(pRegions[r].srcSubresource.aspectMask ==
pRegions[r].dstSubresource.aspectMask);
VkImageAspectFlags aspect = pRegions[r].srcSubresource.aspectMask;
/* Create blit surfaces */
struct isl_surf *src_isl_surf =
&anv_image_get_surface_for_aspect_mask(src_image, aspect)->isl;
struct isl_surf *dst_isl_surf =
&anv_image_get_surface_for_aspect_mask(dest_image, aspect)->isl;
struct anv_meta_blit2d_surf b_src = blit_surf_for_image(src_image, src_isl_surf);
struct anv_meta_blit2d_surf b_dst = blit_surf_for_image(dest_image, dst_isl_surf);
/* Start creating blit rect */
const VkOffset3D dst_offset_el = meta_region_offset_el(dest_image, &pRegions[r].dstOffset);
const VkOffset3D src_offset_el = meta_region_offset_el(src_image, &pRegions[r].srcOffset);
const VkExtent3D img_extent_el = meta_region_extent_el(src_image->vk_format,
&pRegions[r].extent);
struct anv_meta_blit2d_rect rect = {
.width = img_extent_el.width,
.height = img_extent_el.height,
};
/* Loop through each 3D or array slice */
unsigned num_slices_3d = pRegions[r].extent.depth;
unsigned num_slices_array = pRegions[r].dstSubresource.layerCount;
unsigned slice_3d = 0;
unsigned slice_array = 0;
while (slice_3d < num_slices_3d && slice_array < num_slices_array) {
/* Finish creating blit rect */
isl_surf_get_image_offset_el(dst_isl_surf,
pRegions[r].dstSubresource.mipLevel,
pRegions[r].dstSubresource.baseArrayLayer + slice_array,
pRegions[r].dstOffset.z + slice_3d,
&rect.dst_x,
&rect.dst_y);
isl_surf_get_image_offset_el(src_isl_surf,
pRegions[r].srcSubresource.mipLevel,
pRegions[r].srcSubresource.baseArrayLayer + slice_array,
pRegions[r].srcOffset.z + slice_3d,
&rect.src_x,
&rect.src_y);
rect.dst_x += dst_offset_el.x;
rect.dst_y += dst_offset_el.y;
rect.src_x += src_offset_el.x;
rect.src_y += src_offset_el.y;
/* Perform Blit */
anv_meta_blit2d(cmd_buffer,
&b_src,
&b_dst,
1,
&rect);
if (dest_image->type == VK_IMAGE_TYPE_3D)
slice_3d++;
else
slice_array++;
}
}
anv_meta_end_blit2d(cmd_buffer, &saved_state);
}
void anv_CmdBlitImage( void anv_CmdBlitImage(
VkCommandBuffer commandBuffer, VkCommandBuffer commandBuffer,
VkImage srcImage, VkImage srcImage,
@@ -925,130 +449,6 @@ void anv_CmdBlitImage(
meta_finish_blit(cmd_buffer, &saved_state); meta_finish_blit(cmd_buffer, &saved_state);
} }
static void
meta_copy_buffer_to_image(struct anv_cmd_buffer *cmd_buffer,
struct anv_buffer* buffer,
struct anv_image* image,
uint32_t regionCount,
const VkBufferImageCopy* pRegions,
bool forward)
{
struct anv_meta_saved_state saved_state;
/* The Vulkan 1.0 spec says "dstImage must have a sample count equal to
* VK_SAMPLE_COUNT_1_BIT."
