nir: Add a local variable-based copy propagation pass
Reviewed-by: Timothy Arceri <timothy.arceri@collabora.com>
This commit is contained in:
@@ -236,6 +236,7 @@ NIR_FILES = \
|
||||
nir/nir_normalize_cubemap_coords.c \
|
||||
nir/nir_opt_conditional_discard.c \
|
||||
nir/nir_opt_constant_folding.c \
|
||||
nir/nir_opt_copy_prop_vars.c \
|
||||
nir/nir_opt_copy_propagate.c \
|
||||
nir/nir_opt_cse.c \
|
||||
nir/nir_opt_dce.c \
|
||||
|
@@ -2549,6 +2549,8 @@ bool nir_opt_global_to_local(nir_shader *shader);
|
||||
|
||||
bool nir_copy_prop(nir_shader *shader);
|
||||
|
||||
bool nir_opt_copy_prop_vars(nir_shader *shader);
|
||||
|
||||
bool nir_opt_cse(nir_shader *shader);
|
||||
|
||||
bool nir_opt_dce(nir_shader *shader);
|
||||
|
813
src/compiler/nir/nir_opt_copy_prop_vars.c
Normal file
813
src/compiler/nir/nir_opt_copy_prop_vars.c
Normal file
@@ -0,0 +1,813 @@
|
||||
/*
|
||||
* Copyright © 2016 Intel Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice (including the next
|
||||
* paragraph) shall be included in all copies or substantial portions of the
|
||||
* Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include "nir.h"
|
||||
#include "nir_builder.h"
|
||||
|
||||
#include "util/bitscan.h"
|
||||
|
||||
/**
|
||||
* Variable-based copy propagation
|
||||
*
|
||||
* Normally, NIR trusts in SSA form for most of its copy-propagation needs.
|
||||
* However, there are cases, especially when dealing with indirects, where SSA
|
||||
* won't help you. This pass is for those times. Specifically, it handles
|
||||
* the following things that the rest of NIR can't:
|
||||
*
|
||||
* 1) Copy-propagation on variables that have indirect access. This includes
|
||||
* propagating from indirect stores into indirect loads.
|
||||
*
|
||||
* 2) Dead code elimination of store_var and copy_var intrinsics based on
|
||||
* killed destination values.
|
||||
*
|
||||
* 3) Removal of redundant load_var intrinsics. We can't trust regular CSE
|
||||
* to do this because it isn't aware of variable writes that may alias the
|
||||
* value and make the former load invalid.
|
||||
*
|
||||
* Unfortunately, properly handling all of those cases makes this path rather
|
||||
* complex. In order to avoid additional complexity, this pass is entirely
|
||||
* block-local. If we tried to make it global, the data-flow analysis would
|
||||
* rapidly get out of hand. Fortunately, for anything that is only ever
|
||||
* accessed directly, we get SSA based copy-propagation which is extremely
|
||||
* powerful so this isn't that great a loss.
|
||||
*/
|
||||
|
||||
struct value {
|
||||
bool is_ssa;
|
||||
union {
|
||||
nir_ssa_def *ssa[4];
|
||||
nir_deref_var *deref;
|
||||
};
|
||||
};
|
||||
|
||||
struct copy_entry {
|
||||
struct list_head link;
|
||||
|
||||
nir_instr *store_instr[4];
|
||||
|
||||
unsigned comps_may_be_read;
|
||||
struct value src;
|
||||
|
||||
nir_deref_var *dst;
|
||||
};
|
||||
|
||||
struct copy_prop_var_state {
|
||||
nir_shader *shader;
|
||||
|
||||
void *mem_ctx;
|
||||
|
||||
struct list_head copies;
|
||||
|
||||
/* We're going to be allocating and deleting a lot of copy entries so we'll
|
||||
* keep a free list to avoid thrashing malloc too badly.
