nir: propagate bitsize information in nir_search

When we replace an expresion we have to compute bitsize information for the
replacement. We do this in two passes to validate that bitsize information
is consistent and correct: first we propagate bitsize from child nodes to
parent, then we do it the other way around, starting from the original's
instruction destination bitsize.

v2 (Iago):
- Always use nir_type_bool32 instead of nir_type_bool when generating
  algebraic optimizations. Before we used nir_type_bool32 with constants
  and nir_type_bool with variables.
- Fix bool comparisons in nir_search.c to account for bitsized types.

v3 (Sam):
- Unpack the double constant value as unsigned long long (8 bytes) in
nir_algrebraic.py.

v4 (Sam):
- Use helpers to get type size and base type from nir_alu_type.

Signed-off-by: Iago Toral Quiroga <itoral@igalia.com>
Signed-off-by: Samuel Iglesias Gonsálvez <siglesias@igalia.com>
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Reviewed-by: Samuel Iglesias Gonsálvez <siglesias@igalia.com>
Reviewed-by: Iago Toral Quiroga <itoral@igalia.com>
This commit is contained in:
Connor Abbott
2015-08-14 11:45:30 -07:00
committed by Samuel Iglesias Gonsálvez
parent 3124ce699b
commit 58fe7837b8
3 changed files with 248 additions and 28 deletions

View File

@@ -63,11 +63,11 @@ class Value(object):
static const ${val.c_type} ${val.name} = { static const ${val.c_type} ${val.name} = {
{ ${val.type_enum} }, { ${val.type_enum} },
% if isinstance(val, Constant): % if isinstance(val, Constant):
{ ${hex(val)} /* ${val.value} */ }, ${val.type()}, { ${hex(val)} /* ${val.value} */ },
% elif isinstance(val, Variable): % elif isinstance(val, Variable):
${val.index}, /* ${val.var_name} */ ${val.index}, /* ${val.var_name} */
${'true' if val.is_constant else 'false'}, ${'true' if val.is_constant else 'false'},
nir_type_${ val.required_type or 'invalid' }, ${val.type() or 'nir_type_invalid' },
% elif isinstance(val, Expression): % elif isinstance(val, Expression):
nir_op_${val.opcode}, nir_op_${val.opcode},
{ ${', '.join(src.c_ptr for src in val.sources)} }, { ${', '.join(src.c_ptr for src in val.sources)} },
@@ -107,10 +107,18 @@ class Constant(Value):
if isinstance(self.value, (int, long)): if isinstance(self.value, (int, long)):
return hex(self.value) return hex(self.value)
elif isinstance(self.value, float): elif isinstance(self.value, float):
return hex(struct.unpack('I', struct.pack('f', self.value))[0]) return hex(struct.unpack('Q', struct.pack('d', self.value))[0])
else: else:
assert False assert False
def type(self):
if isinstance(self.value, (bool)):
return "nir_type_bool32"
elif isinstance(self.value, (int, long)):
return "nir_type_int"
elif isinstance(self.value, float):
return "nir_type_float"
_var_name_re = re.compile(r"(?P<const>#)?(?P<name>\w+)(?:@(?P<type>\w+))?") _var_name_re = re.compile(r"(?P<const>#)?(?P<name>\w+)(?:@(?P<type>\w+))?")
class Variable(Value): class Variable(Value):
@@ -129,6 +137,14 @@ class Variable(Value):
self.index = varset[self.var_name] self.index = varset[self.var_name]
def type(self):
if self.required_type == 'bool':
return "nir_type_bool32"
elif self.required_type in ('int', 'unsigned'):
return "nir_type_int"
elif self.required_type == 'float':
return "nir_type_float"
class Expression(Value): class Expression(Value):
def __init__(self, expr, name_base, varset): def __init__(self, expr, name_base, varset):
Value.__init__(self, name_base, "expression") Value.__init__(self, name_base, "expression")