*/
assert(image->samples == 1);
anv_meta_begin_blit2d(cmd_buffer, &saved_state);
for (unsigned r = 0; r < regionCount; r++) {
/* Start creating blit rect */
const VkOffset3D img_offset_el = meta_region_offset_el(image, &pRegions[r].imageOffset);
const VkExtent3D bufferExtent = {
.width = pRegions[r].bufferRowLength,
.height = pRegions[r].bufferImageHeight,
};
const VkExtent3D buf_extent_el = meta_region_extent_el(image->vk_format, &bufferExtent);
const VkExtent3D img_extent_el = meta_region_extent_el(image->vk_format,
&pRegions[r].imageExtent);
struct anv_meta_blit2d_rect rect = {
.width = MAX2(buf_extent_el.width, img_extent_el.width),
.height = MAX2(buf_extent_el.height, img_extent_el.height),
};
/* Create blit surfaces */
VkImageAspectFlags aspect = pRegions[r].imageSubresource.aspectMask;
const struct isl_surf *img_isl_surf =
&anv_image_get_surface_for_aspect_mask(image, aspect)->isl;
struct anv_meta_blit2d_surf img_bsurf = blit_surf_for_image(image, img_isl_surf);
struct anv_meta_blit2d_surf buf_bsurf = {
.bo = buffer->bo,
.tiling = ISL_TILING_LINEAR,
.base_offset = buffer->offset + pRegions[r].bufferOffset,
.bs = forward ? image->format->isl_layout->bs : img_bsurf.bs,
.pitch = rect.width * buf_bsurf.bs,
};
/* Set direction-dependent variables */
struct anv_meta_blit2d_surf *dst_bsurf = forward ? &img_bsurf : &buf_bsurf;
struct anv_meta_blit2d_surf *src_bsurf = forward ? &buf_bsurf : &img_bsurf;
uint32_t *x_offset = forward ? &rect.dst_x : &rect.src_x;
uint32_t *y_offset = forward ? &rect.dst_y : &rect.src_y;
/* Loop through each 3D or array slice */
unsigned num_slices_3d = pRegions[r].imageExtent.depth;
unsigned num_slices_array = pRegions[r].imageSubresource.layerCount;
unsigned slice_3d = 0;
unsigned slice_array = 0;
while (slice_3d < num_slices_3d && slice_array < num_slices_array) {
/* Finish creating blit rect */
isl_surf_get_image_offset_el(img_isl_surf,
pRegions[r].imageSubresource.mipLevel,
pRegions[r].imageSubresource.baseArrayLayer + slice_array,
pRegions[r].imageOffset.z + slice_3d,
x_offset,
y_offset);
*x_offset += img_offset_el.x;
*y_offset += img_offset_el.y;
/* Perform Blit */
anv_meta_blit2d(cmd_buffer,
src_bsurf,
dst_bsurf,
1,
&rect);
/* Once we've done the blit, all of the actual information about
* the image is embedded in the command buffer so we can just
* increment the offset directly in the image effectively
* re-binding it to different backing memory.
*/
buf_bsurf.base_offset += rect.width * rect.height * buf_bsurf.bs;
if (image->type == VK_IMAGE_TYPE_3D)
slice_3d++;
else
slice_array++;
}
}
anv_meta_end_blit2d(cmd_buffer, &saved_state);
}
void anv_CmdCopyBufferToImage(
VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkImage destImage,
VkImageLayout destImageLayout,
uint32_t regionCount,
const VkBufferImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, dest_image, destImage);
ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
meta_copy_buffer_to_image(cmd_buffer, src_buffer, dest_image,
regionCount, pRegions, true);
}
void anv_CmdCopyImageToBuffer(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkBuffer destBuffer,
uint32_t regionCount,
const VkBufferImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_buffer, dst_buffer, destBuffer);
meta_copy_buffer_to_image(cmd_buffer, dst_buffer, src_image,
regionCount, pRegions, false);
}
void void
anv_device_finish_meta_blit_state(struct anv_device *device) anv_device_finish_meta_blit_state(struct anv_device *device)
{ {

View File

@@ -0,0 +1,213 @@
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "anv_meta.h"
static VkFormat
vk_format_for_size(int bs)
{
/* The choice of UNORM and UINT formats is very intentional here. Most of
* the time, we want to use a UINT format to avoid any rounding error in
* the blit. For stencil blits, R8_UINT is required by the hardware.