|
||||
*/
|
||||
struct list_head copy_free_list;
|
||||
|
||||
bool progress;
|
||||
};
|
||||
|
||||
static struct copy_entry *
|
||||
copy_entry_create(struct copy_prop_var_state *state,
|
||||
nir_deref_var *dst_deref)
|
||||
{
|
||||
struct copy_entry *entry;
|
||||
if (!list_empty(&state->copy_free_list)) {
|
||||
struct list_head *item = state->copy_free_list.next;
|
||||
list_del(item);
|
||||
entry = LIST_ENTRY(struct copy_entry, item, link);
|
||||
memset(entry, 0, sizeof(*entry));
|
||||
} else {
|
||||
entry = rzalloc(state->mem_ctx, struct copy_entry);
|
||||
}
|
||||
|
||||
entry->dst = dst_deref;
|
||||
list_add(&entry->link, &state->copies);
|
||||
|
||||
return entry;
|
||||
}
|
||||
|
||||
static void
|
||||
copy_entry_remove(struct copy_prop_var_state *state, struct copy_entry *entry)
|
||||
{
|
||||
list_del(&entry->link);
|
||||
list_add(&entry->link, &state->copy_free_list);
|
||||
}
|
||||
|
||||
enum deref_compare_result {
|
||||
derefs_equal_bit = (1 << 0),
|
||||
derefs_may_alias_bit = (1 << 1),
|
||||
derefs_a_contains_b_bit = (1 << 2),
|
||||
derefs_b_contains_a_bit = (1 << 3),
|
||||
};
|
||||
|
||||
/** Returns true if the storage referrenced to by deref completely contains
|
||||
* the storage referenced by sub.
|
||||
*
|
||||
* NOTE: This is fairly general and could be moved to core NIR if someone else
|
||||
* ever needs it.
|
||||
*/
|
||||
static enum deref_compare_result
|
||||
compare_derefs(nir_deref_var *a, nir_deref_var *b)
|
||||
{
|
||||
if (a->var != b->var)
|
||||
return 0;
|
||||
|
||||
/* Start off assuming they fully compare. We ignore equality for now. In
|
||||
* the end, we'll determine that by containment.
|
||||
*/
|
||||
enum deref_compare_result result = derefs_may_alias_bit |
|
||||
derefs_a_contains_b_bit |
|
||||
derefs_b_contains_a_bit;
|
||||
|
||||
nir_deref *a_tail = &a->deref;
|
||||
nir_deref *b_tail = &b->deref;
|
||||
while (a_tail->child && b_tail->child) {
|
||||
a_tail = a_tail->child;
|
||||
b_tail = b_tail->child;
|
||||
|
||||
assert(a_tail->deref_type == b_tail->deref_type);
|
||||
switch (a_tail->deref_type) {
|
||||
case nir_deref_type_array: {
|
||||
nir_deref_array *a_arr = nir_deref_as_array(a_tail);
|
||||
nir_deref_array *b_arr = nir_deref_as_array(b_tail);
|
||||
|
||||
if (a_arr->deref_array_type == nir_deref_array_type_direct &&
|
||||
b_arr->deref_array_type == nir_deref_array_type_direct) {
|
||||
/* If they're both direct and have different offsets, they
|
||||
* don't even alias much less anything else.
|
||||
*/
|
||||
if (a_arr->base_offset != b_arr->base_offset)
|
||||
return 0;
|
||||
} else if (a_arr->deref_array_type == nir_deref_array_type_wildcard) {
|
||||
if (b_arr->deref_array_type != nir_deref_array_type_wildcard)
|
||||
result &= ~derefs_b_contains_a_bit;
|
||||
} else if (b_arr->deref_array_type == nir_deref_array_type_wildcard) {
|
||||
if (a_arr->deref_array_type != nir_deref_array_type_wildcard)
|
||||
result &= ~derefs_a_contains_b_bit;
|
||||
} else if (a_arr->deref_array_type == nir_deref_array_type_indirect &&
|
||||
b_arr->deref_array_type == nir_deref_array_type_indirect) {
|
||||
assert(a_arr->indirect.is_ssa && b_arr->indirect.is_ssa);
|
||||
if (a_arr->indirect.ssa == b_arr->indirect.ssa) {
|
||||
/* If they're different constant offsets from the same indirect
|
||||
* then they don't alias at all.
|
||||
*/
|
||||
if (a_arr->base_offset != b_arr->base_offset)
|
||||
return 0;
|
||||
/* Otherwise the indirect and base both match */
|
||||
} else {
|
||||
/* If they're have different indirect offsets then we can't
|
||||
* prove anything about containment.
|
||||
*/
|
||||
result &= ~(derefs_a_contains_b_bit | derefs_b_contains_a_bit);
|
||||
}
|
||||
} else {
|
||||
/* In this case, one is indirect and the other direct so we can't
|
||||
* prove anything about containment.
