radeonsi/gfx10: generate VS and TES as NGG merged ESGS shaders

This does not support geometry shading yet. Also missing are streamout
and NGG-specific optimizations.

Acked-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
This commit is contained in:
Nicolai Hähnle
2017-11-16 17:00:50 +01:00
committed by Marek Olšák
parent e86256c512
commit 612489bd5d
6 changed files with 382 additions and 25 deletions

View File

@@ -6,6 +6,7 @@ C_SOURCES := \
$(GENERATED_SOURCES) \
cik_sdma.c \
driinfo_radeonsi.h \
gfx10_shader_ngg.c \
si_blit.c \
si_buffer.c \
si_build_pm4.h \

View File

@@ -0,0 +1,265 @@
/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_pipe.h"
#include "si_shader_internal.h"
#include "sid.h"
#include "util/u_memory.h"
static LLVMValueRef get_wave_id_in_tg(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
}
static LLVMValueRef ngg_get_vtx_cnt(struct si_shader_context *ctx)
{
return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
LLVMConstInt(ctx->ac.i32, 12, false),
LLVMConstInt(ctx->ac.i32, 9, false),
false);
}
static LLVMValueRef ngg_get_prim_cnt(struct si_shader_context *ctx)
{
return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
LLVMConstInt(ctx->ac.i32, 22, false),
LLVMConstInt(ctx->ac.i32, 9, false),
false);
}
/* Send GS Alloc Req message from the first wave of the group to SPI.
* Message payload is:
* - bits 0..10: vertices in group
* - bits 12..22: primitives in group
*/
static void build_sendmsg_gs_alloc_req(struct si_shader_context *ctx,
LLVMValueRef vtx_cnt,
LLVMValueRef prim_cnt)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp;
tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
ac_build_ifcc(&ctx->ac, tmp, 5020);
tmp = LLVMBuildShl(builder, prim_cnt, LLVMConstInt(ctx->ac.i32, 12, false),"");
tmp = LLVMBuildOr(builder, tmp, vtx_cnt, "");
ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_ALLOC_REQ, tmp);
ac_build_endif(&ctx->ac, 5020);
}
struct ngg_prim {
unsigned num_vertices;
LLVMValueRef isnull;
LLVMValueRef index[3];
LLVMValueRef edgeflag[3];
};
static void build_export_prim(struct si_shader_context *ctx,
const struct ngg_prim *prim)
{
LLVMBuilderRef builder = ctx->ac.builder;
struct ac_export_args args;
LLVMValueRef tmp;
tmp = LLVMBuildZExt(builder, prim->isnull, ctx->ac.i32, "");
args.out[0] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 31, false), "");
for (unsigned i = 0; i < prim->num_vertices; ++i) {
tmp = LLVMBuildShl(builder, prim->index[i],
LLVMConstInt(ctx->ac.i32, 10 * i, false), "");
args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
tmp = LLVMBuildZExt(builder, prim->edgeflag[i], ctx->ac.i32, "");
tmp = LLVMBuildShl(builder, tmp,
LLVMConstInt(ctx->ac.i32, 10 * i + 9, false), "");
args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
}
args.out[0] = LLVMBuildBitCast(builder, args.out[0], ctx->ac.f32, "");
args.out[1] = LLVMGetUndef(ctx->ac.f32);
args.out[2] = LLVMGetUndef(ctx->ac.f32);
args.out[3] = LLVMGetUndef(ctx->ac.f32);
args.target = V_008DFC_SQ_EXP_PRIM;
args.enabled_channels = 1;
args.done = true;
args.valid_mask = false;
args.compr = false;
ac_build_export(&ctx->ac, &args);
}
/**
* Emit the epilogue of an API VS or TES shader compiled as ESGS shader.
*/
void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi,
unsigned max_outputs,
LLVMValueRef *addrs)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
struct tgsi_shader_info *info = &ctx->shader->selector->info;
struct si_shader_output_values *outputs = NULL;
LLVMBuilderRef builder = ctx->ac.builder;
struct lp_build_if_state if_state;
LLVMValueRef tmp;
assert(!ctx->shader->is_gs_copy_shader);
assert(info->num_outputs <= max_outputs);
outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
for (unsigned i = 0; i < info->num_outputs; i++) {
outputs[i].semantic_name = info->output_semantic_name[i];
outputs[i].semantic_index = info->output_semantic_index[i];