* (It's the only format allowed in conjunction with W-tiling.) Also we
* intentionally use the 4-channel formats whenever we can. This is so
* that, when we do a RGB <-> RGBX copy, the two formats will line up even
* though one of them is 3/4 the size of the other. The choice of UNORM
* vs. UINT is also very intentional because Haswell doesn't handle 8 or
* 16-bit RGB UINT formats at all so we have to use UNORM there.
* Fortunately, the only time we should ever use two different formats in
* the table below is for RGB -> RGBA blits and so we will never have any
* UNORM/UINT mismatch.
*/
switch (bs) {
case 1: return VK_FORMAT_R8_UINT;
case 2: return VK_FORMAT_R8G8_UINT;
case 3: return VK_FORMAT_R8G8B8_UNORM;
case 4: return VK_FORMAT_R8G8B8A8_UNORM;
case 6: return VK_FORMAT_R16G16B16_UNORM;
case 8: return VK_FORMAT_R16G16B16A16_UNORM;
case 12: return VK_FORMAT_R32G32B32_UINT;
case 16: return VK_FORMAT_R32G32B32A32_UINT;
default:
unreachable("Invalid format block size");
}
}
void
anv_meta_end_blit2d(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_saved_state *save)
{
anv_meta_restore(save, cmd_buffer);
}
void
anv_meta_begin_blit2d(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_saved_state *save)
{
anv_meta_save(save, cmd_buffer,
(1 << VK_DYNAMIC_STATE_VIEWPORT));
}
void
anv_meta_blit2d(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_blit2d_surf *src,
struct anv_meta_blit2d_surf *dst,
unsigned num_rects,
struct anv_meta_blit2d_rect *rects)
{
VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
VkFormat src_format = vk_format_for_size(src->bs);
VkFormat dst_format = vk_format_for_size(dst->bs);
VkImageUsageFlags src_usage = VK_IMAGE_USAGE_SAMPLED_BIT;
VkImageUsageFlags dst_usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
for (unsigned r = 0; r < num_rects; ++r) {
/* Create VkImages */
VkImageCreateInfo image_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.imageType = VK_IMAGE_TYPE_2D,
.format = 0, /* TEMPLATE */
.extent = {
.width = 0, /* TEMPLATE */
.height = 0, /* TEMPLATE */
.depth = 1,
},
.mipLevels = 1,
.arrayLayers = 1,
.samples = 1,
.tiling = 0, /* TEMPLATE */
.usage = 0, /* TEMPLATE */
};
struct anv_image_create_info anv_image_info = {
.vk_info = &image_info,
.isl_tiling_flags = 0, /* TEMPLATE */
};
/* The image height is the rect height + src/dst y-offset from the
* tile-aligned base address.
*/
struct isl_tile_info tile_info;
anv_image_info.isl_tiling_flags = 1 << src->tiling;
image_info.tiling = anv_image_info.isl_tiling_flags ==
ISL_TILING_LINEAR_BIT ?
VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL;
image_info.usage = src_usage;
image_info.format = src_format,
isl_tiling_get_info(&cmd_buffer->device->isl_dev, src->tiling, src->bs,
&tile_info);
image_info.extent.height = rects[r].height +
rects[r].src_y % tile_info.height;
image_info.extent.width = src->pitch / src->bs;
VkImage src_image;
anv_image_create(vk_device, &anv_image_info,
&cmd_buffer->pool->alloc, &src_image);
anv_image_info.isl_tiling_flags = 1 << dst->tiling;
image_info.tiling = anv_image_info.isl_tiling_flags ==
ISL_TILING_LINEAR_BIT ?
VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL;
image_info.usage = dst_usage;
image_info.format = dst_format,
isl_tiling_get_info(&cmd_buffer->device->isl_dev, dst->tiling, dst->bs,
&tile_info);
image_info.extent.height = rects[r].height +
rects[r].dst_y % tile_info.height;
image_info.extent.width = dst->pitch / dst->bs;
VkImage dst_image;
anv_image_create(vk_device, &anv_image_info,
&cmd_buffer->pool->alloc, &dst_image);
/* We could use a vk call to bind memory, but that would require
* creating a dummy memory object etc. so there's really no point.