|
||||
*/
|
||||
result &= ~(derefs_a_contains_b_bit | derefs_b_contains_a_bit);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case nir_deref_type_struct: {
|
||||
nir_deref_struct *a_struct = nir_deref_as_struct(a_tail);
|
||||
nir_deref_struct *b_struct = nir_deref_as_struct(b_tail);
|
||||
|
||||
/* If they're different struct members, they don't even alias */
|
||||
if (a_struct->index != b_struct->index)
|
||||
return 0;
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
unreachable("Invalid deref type");
|
||||
}
|
||||
}
|
||||
|
||||
/* If a is longer than b, then it can't contain b */
|
||||
if (a_tail->child)
|
||||
result &= ~derefs_a_contains_b_bit;
|
||||
if (b_tail->child)
|
||||
result &= ~derefs_b_contains_a_bit;
|
||||
|
||||
/* If a contains b and b contains a they must be equal. */
|
||||
if ((result & derefs_a_contains_b_bit) && (result & derefs_b_contains_a_bit))
|
||||
result |= derefs_equal_bit;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void
|
||||
remove_dead_writes(struct copy_prop_var_state *state,
|
||||
struct copy_entry *entry, unsigned write_mask)
|
||||
{
|
||||
/* We're overwriting another entry. Some of it's components may not
|
||||
* have been read yet and, if that's the case, we may be able to delete
|
||||
* some instructions but we have to be careful.
|
||||
*/
|
||||
unsigned dead_comps = write_mask & ~entry->comps_may_be_read;
|
||||
|
||||
for (unsigned mask = dead_comps; mask;) {
|
||||
unsigned i = u_bit_scan(&mask);
|
||||
|
||||
nir_instr *instr = entry->store_instr[i];
|
||||
|
||||
/* We may have already deleted it on a previous iteration */
|
||||
if (!instr)
|
||||
continue;
|
||||
|
||||
/* See if this instr is used anywhere that it's not dead */
|
||||
bool keep = false;
|
||||
for (unsigned j = 0; j < 4; j++) {
|
||||
if (entry->store_instr[j] == instr) {
|
||||
if (dead_comps & (1 << j)) {
|
||||
entry->store_instr[j] = NULL;
|
||||
} else {
|
||||
keep = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!keep) {
|
||||
nir_instr_remove(instr);
|
||||
state->progress = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static struct copy_entry *
|
||||
lookup_entry_for_deref(struct copy_prop_var_state *state,
|
||||
nir_deref_var *deref,
|
||||
enum deref_compare_result allowed_comparisons)
|
||||
{
|
||||
list_for_each_entry(struct copy_entry, iter, &state->copies, link) {
|
||||
if (compare_derefs(iter->dst, deref) & allowed_comparisons)
|
||||
return iter;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void
|
||||
mark_aliased_entries_as_read(struct copy_prop_var_state *state,
|
||||
nir_deref_var *deref, unsigned components)
|
||||
{
|
||||
list_for_each_entry(struct copy_entry, iter, &state->copies, link) {
|
||||
if (compare_derefs(iter->dst, deref) & derefs_may_alias_bit)
|
||||
iter->comps_may_be_read |= components;
|
||||
}
|
||||
}
|
||||
|
||||
static struct copy_entry *
|
||||
get_entry_and_kill_aliases(struct copy_prop_var_state *state,
|
||||
nir_deref_var *deref,
|
||||
unsigned write_mask)
|
||||
{
|
||||
struct copy_entry *entry = NULL;
|
||||
list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link) {
|
||||
if (!iter->src.is_ssa) {
|
||||
/* If this write aliases the source of some entry, get rid of it */
|
||||
if (compare_derefs(iter->src.deref, deref) & derefs_may_alias_bit) {
|
||||
copy_entry_remove(state, iter);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
enum deref_compare_result comp = compare_derefs(iter->dst, deref);
|
||||
/* This is a store operation. If we completely overwrite some value, we
|
||||
* want to delete any dead writes that may be present.