/* This is used only by streamout. */
for (unsigned j = 0; j < 4; j++) {
outputs[i].values[j] =
LLVMBuildLoad(builder,
addrs[4 * i + j],
"");
outputs[i].vertex_stream[j] =
(info->output_streams[i] >> (2 * j)) & 3;
}
}
lp_build_endif(&ctx->merged_wrap_if_state);
LLVMValueRef prims_in_wave = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
LLVMValueRef vtx_in_wave = si_unpack_param(ctx, ctx->param_merged_wave_info, 0, 8);
LLVMValueRef is_gs_thread = LLVMBuildICmp(builder, LLVMIntULT,
ac_get_thread_id(&ctx->ac), prims_in_wave, "");
LLVMValueRef is_es_thread = LLVMBuildICmp(builder, LLVMIntULT,
ac_get_thread_id(&ctx->ac), vtx_in_wave, "");
LLVMValueRef vtxindex[] = {
si_unpack_param(ctx, ctx->param_gs_vtx01_offset, 0, 16),
si_unpack_param(ctx, ctx->param_gs_vtx01_offset, 16, 16),
si_unpack_param(ctx, ctx->param_gs_vtx23_offset, 0, 16),
};
/* Determine the number of vertices per primitive. */
unsigned num_vertices;
LLVMValueRef num_vertices_val;
if (ctx->type == PIPE_SHADER_VERTEX) {
if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS]) {
/* Blits always use axis-aligned rectangles with 3 vertices. */
num_vertices = 3;
num_vertices_val = LLVMConstInt(ctx->i32, 3, 0);
} else {
/* Extract OUTPRIM field. */
tmp = si_unpack_param(ctx, ctx->param_vs_state_bits, 2, 2);
num_vertices_val = LLVMBuildAdd(builder, tmp, ctx->i32_1, "");
num_vertices = 3; /* TODO: optimize for points & lines */
}
} else {
assert(ctx->type == PIPE_SHADER_TESS_EVAL);
if (info->properties[TGSI_PROPERTY_TES_POINT_MODE])
num_vertices = 1;
else if (info->properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
num_vertices = 2;
else
num_vertices = 3;
num_vertices_val = LLVMConstInt(ctx->i32, num_vertices, false);
}
/* TODO: streamout */
/* TODO: primitive culling */
build_sendmsg_gs_alloc_req(ctx, ngg_get_vtx_cnt(ctx), ngg_get_prim_cnt(ctx));
/* Export primitive data to the index buffer. Format is:
* - bits 0..8: index 0
* - bit 9: edge flag 0
* - bits 10..18: index 1
* - bit 19: edge flag 1
* - bits 20..28: index 2
* - bit 29: edge flag 2
* - bit 31: null primitive (skip)
*
* For the first version, we will always build up all three indices
* independent of the primitive type. The additional garbage data
* shouldn't hurt.
*
* TODO: culling depends on the primitive type, so can have some
* interaction here.
*/
lp_build_if(&if_state, &ctx->gallivm, is_gs_thread);
{
struct ngg_prim prim = {};
prim.num_vertices = num_vertices;
prim.isnull = ctx->ac.i1false;
memcpy(prim.index, vtxindex, sizeof(vtxindex[0]) * 3);
for (unsigned i = 0; i < num_vertices; ++i) {
tmp = LLVMBuildLShr(builder, ctx->abi.gs_invocation_id,
LLVMConstInt(ctx->ac.i32, 8 + i, false), "");
prim.edgeflag[i] = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
}
build_export_prim(ctx, &prim);
}
lp_build_endif(&if_state);
/* Export per-vertex data (positions and parameters). */
lp_build_if(&if_state, &ctx->gallivm, is_es_thread);
{
unsigned i;
/* Unconditionally (re-)load the values for proper SSA form. */
for (i = 0; i < info->num_outputs; i++) {
for (unsigned j = 0; j < 4; j++) {
outputs[i].values[j] =
LLVMBuildLoad(builder,
addrs[4 * i + j],
"");
}
}
/* TODO: Vertex shaders have to get PrimitiveID from GS VGPRs. */
if (ctx->type == PIPE_SHADER_TESS_EVAL &&
ctx->shader->key.mono.u.vs_export_prim_id) {
outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
outputs[i].semantic_index = 0;
outputs[i].values[0] = ac_to_float(&ctx->ac, si_get_primitive_id(ctx, 0));
for (unsigned j = 1; j < 4; j++)
outputs[i].values[j] = LLVMGetUndef(ctx->f32);
memset(outputs[i].vertex_stream, 0,
sizeof(outputs[i].vertex_stream));
i++;
}
si_llvm_export_vs(ctx, outputs, i);
}
lp_build_endif(&if_state);
FREE(outputs);
}

View File

@@ -21,6 +21,7 @@
files_libradeonsi = files(
'cik_sdma.c',
'driinfo_radeonsi.h',
'gfx10_shader_ngg.c',
'si_blit.c',
'si_buffer.c',
'si_build_pm4.h',