*/
anv_image_from_handle(src_image)->bo = src->bo;
anv_image_from_handle(src_image)->offset = src->base_offset;
anv_image_from_handle(dst_image)->bo = dst->bo;
anv_image_from_handle(dst_image)->offset = dst->base_offset;
/* Create VkImageViews */
VkImageViewCreateInfo iview_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = 0, /* TEMPLATE */
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = 0, /* TEMPLATE */
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1
},
};
uint32_t img_o = 0;
iview_info.image = src_image;
iview_info.format = src_format;
VkOffset3D src_offset_el = {0};
isl_surf_get_image_intratile_offset_el_xy(&cmd_buffer->device->isl_dev,
&anv_image_from_handle(src_image)->
color_surface.isl,
rects[r].src_x,
rects[r].src_y,
&img_o,
(uint32_t*)&src_offset_el.x,
(uint32_t*)&src_offset_el.y);
struct anv_image_view src_iview;
anv_image_view_init(&src_iview, cmd_buffer->device,
&iview_info, cmd_buffer, img_o, src_usage);
iview_info.image = dst_image;
iview_info.format = dst_format;
VkOffset3D dst_offset_el = {0};
isl_surf_get_image_intratile_offset_el_xy(&cmd_buffer->device->isl_dev,
&anv_image_from_handle(dst_image)->
color_surface.isl,
rects[r].dst_x,
rects[r].dst_y,
&img_o,
(uint32_t*)&dst_offset_el.x,
(uint32_t*)&dst_offset_el.y);
struct anv_image_view dst_iview;
anv_image_view_init(&dst_iview, cmd_buffer->device,
&iview_info, cmd_buffer, img_o, dst_usage);
/* Perform blit */
meta_emit_blit(cmd_buffer,
anv_image_from_handle(src_image),
&src_iview,
src_offset_el,
(VkExtent3D){rects[r].width, rects[r].height, 1},
anv_image_from_handle(dst_image),
&dst_iview,
dst_offset_el,
(VkExtent3D){rects[r].width, rects[r].height, 1},
VK_FILTER_NEAREST);
anv_DestroyImage(vk_device, src_image, &cmd_buffer->pool->alloc);
anv_DestroyImage(vk_device, dst_image, &cmd_buffer->pool->alloc);
}
}

View File

@@ -0,0 +1,441 @@
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "anv_meta.h"
/* Returns the user-provided VkBufferImageCopy::imageExtent in units of
* elements rather than texels. One element equals one texel or one block
* if Image is uncompressed or compressed, respectively.
*/
static struct VkExtent3D
meta_region_extent_el(const VkFormat format,
const struct VkExtent3D *extent)
{
const struct isl_format_layout *isl_layout =
anv_format_for_vk_format(format)->isl_layout;
return (VkExtent3D) {
.width = DIV_ROUND_UP(extent->width , isl_layout->bw),
.height = DIV_ROUND_UP(extent->height, isl_layout->bh),
.depth = DIV_ROUND_UP(extent->depth , isl_layout->bd),
};
}
/* Returns the user-provided VkBufferImageCopy::imageOffset in units of
* elements rather than texels. One element equals one texel or one block
* if Image is uncompressed or compressed, respectively.