|
||||
*/
|
||||
if (comp & derefs_b_contains_a_bit)
|
||||
remove_dead_writes(state, iter, write_mask);
|
||||
|
||||
if (comp & derefs_equal_bit) {
|
||||
assert(entry == NULL);
|
||||
entry = iter;
|
||||
} else if (comp & derefs_may_alias_bit) {
|
||||
copy_entry_remove(state, iter);
|
||||
}
|
||||
}
|
||||
|
||||
if (entry == NULL)
|
||||
entry = copy_entry_create(state, deref);
|
||||
|
||||
return entry;
|
||||
}
|
||||
|
||||
static void
|
||||
apply_barrier_for_modes(struct copy_prop_var_state *state,
|
||||
nir_variable_mode modes)
|
||||
{
|
||||
list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link) {
|
||||
if ((iter->dst->var->data.mode & modes) ||
|
||||
(!iter->src.is_ssa && (iter->src.deref->var->data.mode & modes)))
|
||||
copy_entry_remove(state, iter);
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
store_to_entry(struct copy_prop_var_state *state, struct copy_entry *entry,
|
||||
const struct value *value, unsigned write_mask,
|
||||
nir_instr *store_instr)
|
||||
{
|
||||
entry->comps_may_be_read &= ~write_mask;
|
||||
if (value->is_ssa) {
|
||||
entry->src.is_ssa = true;
|
||||
/* Only overwrite the written components */
|
||||
for (unsigned i = 0; i < 4; i++) {
|
||||
if (write_mask & (1 << i)) {
|
||||
entry->store_instr[i] = store_instr;
|
||||
entry->src.ssa[i] = value->ssa[i];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* Non-ssa stores always write everything */
|
||||
entry->src.is_ssa = false;
|
||||
entry->src.deref = value->deref;
|
||||
for (unsigned i = 0; i < 4; i++)
|
||||
entry->store_instr[i] = store_instr;
|
||||
}
|
||||
}
|
||||
|
||||
/* Remove an instruction and return a cursor pointing to where it was */
|
||||
static nir_cursor
|
||||
instr_remove_cursor(nir_instr *instr)
|
||||
{
|
||||
nir_cursor cursor;
|
||||
nir_instr *prev = nir_instr_prev(instr);
|
||||
if (prev) {
|
||||
cursor = nir_after_instr(prev);
|
||||
} else {
|
||||
cursor = nir_before_block(instr->block);
|
||||
}
|
||||
nir_instr_remove(instr);
|
||||
return cursor;
|
||||
}
|
||||
|
||||
/* Do a "load" from an SSA-based entry return it in "value" as a value with a
|
||||
* single SSA def. Because an entry could reference up to 4 different SSA
|
||||
* defs, a vecN operation may be inserted to combine them into a single SSA
|
||||
* def before handing it back to the caller. If the load instruction is no
|
||||
* longer needed, it is removed and nir_instr::block is set to NULL. (It is
|
||||
* possible, in some cases, for the load to be used in the vecN operation in
|
||||
* which case it isn't deleted.)
|
||||
*/
|
||||
static bool
|
||||
load_from_ssa_entry_value(struct copy_prop_var_state *state,
|
||||
struct copy_entry *entry,
|
||||
nir_builder *b, nir_intrinsic_instr *intrin,
|
||||
struct value *value)
|
||||
{
|
||||
*value = entry->src;
|
||||
assert(value->is_ssa);
|
||||
|
||||
const struct glsl_type *type = nir_deref_tail(&entry->dst->deref)->type;
|
||||
unsigned num_components = glsl_get_vector_elements(type);
|
||||
|
||||
uint8_t available = 0;
|
||||
bool all_same = true;
|
||||
for (unsigned i = 0; i < num_components; i++) {
|
||||
if (value->ssa[i])
|
||||
available |= (1 << i);
|
||||
|
||||
if (value->ssa[i] != value->ssa[0])
|
||||
all_same = false;
|
||||
}
|
||||
|
||||
if (all_same) {
|
||||
/* Our work here is done */
|
||||
b->cursor = instr_remove_cursor(&intrin->instr);
|
||||
intrin->instr.block = NULL;
|
||||
return true;
|
||||
}
|
||||
|
||||
if (available != (1 << num_components) - 1 &&
|
||||
intrin->intrinsic == nir_intrinsic_load_var &&
|
||||
(available & nir_ssa_def_components_read(&intrin->dest.ssa)) == 0) {
|
||||
/* If none of the components read are available as SSA values, then we
|
||||
* should just bail. Otherwise, we would end up replacing the uses of
|
||||
* the load_var a vecN() that just gathers up its components.