View File

@@ -62,7 +62,8 @@ alu_instr_is_bool(nir_alu_instr *instr)
case nir_op_inot: case nir_op_inot:
return src_is_bool(instr->src[0].src); return src_is_bool(instr->src[0].src);
default: default:
return nir_op_infos[instr->op].output_type == nir_type_bool; return (nir_alu_type_get_base_type(nir_op_infos[instr->op].output_type)
== nir_type_bool);
} }
} }
@@ -125,8 +126,10 @@ match_value(const nir_search_value *value, nir_alu_instr *instr, unsigned src,
nir_alu_instr *src_alu = nir_alu_instr *src_alu =
nir_instr_as_alu(instr->src[src].src.ssa->parent_instr); nir_instr_as_alu(instr->src[src].src.ssa->parent_instr);
if (nir_op_infos[src_alu->op].output_type != var->type && if (nir_alu_type_get_base_type(nir_op_infos[src_alu->op].output_type) !=
!(var->type == nir_type_bool && alu_instr_is_bool(src_alu))) var->type &&
!(nir_alu_type_get_base_type(var->type) == nir_type_bool &&
alu_instr_is_bool(src_alu)))
return false; return false;
} }
@@ -158,21 +161,65 @@ match_value(const nir_search_value *value, nir_alu_instr *instr, unsigned src,
nir_load_const_instr *load = nir_load_const_instr *load =
nir_instr_as_load_const(instr->src[src].src.ssa->parent_instr); nir_instr_as_load_const(instr->src[src].src.ssa->parent_instr);
switch (nir_op_infos[instr->op].input_types[src]) { switch (const_val->type) {
case nir_type_float: case nir_type_float:
for (unsigned i = 0; i < num_components; ++i) { for (unsigned i = 0; i < num_components; ++i) {
if (load->value.f32[new_swizzle[i]] != const_val->data.f) double val;
switch (load->def.bit_size) {
case 32:
val = load->value.f32[new_swizzle[i]];
break;
case 64:
val = load->value.f64[new_swizzle[i]];
break;
default:
unreachable("unknown bit size");
}
if (val != const_val->data.d)
return false; return false;
} }
return true; return true;
case nir_type_int: case nir_type_int:
case nir_type_uint:
case nir_type_bool:
for (unsigned i = 0; i < num_components; ++i) { for (unsigned i = 0; i < num_components; ++i) {
if (load->value.i32[new_swizzle[i]] != const_val->data.i) int64_t val;
switch (load->def.bit_size) {
case 32:
val = load->value.i32[new_swizzle[i]];
break;
case 64:
val = load->value.i64[new_swizzle[i]];
break;
default:
unreachable("unknown bit size");
}
if (val != const_val->data.i)
return false; return false;
} }
return true; return true;
case nir_type_uint:
case nir_type_bool32:
for (unsigned i = 0; i < num_components; ++i) {
uint64_t val;
switch (load->def.bit_size) {
case 32:
val = load->value.u32[new_swizzle[i]];
break;
case 64:
val = load->value.u64[new_swizzle[i]];
break;
default:
unreachable("unknown bit size");
}
if (val != const_val->data.u)
return false;
}
return true;
default: default:
unreachable("Invalid alu source type"); unreachable("Invalid alu source type");
} }
@@ -244,9 +291,123 @@ match_expression(const nir_search_expression *expr, nir_alu_instr *instr,
} }
} }
typedef struct bitsize_tree {
unsigned num_srcs;
struct bitsize_tree *srcs[4];
unsigned common_size;
bool is_src_sized[4];
bool is_dest_sized;
unsigned dest_size;
unsigned src_size[4];
} bitsize_tree;
static bitsize_tree *
build_bitsize_tree(void *mem_ctx, struct match_state *state,
const nir_search_value *value)
{
bitsize_tree *tree = ralloc(mem_ctx, bitsize_tree);
switch (value->type) {
case nir_search_value_expression: {
nir_search_expression *expr = nir_search_value_as_expression(value);
nir_op_info info = nir_op_infos[expr->opcode];
tree->num_srcs = info.num_inputs;
tree->common_size = 0;
for (unsigned i = 0; i < info.num_inputs; i++) {
tree->is_src_sized[i] = !!nir_alu_type_get_type_size(info.input_types[i]);