*/
static struct VkOffset3D
meta_region_offset_el(const struct anv_image *image,
const struct VkOffset3D *offset)
{
const struct isl_format_layout *isl_layout = image->format->isl_layout;
return (VkOffset3D) {
.x = offset->x / isl_layout->bw,
.y = offset->y / isl_layout->bh,
.z = offset->z / isl_layout->bd,
};
}
static struct anv_meta_blit2d_surf
blit_surf_for_image(const struct anv_image* image,
const struct isl_surf *img_isl_surf)
{
return (struct anv_meta_blit2d_surf) {
.bo = image->bo,
.tiling = img_isl_surf->tiling,
.base_offset = image->offset,
.bs = isl_format_get_layout(img_isl_surf->format)->bs,
.pitch = isl_surf_get_row_pitch(img_isl_surf),
};
}
static void
do_buffer_copy(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *src, uint64_t src_offset,
struct anv_bo *dest, uint64_t dest_offset,
int width, int height, int bs)
{
struct anv_meta_blit2d_surf b_src = {
.bo = src,
.tiling = ISL_TILING_LINEAR,
.base_offset = src_offset,
.bs = bs,
.pitch = width * bs,
};
struct anv_meta_blit2d_surf b_dst = {
.bo = dest,
.tiling = ISL_TILING_LINEAR,
.base_offset = dest_offset,
.bs = bs,
.pitch = width * bs,
};
struct anv_meta_blit2d_rect rect = {
.width = width,
.height = height,
};
anv_meta_blit2d(cmd_buffer, &b_src, &b_dst, 1, &rect);
}
static void
meta_copy_buffer_to_image(struct anv_cmd_buffer *cmd_buffer,
struct anv_buffer* buffer,
struct anv_image* image,
uint32_t regionCount,
const VkBufferImageCopy* pRegions,
bool forward)
{
struct anv_meta_saved_state saved_state;
/* The Vulkan 1.0 spec says "dstImage must have a sample count equal to
* VK_SAMPLE_COUNT_1_BIT."
*/
assert(image->samples == 1);
anv_meta_begin_blit2d(cmd_buffer, &saved_state);
for (unsigned r = 0; r < regionCount; r++) {
/* Start creating blit rect */
const VkOffset3D img_offset_el =
meta_region_offset_el(image, &pRegions[r].imageOffset);
const VkExtent3D bufferExtent = {
.width = pRegions[r].bufferRowLength,
.height = pRegions[r].bufferImageHeight,
};
const VkExtent3D buf_extent_el =
meta_region_extent_el(image->vk_format, &bufferExtent);
const VkExtent3D img_extent_el =
meta_region_extent_el(image->vk_format, &pRegions[r].imageExtent);
struct anv_meta_blit2d_rect rect = {
.width = MAX2(buf_extent_el.width, img_extent_el.width),
.height = MAX2(buf_extent_el.height, img_extent_el.height),
};
/* Create blit surfaces */
VkImageAspectFlags aspect = pRegions[r].imageSubresource.aspectMask;
const struct isl_surf *img_isl_surf =
&anv_image_get_surface_for_aspect_mask(image, aspect)->isl;
struct anv_meta_blit2d_surf img_bsurf =
blit_surf_for_image(image, img_isl_surf);
struct anv_meta_blit2d_surf buf_bsurf = {
.bo = buffer->bo,
.tiling = ISL_TILING_LINEAR,
.base_offset = buffer->offset + pRegions[r].bufferOffset,
.bs = forward ? image->format->isl_layout->bs : img_bsurf.bs,
.pitch = rect.width * buf_bsurf.bs,
};
/* Set direction-dependent variables */
struct anv_meta_blit2d_surf *dst_bsurf = forward ? &img_bsurf : &buf_bsurf;
struct anv_meta_blit2d_surf *src_bsurf = forward ? &buf_bsurf : &img_bsurf;
uint32_t *x_offset = forward ? &rect.dst_x : &rect.src_x;
uint32_t *y_offset = forward ? &rect.dst_y : &rect.src_y;
/* Loop through each 3D or array slice */
unsigned num_slices_3d = pRegions[r].imageExtent.depth;
unsigned num_slices_array = pRegions[r].imageSubresource.layerCount;
unsigned slice_3d = 0;
unsigned slice_array = 0;
while (slice_3d < num_slices_3d && slice_array < num_slices_array) {
/* Finish creating blit rect */
isl_surf_get_image_offset_el(img_isl_surf,
pRegions[r].imageSubresource.mipLevel,
pRegions[r].imageSubresource.baseArrayLayer
+ slice_array,
pRegions[r].imageOffset.z + slice_3d,
x_offset,
y_offset);
*x_offset += img_offset_el.x;
*y_offset += img_offset_el.y;
/* Perform Blit */
anv_meta_blit2d(cmd_buffer, src_bsurf, dst_bsurf, 1, &rect);
/* Once we've done the blit, all of the actual information about
* the image is embedded in the command buffer so we can just
* increment the offset directly in the image effectively
* re-binding it to different backing memory.