|
||||
*/
|
||||
return false;
|
||||
}
|
||||
|
||||
b->cursor = nir_after_instr(&intrin->instr);
|
||||
|
||||
nir_ssa_def *load_def =
|
||||
intrin->intrinsic == nir_intrinsic_load_var ? &intrin->dest.ssa : NULL;
|
||||
|
||||
bool keep_intrin = false;
|
||||
nir_ssa_def *comps[4];
|
||||
for (unsigned i = 0; i < num_components; i++) {
|
||||
if (value->ssa[i]) {
|
||||
comps[i] = nir_channel(b, value->ssa[i], i);
|
||||
} else {
|
||||
/* We don't have anything for this component in our
|
||||
* list. Just re-use a channel from the load.
|
||||
*/
|
||||
if (load_def == NULL)
|
||||
load_def = nir_load_deref_var(b, entry->dst);
|
||||
|
||||
if (load_def->parent_instr == &intrin->instr)
|
||||
keep_intrin = true;
|
||||
|
||||
comps[i] = nir_channel(b, load_def, i);
|
||||
}
|
||||
}
|
||||
|
||||
nir_ssa_def *vec = nir_vec(b, comps, num_components);
|
||||
for (unsigned i = 0; i < num_components; i++)
|
||||
value->ssa[i] = vec;
|
||||
|
||||
if (!keep_intrin) {
|
||||
/* Removing this instruction should not touch the cursor because we
|
||||
* created the cursor after the intrinsic and have added at least one
|
||||
* instruction (the vec) since then.
|
||||
*/
|
||||
assert(b->cursor.instr != &intrin->instr);
|
||||
nir_instr_remove(&intrin->instr);
|
||||
intrin->instr.block = NULL;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Specialize the wildcards in a deref chain
|
||||
*
|
||||
* This function returns a deref chain identical to \param deref except that
|
||||
* some of its wildcards are replaced with indices from \param specific. The
|
||||
* process is guided by \param guide which references the same type as \param
|
||||
* specific but has the same wildcard array lengths as \param deref.
|
||||
*/
|
||||
static nir_deref_var *
|
||||
specialize_wildcards(nir_deref_var *deref,
|
||||
nir_deref_var *guide,
|
||||
nir_deref_var *specific,
|
||||
void *mem_ctx)
|
||||
{
|
||||
nir_deref_var *ret = nir_deref_var_create(mem_ctx, deref->var);
|
||||
|
||||
nir_deref *deref_tail = deref->deref.child;
|
||||
nir_deref *guide_tail = guide->deref.child;
|
||||
nir_deref *spec_tail = specific->deref.child;
|
||||
nir_deref *ret_tail = &ret->deref;
|
||||
while (deref_tail) {
|
||||
switch (deref_tail->deref_type) {
|
||||
case nir_deref_type_array: {
|
||||
nir_deref_array *deref_arr = nir_deref_as_array(deref_tail);
|
||||
|
||||
nir_deref_array *ret_arr = nir_deref_array_create(ret_tail);
|
||||
ret_arr->deref.type = deref_arr->deref.type;
|
||||
ret_arr->deref_array_type = deref_arr->deref_array_type;
|
||||
|
||||
switch (deref_arr->deref_array_type) {
|
||||
case nir_deref_array_type_direct:
|
||||
ret_arr->base_offset = deref_arr->base_offset;
|
||||
break;
|
||||
case nir_deref_array_type_indirect:
|
||||
ret_arr->base_offset = deref_arr->base_offset;
|
||||
assert(deref_arr->indirect.is_ssa);
|
||||
ret_arr->indirect = deref_arr->indirect;
|
||||
break;
|
||||
case nir_deref_array_type_wildcard:
|
||||
/* This is where things get tricky. We have to search through
|
||||
* the entry deref to find its corresponding wildcard and fill
|
||||
* this slot in with the value from the src.