if (tree->is_src_sized[i])
tree->src_size[i] = nir_alu_type_get_type_size(info.input_types[i]);
tree->srcs[i] = build_bitsize_tree(mem_ctx, state, expr->srcs[i]);
}
tree->is_dest_sized = !!nir_alu_type_get_type_size(info.output_type);
if (tree->is_dest_sized)
tree->dest_size = nir_alu_type_get_type_size(info.output_type);
break;
}
case nir_search_value_variable: {
nir_search_variable *var = nir_search_value_as_variable(value);
tree->num_srcs = 0;
tree->is_dest_sized = true;
tree->dest_size = nir_src_bit_size(state->variables[var->variable].src);
break;
}
case nir_search_value_constant: {
tree->num_srcs = 0;
tree->is_dest_sized = false;
tree->common_size = 0;
break;
}
}
return tree;
}
static unsigned
bitsize_tree_filter_up(bitsize_tree *tree)
{
for (unsigned i = 0; i < tree->num_srcs; i++) {
unsigned src_size = bitsize_tree_filter_up(tree->srcs[i]);
if (src_size == 0)
continue;
if (tree->is_src_sized[i]) {
assert(src_size == tree->src_size[i]);
} else if (tree->common_size != 0) {
assert(src_size == tree->common_size);
tree->src_size[i] = src_size;
} else {
tree->common_size = src_size;
tree->src_size[i] = src_size;
}
}
if (tree->num_srcs && tree->common_size) {
if (tree->dest_size == 0)
tree->dest_size = tree->common_size;
else if (!tree->is_dest_sized)
assert(tree->dest_size == tree->common_size);
for (unsigned i = 0; i < tree->num_srcs; i++) {
if (!tree->src_size[i])
tree->src_size[i] = tree->common_size;
}
}
return tree->dest_size;
}
static void
bitsize_tree_filter_down(bitsize_tree *tree, unsigned size)
{
if (tree->dest_size)
assert(tree->dest_size == size);
else
tree->dest_size = size;
if (!tree->is_dest_sized) {
if (tree->common_size)
assert(tree->common_size == size);
else
tree->common_size = size;
}
for (unsigned i = 0; i < tree->num_srcs; i++) {
if (!tree->src_size[i]) {
assert(tree->common_size);
tree->src_size[i] = tree->common_size;
}
bitsize_tree_filter_down(tree->srcs[i], tree->src_size[i]);
}
}
static nir_alu_src static nir_alu_src
construct_value(const nir_search_value *value, nir_alu_type type, construct_value(const nir_search_value *value,
unsigned num_components, struct match_state *state, unsigned num_components, bitsize_tree *bitsize,
struct match_state *state,
nir_instr *instr, void *mem_ctx) nir_instr *instr, void *mem_ctx)
{ {
switch (value->type) { switch (value->type) {
@@ -257,7 +418,8 @@ construct_value(const nir_search_value *value, nir_alu_type type,
num_components = nir_op_infos[expr->opcode].output_size; num_components = nir_op_infos[expr->opcode].output_size;
nir_alu_instr *alu = nir_alu_instr_create(mem_ctx, expr->opcode); nir_alu_instr *alu = nir_alu_instr_create(mem_ctx, expr->opcode);
nir_ssa_dest_init(&alu->instr, &alu->dest.dest, num_components, 32, NULL); nir_ssa_dest_init(&alu->instr, &alu->dest.dest, num_components,
bitsize->dest_size, NULL);
alu->dest.write_mask = (1 << num_components) - 1; alu->dest.write_mask = (1 << num_components) - 1;
alu->dest.saturate = false; alu->dest.saturate = false;
@@ -269,8 +431,7 @@ construct_value(const nir_search_value *value, nir_alu_type type,
num_components = nir_op_infos[alu->op].input_sizes[i]; num_components = nir_op_infos[alu->op].input_sizes[i];
alu->src[i] = construct_value(expr->srcs[i], alu->src[i] = construct_value(expr->srcs[i],
nir_op_infos[alu->op].input_types[i], num_components, bitsize->srcs[i],
num_components,
state, instr, mem_ctx); state, instr, mem_ctx);
} }
@@ -301,23 +462,57 @@ construct_value(const nir_search_value *value, nir_alu_type type,
const nir_search_constant *c = nir_search_value_as_constant(value); const nir_search_constant *c = nir_search_value_as_constant(value);