View File

@@ -4412,6 +4412,10 @@ static void declare_streamout_params(struct si_shader_context *ctx,
static unsigned si_get_max_workgroup_size(const struct si_shader *shader)
{
switch (shader->selector->type) {
case PIPE_SHADER_VERTEX:
case PIPE_SHADER_TESS_EVAL:
return shader->key.as_ngg ? 128 : 0;
case PIPE_SHADER_TESS_CTRL:
/* Return this so that LLVM doesn't remove s_barrier
* instructions on chips where we use s_barrier. */
@@ -4582,7 +4586,7 @@ static void create_function(struct si_shader_context *ctx)
if (ctx->screen->info.chip_class >= GFX9) {
if (shader->key.as_ls || type == PIPE_SHADER_TESS_CTRL)
type = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
else if (shader->key.as_es || type == PIPE_SHADER_GEOMETRY)
else if (shader->key.as_es || shader->key.as_ngg || type == PIPE_SHADER_GEOMETRY)
type = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
}
@@ -4708,7 +4712,12 @@ static void create_function(struct si_shader_context *ctx)
/* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
declare_per_stage_desc_pointers(ctx, &fninfo,
ctx->type == PIPE_SHADER_GEOMETRY);
ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
if (ctx->shader->key.as_ngg)
add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->gs_tg_info);
else
ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
@@ -4716,11 +4725,17 @@ static void create_function(struct si_shader_context *ctx)
add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
declare_global_desc_pointers(ctx, &fninfo);
declare_per_stage_desc_pointers(ctx, &fninfo,
(ctx->type == PIPE_SHADER_VERTEX ||
ctx->type == PIPE_SHADER_TESS_EVAL));
if (ctx->type != PIPE_SHADER_VERTEX || !vs_blit_property) {
declare_per_stage_desc_pointers(ctx, &fninfo,
(ctx->type == PIPE_SHADER_VERTEX ||
ctx->type == PIPE_SHADER_TESS_EVAL));
}
if (ctx->type == PIPE_SHADER_VERTEX) {
declare_vs_specific_input_sgprs(ctx, &fninfo);
if (vs_blit_property)
declare_vs_blit_inputs(ctx, &fninfo, vs_blit_property);
else
declare_vs_specific_input_sgprs(ctx, &fninfo);
} else {
ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
@@ -4747,8 +4762,9 @@ static void create_function(struct si_shader_context *ctx)
declare_tes_input_vgprs(ctx, &fninfo);
}
if (ctx->type == PIPE_SHADER_VERTEX ||
ctx->type == PIPE_SHADER_TESS_EVAL) {
if (ctx->shader->key.as_es &&
(ctx->type == PIPE_SHADER_VERTEX ||
ctx->type == PIPE_SHADER_TESS_EVAL)) {
unsigned num_user_sgprs;
if (ctx->type == PIPE_SHADER_VERTEX)
@@ -5925,6 +5941,8 @@ static bool si_compile_tgsi_main(struct si_shader_context *ctx)
ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
else if (shader->key.opt.vs_as_prim_discard_cs)
ctx->abi.emit_outputs = si_llvm_emit_prim_discard_cs_epilogue;
else if (shader->key.as_ngg)
ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
else
ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
bld_base->emit_epilogue = si_tgsi_emit_epilogue;
@@ -5948,8 +5966,12 @@ static bool si_compile_tgsi_main(struct si_shader_context *ctx)
ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
if (shader->key.as_es)
ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
else
ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
else {
if (shader->key.as_ngg)
ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
else
ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
}
bld_base->emit_epilogue = si_tgsi_emit_epilogue;
break;
case PIPE_SHADER_GEOMETRY:
@@ -5994,6 +6016,10 @@ static bool si_compile_tgsi_main(struct si_shader_context *ctx)
*
* For monolithic merged shaders, the first shader is wrapped in an
* if-block together with its prolog in si_build_wrapper_function.
*
* NGG vertex and tess eval shaders running as the last
* vertex/geometry stage handle execution explicitly using
* if-statements.
*/
if (ctx->screen->info.chip_class >= GFX9) {
if (!shader->is_monolithic &&
@@ -6005,28 +6031,50 @@ static bool si_compile_tgsi_main(struct si_shader_context *ctx)
si_init_exec_from_input(ctx,
ctx->param_merged_wave_info, 0);
} else if (ctx->type == PIPE_SHADER_TESS_CTRL ||
ctx->type == PIPE_SHADER_GEOMETRY) {
ctx->type == PIPE_SHADER_GEOMETRY ||