|
||||
*/
|
||||
while (guide_tail) {
|
||||
if (guide_tail->deref_type == nir_deref_type_array &&
|
||||
nir_deref_as_array(guide_tail)->deref_array_type ==
|
||||
nir_deref_array_type_wildcard)
|
||||
break;
|
||||
|
||||
guide_tail = guide_tail->child;
|
||||
spec_tail = spec_tail->child;
|
||||
}
|
||||
|
||||
nir_deref_array *spec_arr = nir_deref_as_array(spec_tail);
|
||||
ret_arr->deref_array_type = spec_arr->deref_array_type;
|
||||
ret_arr->base_offset = spec_arr->base_offset;
|
||||
ret_arr->indirect = spec_arr->indirect;
|
||||
}
|
||||
|
||||
ret_tail->child = &ret_arr->deref;
|
||||
break;
|
||||
}
|
||||
case nir_deref_type_struct: {
|
||||
nir_deref_struct *deref_struct = nir_deref_as_struct(deref_tail);
|
||||
|
||||
nir_deref_struct *ret_struct =
|
||||
nir_deref_struct_create(ret_tail, deref_struct->index);
|
||||
ret_struct->deref.type = deref_struct->deref.type;
|
||||
|
||||
ret_tail->child = &ret_struct->deref;
|
||||
break;
|
||||
}
|
||||
case nir_deref_type_var:
|
||||
unreachable("Invalid deref type");
|
||||
}
|
||||
|
||||
deref_tail = deref_tail->child;
|
||||
ret_tail = ret_tail->child;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Do a "load" from an deref-based entry return it in "value" as a value. The
|
||||
* deref returned in "value" will always be a fresh copy so the caller can
|
||||
* steal it and assign it to the instruction directly without copying it
|
||||
* again.
|
||||
*/
|
||||
static bool
|
||||
load_from_deref_entry_value(struct copy_prop_var_state *state,
|
||||
struct copy_entry *entry,
|
||||
nir_builder *b, nir_intrinsic_instr *intrin,
|
||||
nir_deref_var *src, struct value *value)
|
||||
{
|
||||
*value = entry->src;
|
||||
|
||||
/* Walk the deref to get the two tails and also figure out if we need to
|
||||
* specialize any wildcards.
|
||||
*/
|
||||
bool need_to_specialize_wildcards = false;
|
||||
nir_deref *entry_tail = &entry->dst->deref;
|
||||
nir_deref *src_tail = &src->deref;
|
||||
while (entry_tail->child && src_tail->child) {
|
||||
assert(src_tail->child->deref_type == entry_tail->child->deref_type);
|
||||
if (src_tail->child->deref_type == nir_deref_type_array) {
|
||||
nir_deref_array *entry_arr = nir_deref_as_array(entry_tail->child);
|
||||
nir_deref_array *src_arr = nir_deref_as_array(src_tail->child);
|
||||
|
||||
if (src_arr->deref_array_type != nir_deref_array_type_wildcard &&
|
||||
entry_arr->deref_array_type == nir_deref_array_type_wildcard)
|
||||
need_to_specialize_wildcards = true;
|
||||
}
|
||||
|
||||
entry_tail = entry_tail->child;
|
||||
src_tail = src_tail->child;
|
||||
}
|
||||
|
||||
/* If the entry deref is longer than the source deref then it refers to a
|
||||
* smaller type and we can't source from it.
|
||||
*/
|
||||
assert(entry_tail->child == NULL);
|
||||
|
||||
if (need_to_specialize_wildcards) {
|
||||
/* The entry has some wildcards that are not in src. This means we need
|
||||
* to construct a new deref based on the entry but using the wildcards
|
||||
* from the source and guided by the entry dst. Oof.
|
||||
*/
|
||||
value->deref = specialize_wildcards(entry->src.deref, entry->dst, src,
|
||||
state->mem_ctx);
|
||||
} else {
|
||||
/* We're going to need to make a copy in case we modify it below */
|
||||
value->deref = nir_deref_var_clone(value->deref, state->mem_ctx);
|
||||
}
|
||||
|
||||
if (src_tail->child) {
|
||||
/* If our source deref is longer than the entry deref, that's ok because
|
||||
* it just means the entry deref needs to be extended a bit.