*/
buf_bsurf.base_offset += rect.width * rect.height * buf_bsurf.bs;
if (image->type == VK_IMAGE_TYPE_3D)
slice_3d++;
else
slice_array++;
}
}
anv_meta_end_blit2d(cmd_buffer, &saved_state);
}
void anv_CmdCopyBufferToImage(
VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkImage destImage,
VkImageLayout destImageLayout,
uint32_t regionCount,
const VkBufferImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, dest_image, destImage);
ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
meta_copy_buffer_to_image(cmd_buffer, src_buffer, dest_image,
regionCount, pRegions, true);
}
void anv_CmdCopyImageToBuffer(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkBuffer destBuffer,
uint32_t regionCount,
const VkBufferImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_buffer, dst_buffer, destBuffer);
meta_copy_buffer_to_image(cmd_buffer, dst_buffer, src_image,
regionCount, pRegions, false);
}
void anv_CmdCopyImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage destImage,
VkImageLayout destImageLayout,
uint32_t regionCount,
const VkImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_image, dest_image, destImage);
struct anv_meta_saved_state saved_state;
/* From the Vulkan 1.0 spec:
*
* vkCmdCopyImage can be used to copy image data between multisample
* images, but both images must have the same number of samples.
*/
assert(src_image->samples == dest_image->samples);
anv_meta_begin_blit2d(cmd_buffer, &saved_state);
for (unsigned r = 0; r < regionCount; r++) {
assert(pRegions[r].srcSubresource.aspectMask ==
pRegions[r].dstSubresource.aspectMask);
VkImageAspectFlags aspect = pRegions[r].srcSubresource.aspectMask;
/* Create blit surfaces */
struct isl_surf *src_isl_surf =
&anv_image_get_surface_for_aspect_mask(src_image, aspect)->isl;
struct isl_surf *dst_isl_surf =
&anv_image_get_surface_for_aspect_mask(dest_image, aspect)->isl;
struct anv_meta_blit2d_surf b_src =
blit_surf_for_image(src_image, src_isl_surf);
struct anv_meta_blit2d_surf b_dst =
blit_surf_for_image(dest_image, dst_isl_surf);
/* Start creating blit rect */
const VkOffset3D dst_offset_el =
meta_region_offset_el(dest_image, &pRegions[r].dstOffset);
const VkOffset3D src_offset_el =
meta_region_offset_el(src_image, &pRegions[r].srcOffset);
const VkExtent3D img_extent_el =
meta_region_extent_el(src_image->vk_format, &pRegions[r].extent);
struct anv_meta_blit2d_rect rect = {
.width = img_extent_el.width,
.height = img_extent_el.height,
};
/* Loop through each 3D or array slice */
unsigned num_slices_3d = pRegions[r].extent.depth;
unsigned num_slices_array = pRegions[r].dstSubresource.layerCount;
unsigned slice_3d = 0;
unsigned slice_array = 0;
while (slice_3d < num_slices_3d && slice_array < num_slices_array) {
/* Finish creating blit rect */
isl_surf_get_image_offset_el(dst_isl_surf,
pRegions[r].dstSubresource.mipLevel,
pRegions[r].dstSubresource.baseArrayLayer
+ slice_array,
pRegions[r].dstOffset.z + slice_3d,
&rect.dst_x,
&rect.dst_y);
isl_surf_get_image_offset_el(src_isl_surf,
pRegions[r].srcSubresource.mipLevel,
pRegions[r].srcSubresource.baseArrayLayer
+ slice_array,
pRegions[r].srcOffset.z + slice_3d,
&rect.src_x,
&rect.src_y);
rect.dst_x += dst_offset_el.x;
rect.dst_y += dst_offset_el.y;
rect.src_x += src_offset_el.x;
rect.src_y += src_offset_el.y;
/* Perform Blit */
anv_meta_blit2d(cmd_buffer, &b_src, &b_dst, 1, &rect);
if (dest_image->type == VK_IMAGE_TYPE_3D)
slice_3d++;
else
slice_array++;
}
}
anv_meta_end_blit2d(cmd_buffer, &saved_state);
}
void anv_CmdCopyBuffer(
VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkBuffer destBuffer,
uint32_t regionCount,
const VkBufferCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
ANV_FROM_HANDLE(anv_buffer, dest_buffer, destBuffer);
struct anv_meta_saved_state saved_state;
anv_meta_begin_blit2d(cmd_buffer, &saved_state);
for (unsigned r = 0; r < regionCount; r++) {
uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset;
uint64_t dest_offset = dest_buffer->offset + pRegions[r].dstOffset;
uint64_t copy_size = pRegions[r].size;
/* First, we compute the biggest format that can be used with the
* given offsets and size.