shader->key.as_ngg) {
LLVMValueRef num_threads;
bool nested_barrier;
if (!shader->is_monolithic)
ac_init_exec_full_mask(&ctx->ac);
LLVMValueRef num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
if (ctx->type == PIPE_SHADER_TESS_CTRL ||
ctx->type == PIPE_SHADER_GEOMETRY) {
/* Number of patches / primitives */
num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
nested_barrier = true;
} else {
/* Number of vertices */
num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 0, 8);
nested_barrier = false;
}
LLVMValueRef ena =
LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
ac_get_thread_id(&ctx->ac), num_threads, "");
lp_build_if(&ctx->merged_wrap_if_state, &ctx->gallivm, ena);
/* The barrier must execute for all shaders in a
* threadgroup.
*
* Execute the barrier inside the conditional block,
* so that empty waves can jump directly to s_endpgm,
* which will also signal the barrier.
*
* If the shader is TCS and the TCS epilog is present
* and contains a barrier, it will wait there and then
* reach s_endpgm.
*/
si_llvm_emit_barrier(NULL, bld_base, NULL);
if (nested_barrier) {
/* Execute a barrier before the second shader in
* a merged shader.
*
* Execute the barrier inside the conditional block,
* so that empty waves can jump directly to s_endpgm,
* which will also signal the barrier.
*
* This is possible in gfx9, because an empty wave
* for the second shader does not participate in
* the epilogue. With NGG, empty waves may still
* be required to export data (e.g. GS output vertices),
* so we cannot let them exit early.
*
* If the shader is TCS and the TCS epilog is present
* and contains a barrier, it will wait there and then
* reach s_endpgm.
*/
si_llvm_emit_barrier(NULL, bld_base, NULL);
}
}
}
@@ -6099,6 +6147,8 @@ static void si_get_vs_prolog_key(const struct tgsi_shader_info *info,
} else if (shader_out->selector->type == PIPE_SHADER_GEOMETRY) {
key->vs_prolog.as_es = 1;
key->vs_prolog.num_merged_next_stage_vgprs = 5;
} else if (shader_out->key.as_ngg) {
key->vs_prolog.num_merged_next_stage_vgprs = 5;
}
/* Enable loading the InstanceID VGPR. */
@@ -7227,6 +7277,21 @@ static void si_build_vs_prolog_function(struct si_shader_context *ctx,
key->vs_prolog.num_input_sgprs + i, "");
}
struct lp_build_if_state wrap_if_state;
LLVMValueRef original_ret = ret;
bool wrapped = false;
if (key->vs_prolog.is_monolithic && key->vs_prolog.as_ngg) {
LLVMValueRef num_threads;
LLVMValueRef ena;
num_threads = si_unpack_param(ctx, 3, 0, 8);
ena = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
ac_get_thread_id(&ctx->ac), num_threads, "");
lp_build_if(&wrap_if_state, &ctx->gallivm, ena);
wrapped = true;
}
/* Compute vertex load indices from instance divisors. */
LLVMValueRef instance_divisor_constbuf = NULL;
@@ -7282,6 +7347,20 @@ static void si_build_vs_prolog_function(struct si_shader_context *ctx,
fninfo.num_params + i, "");
}
if (wrapped) {
lp_build_endif(&wrap_if_state);
LLVMValueRef values[2] = {
ret,
original_ret
};
LLVMBasicBlockRef bbs[2] = {
wrap_if_state.true_block,
wrap_if_state.entry_block
};
ret = ac_build_phi(&ctx->ac, LLVMTypeOf(ret), 2, values, bbs);
}
si_llvm_build_ret(ctx, ret);
}

View File

@@ -186,6 +186,13 @@ struct si_shader_context {
int param_tes_rel_patch_id;
/* HW ES */
int param_es2gs_offset;
/* HW GS */
/* On gfx10:
* - bits 0..10: ordered_wave_id
* - bits 12..20: number of vertices in group
* - bits 22..30: number of primitives in group
*/
LLVMValueRef gs_tg_info;
/* API GS */
int param_gs2vs_offset;
int param_gs_wave_id; /* GFX6 */
@@ -372,4 +379,8 @@ LLVMValueRef si_unpack_param(struct si_shader_context *ctx,
unsigned param, unsigned rshift,
unsigned bitwidth);
void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi,
unsigned max_outputs,
LLVMValueRef *addrs);
#endif

View File

@@ -1128,7 +1128,7 @@ void si_llvm_create_func(struct si_shader_context *ctx,
if (ctx->screen->info.chip_class >= GFX9) {
if (ctx->shader->key.as_ls)
real_shader_type = PIPE_SHADER_TESS_CTRL;
else if (ctx->shader->key.as_es)
else if (ctx->shader->key.as_es || ctx->shader->key.as_ngg)
real_shader_type = PIPE_SHADER_GEOMETRY;
}