|
||||
*/
|
||||
nir_deref *value_tail = nir_deref_tail(&value->deref->deref);
|
||||
value_tail->child = nir_deref_clone(src_tail->child, value_tail);
|
||||
}
|
||||
|
||||
b->cursor = instr_remove_cursor(&intrin->instr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool
|
||||
try_load_from_entry(struct copy_prop_var_state *state, struct copy_entry *entry,
|
||||
nir_builder *b, nir_intrinsic_instr *intrin,
|
||||
nir_deref_var *src, struct value *value)
|
||||
{
|
||||
if (entry == NULL)
|
||||
return false;
|
||||
|
||||
if (entry->src.is_ssa) {
|
||||
return load_from_ssa_entry_value(state, entry, b, intrin, value);
|
||||
} else {
|
||||
return load_from_deref_entry_value(state, entry, b, intrin, src, value);
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
copy_prop_vars_block(struct copy_prop_var_state *state,
|
||||
nir_builder *b, nir_block *block)
|
||||
{
|
||||
/* Start each block with a blank slate */
|
||||
list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link)
|
||||
copy_entry_remove(state, iter);
|
||||
|
||||
nir_foreach_instr_safe(instr, block) {
|
||||
if (instr->type != nir_instr_type_intrinsic)
|
||||
continue;
|
||||
|
||||
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
||||
switch (intrin->intrinsic) {
|
||||
case nir_intrinsic_barrier:
|
||||
case nir_intrinsic_memory_barrier:
|
||||
/* If we hit a barrier, we need to trash everything that may possibly
|
||||
* be accessible to another thread. Locals, globals, and things of
|
||||
* the like are safe, however.
|
||||
*/
|
||||
apply_barrier_for_modes(state, ~(nir_var_local | nir_var_global |
|
||||
nir_var_shader_in | nir_var_uniform));
|
||||
break;
|
||||
|
||||
case nir_intrinsic_emit_vertex:
|
||||
case nir_intrinsic_emit_vertex_with_counter:
|
||||
apply_barrier_for_modes(state, nir_var_shader_out);
|
||||
break;
|
||||
|
||||
case nir_intrinsic_load_var: {
|
||||
nir_deref_var *src = intrin->variables[0];
|
||||
|
||||
uint8_t comps_read = nir_ssa_def_components_read(&intrin->dest.ssa);
|
||||
mark_aliased_entries_as_read(state, src, comps_read);
|
||||
|
||||
struct copy_entry *src_entry =
|
||||
lookup_entry_for_deref(state, src, derefs_a_contains_b_bit);
|
||||
struct value value;
|
||||
if (try_load_from_entry(state, src_entry, b, intrin, src, &value)) {
|
||||
if (value.is_ssa) {
|
||||
/* lookup_load has already ensured that we get a single SSA
|
||||
* value that has all of the channels. We just have to do the
|
||||
* rewrite operation.
|
||||
*/
|
||||
if (intrin->instr.block) {
|
||||
/* The lookup left our instruction in-place. This means it
|
||||
* must have used it to vec up a bunch of different sources.
|
||||
* We need to be careful when rewriting uses so we don't
|
||||
* rewrite the vecN itself.
|
||||
*/
|
||||
nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa,
|
||||
nir_src_for_ssa(value.ssa[0]),
|
||||
value.ssa[0]->parent_instr);
|
||||
} else {
|
||||
nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
|
||||
nir_src_for_ssa(value.ssa[0]));
|
||||
}
|
||||
} else {
|
||||
/* We're turning it into a load of a different variable */
|
||||
ralloc_steal(intrin, value.deref);
|
||||
intrin->variables[0] = value.deref;
|
||||
|
||||
/* Put it back in again. */
|
||||
nir_builder_instr_insert(b, instr);
|
||||
|
||||
value.is_ssa = true;
|
||||
for (unsigned i = 0; i < intrin->num_components; i++)
|
||||
value.ssa[i] = &intrin->dest.ssa;
|
||||
}
|
||||
state->progress = true;
|
||||
} else {
|
||||
value.is_ssa = true;
|
||||
for (unsigned i = 0; i < intrin->num_components; i++)
|
||||
value.ssa[i] = &intrin->dest.ssa;
|
||||
}
|
||||
|
||||
/* Now that we have a value, we're going to store it back so that we
|
||||
* have the right value next time we come looking for it. In order
|
||||
* to do this, we need an exact match, not just something that
|
||||
* contains what we're looking for.