*/
int bs = 16;
int fs = ffs(src_offset) - 1;
if (fs != -1)
bs = MIN2(bs, 1 << fs);
assert(src_offset % bs == 0);
fs = ffs(dest_offset) - 1;
if (fs != -1)
bs = MIN2(bs, 1 << fs);
assert(dest_offset % bs == 0);
fs = ffs(pRegions[r].size) - 1;
if (fs != -1)
bs = MIN2(bs, 1 << fs);
assert(pRegions[r].size % bs == 0);
/* This is maximum possible width/height our HW can handle */
uint64_t max_surface_dim = 1 << 14;
/* First, we make a bunch of max-sized copies */
uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs;
while (copy_size >= max_copy_size) {
do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
dest_buffer->bo, dest_offset,
max_surface_dim, max_surface_dim, bs);
copy_size -= max_copy_size;
src_offset += max_copy_size;
dest_offset += max_copy_size;
}
uint64_t height = copy_size / (max_surface_dim * bs);
assert(height < max_surface_dim);
if (height != 0) {
uint64_t rect_copy_size = height * max_surface_dim * bs;
do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
dest_buffer->bo, dest_offset,
max_surface_dim, height, bs);
copy_size -= rect_copy_size;
src_offset += rect_copy_size;
dest_offset += rect_copy_size;
}
if (copy_size != 0) {
do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
dest_buffer->bo, dest_offset,
copy_size / bs, 1, bs);
}
}
anv_meta_end_blit2d(cmd_buffer, &saved_state);
}
void anv_CmdUpdateBuffer(
VkCommandBuffer commandBuffer,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize dataSize,
const uint32_t* pData)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
struct anv_meta_saved_state saved_state;
anv_meta_begin_blit2d(cmd_buffer, &saved_state);
/* We can't quite grab a full block because the state stream needs a
* little data at the top to build its linked list.
*/
const uint32_t max_update_size =
cmd_buffer->device->dynamic_state_block_pool.block_size - 64;
assert(max_update_size < (1 << 14) * 4);
while (dataSize) {
const uint32_t copy_size = MIN2(dataSize, max_update_size);
struct anv_state tmp_data =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, copy_size, 64);
memcpy(tmp_data.map, pData, copy_size);
int bs;
if ((copy_size & 15) == 0 && (dstOffset & 15) == 0) {
bs = 16;
} else if ((copy_size & 7) == 0 && (dstOffset & 7) == 0) {
bs = 8;
} else {
assert((copy_size & 3) == 0 && (dstOffset & 3) == 0);
bs = 4;
}
do_buffer_copy(cmd_buffer,
&cmd_buffer->device->dynamic_state_block_pool.bo,
tmp_data.offset,
dst_buffer->bo, dst_buffer->offset + dstOffset,
copy_size / bs, 1, bs);
dataSize -= copy_size;
dstOffset += copy_size;
pData = (void *)pData + copy_size;
}
anv_meta_end_blit2d(cmd_buffer, &saved_state);
}