nir_load_const_instr *load = nir_load_const_instr_create(mem_ctx, 1); nir_load_const_instr *load = nir_load_const_instr_create(mem_ctx, 1);
switch (type) { switch (c->type) {
case nir_type_float: case nir_type_float:
load->def.name = ralloc_asprintf(mem_ctx, "%f", c->data.f); load->def.name = ralloc_asprintf(mem_ctx, "%f", c->data.d);
load->value.f32[0] = c->data.f; switch (bitsize->dest_size) {
case 32:
load->value.f32[0] = c->data.d;
break; break;
case 64:
load->value.f64[0] = c->data.d;
break;
default:
unreachable("unknown bit size");
}
break;
case nir_type_int: case nir_type_int:
load->def.name = ralloc_asprintf(mem_ctx, "%d", c->data.i); load->def.name = ralloc_asprintf(mem_ctx, "%ld", c->data.i);
switch (bitsize->dest_size) {
case 32:
load->value.i32[0] = c->data.i; load->value.i32[0] = c->data.i;
break; break;
case 64:
load->value.i64[0] = c->data.i;
break;
default:
unreachable("unknown bit size");
}
break;
case nir_type_uint: case nir_type_uint:
case nir_type_bool: load->def.name = ralloc_asprintf(mem_ctx, "%lu", c->data.u);
switch (bitsize->dest_size) {
case 32:
load->value.u32[0] = c->data.u;
break;
case 64:
load->value.u64[0] = c->data.u;
break;
default:
unreachable("unknown bit size");
}
case nir_type_bool32:
load->value.u32[0] = c->data.u; load->value.u32[0] = c->data.u;
break; break;
default: default:
unreachable("Invalid alu source type"); unreachable("Invalid alu source type");
} }
load->def.bit_size = bitsize->dest_size;
nir_instr_insert_before(instr, &load->instr); nir_instr_insert_before(instr, &load->instr);
nir_alu_src val; nir_alu_src val;
@@ -352,6 +547,11 @@ nir_replace_instr(nir_alu_instr *instr, const nir_search_expression *search,
swizzle, &state)) swizzle, &state))
return NULL; return NULL;
void *bitsize_ctx = ralloc_context(NULL);
bitsize_tree *tree = build_bitsize_tree(bitsize_ctx, &state, replace);
bitsize_tree_filter_up(tree);
bitsize_tree_filter_down(tree, instr->dest.dest.ssa.bit_size);
/* Inserting a mov may be unnecessary. However, it's much easier to /* Inserting a mov may be unnecessary. However, it's much easier to
* simply let copy propagation clean this up than to try to go through * simply let copy propagation clean this up than to try to go through
* and rewrite swizzles ourselves. * and rewrite swizzles ourselves.
@@ -362,9 +562,9 @@ nir_replace_instr(nir_alu_instr *instr, const nir_search_expression *search,
instr->dest.dest.ssa.num_components, instr->dest.dest.ssa.num_components,
instr->dest.dest.ssa.bit_size, NULL); instr->dest.dest.ssa.bit_size, NULL);
mov->src[0] = construct_value(replace, nir_op_infos[instr->op].output_type, mov->src[0] = construct_value(replace,
instr->dest.dest.ssa.num_components, &state, instr->dest.dest.ssa.num_components,
&instr->instr, mem_ctx); tree, &state, &instr->instr, mem_ctx);
nir_instr_insert_before(&instr->instr, &mov->instr); nir_instr_insert_before(&instr->instr, &mov->instr);
nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa, nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa,
@@ -376,5 +576,7 @@ nir_replace_instr(nir_alu_instr *instr, const nir_search_expression *search,
*/ */
nir_instr_remove(&instr->instr); nir_instr_remove(&instr->instr);
ralloc_free(bitsize_ctx);
return mov; return mov;
} }

View File

@@ -71,10 +71,12 @@ typedef struct {
typedef struct { typedef struct {
nir_search_value value; nir_search_value value;
nir_alu_type type;
union { union {
uint32_t u; uint64_t u;
int32_t i; int64_t i;
float f; double d;
} data; } data;
} nir_search_constant; } nir_search_constant;