|
||||
*/
|
||||
struct copy_entry *store_entry =
|
||||
lookup_entry_for_deref(state, src, derefs_equal_bit);
|
||||
if (!store_entry)
|
||||
store_entry = copy_entry_create(state, src);
|
||||
|
||||
/* Set up a store to this entry with the value of the load. This way
|
||||
* we can potentially remove subsequent loads. However, we use a
|
||||
* NULL instruction so we don't try and delete the load on a
|
||||
* subsequent store.
|
||||
*/
|
||||
store_to_entry(state, store_entry, &value,
|
||||
((1 << intrin->num_components) - 1), NULL);
|
||||
break;
|
||||
}
|
||||
|
||||
case nir_intrinsic_store_var: {
|
||||
struct value value = {
|
||||
.is_ssa = true
|
||||
};
|
||||
|
||||
for (unsigned i = 0; i < intrin->num_components; i++)
|
||||
value.ssa[i] = intrin->src[0].ssa;
|
||||
|
||||
nir_deref_var *dst = intrin->variables[0];
|
||||
unsigned wrmask = nir_intrinsic_write_mask(intrin);
|
||||
struct copy_entry *entry =
|
||||
get_entry_and_kill_aliases(state, dst, wrmask);
|
||||
store_to_entry(state, entry, &value, wrmask, &intrin->instr);
|
||||
break;
|
||||
}
|
||||
|
||||
case nir_intrinsic_copy_var: {
|
||||
nir_deref_var *dst = intrin->variables[0];
|
||||
nir_deref_var *src = intrin->variables[1];
|
||||
|
||||
if (compare_derefs(src, dst) & derefs_equal_bit) {
|
||||
/* This is a no-op self-copy. Get rid of it */
|
||||
nir_instr_remove(instr);
|
||||
continue;
|
||||
}
|
||||
|
||||
mark_aliased_entries_as_read(state, src, 0xf);
|
||||
|
||||
struct copy_entry *src_entry =
|
||||
lookup_entry_for_deref(state, src, derefs_a_contains_b_bit);
|
||||
struct value value;
|
||||
if (try_load_from_entry(state, src_entry, b, intrin, src, &value)) {
|
||||
if (value.is_ssa) {
|
||||
nir_store_deref_var(b, dst, value.ssa[0], 0xf);
|
||||
intrin = nir_instr_as_intrinsic(nir_builder_last_instr(b));
|
||||
} else {
|
||||
/* If this would be a no-op self-copy, don't bother. */
|
||||
if (compare_derefs(value.deref, dst) & derefs_equal_bit)
|
||||
continue;
|
||||
|
||||
/* Just turn it into a copy of a different deref */
|
||||
ralloc_steal(intrin, value.deref);
|
||||
intrin->variables[1] = value.deref;
|
||||
|
||||
/* Put it back in again. */
|
||||
nir_builder_instr_insert(b, instr);
|
||||
}
|
||||
|
||||
state->progress = true;
|
||||
} else {
|
||||
value = (struct value) {
|
||||
.is_ssa = false,
|
||||
.deref = src,
|
||||
};
|
||||
}
|
||||
|
||||
struct copy_entry *dst_entry =
|
||||
get_entry_and_kill_aliases(state, dst, 0xf);
|
||||
store_to_entry(state, dst_entry, &value, 0xf, &intrin->instr);
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool
|
||||
nir_opt_copy_prop_vars(nir_shader *shader)
|
||||
{
|
||||
struct copy_prop_var_state state;
|
||||
|
||||
state.shader = shader;
|
||||
state.mem_ctx = ralloc_context(NULL);
|
||||
list_inithead(&state.copies);
|
||||
list_inithead(&state.copy_free_list);
|
||||
|
||||
bool global_progress = false;
|
||||
nir_foreach_function(function, shader) {
|
||||
if (!function->impl)
|
||||
continue;
|
||||
|
||||
nir_builder b;
|
||||
nir_builder_init(&b, function->impl);
|
||||
|
||||
state.progress = false;
|
||||
nir_foreach_block(block, function->impl)
|
||||
copy_prop_vars_block(&state, &b, block);
|
||||
|
||||
if (state.progress) {
|
||||
nir_metadata_preserve(function->impl, nir_metadata_block_index |
|
||||
nir_metadata_dominance);
|
||||
global_progress = true;
|
||||
}
|
||||
}
|
||||
|
||||
ralloc_free(state.mem_ctx);
|
||||
|
||||
return global_progress;
|
||||
}
|
Reference in New Issue
Block a user