aco: allow reading/writing upper halves/bytes when possible

Use SDWA, opsel or a different opcode to achieve this.

shader-db (Navi, fp16 enabled):
Totals from 42 (0.03% of 127638) affected shaders:
VGPRs: 3424 -> 3416 (-0.23%)
CodeSize: 811124 -> 811984 (+0.11%); split: -0.12%, +0.23%
Instrs: 156638 -> 155733 (-0.58%)
Cycles: 1994180 -> 1982568 (-0.58%); split: -0.59%, +0.00%
VMEM: 7019 -> 7187 (+2.39%); split: +3.45%, -1.05%
SMEM: 1771 -> 1770 (-0.06%); split: +0.06%, -0.11%
VClause: 1477 -> 1475 (-0.14%)
Copies: 13216 -> 12406 (-6.13%)
Branches: 5942 -> 5901 (-0.69%)

Signed-off-by: Rhys Perry <pendingchaos02@gmail.com>
Reviewed-by: Daniel Schürmann <daniel@schuermann.dev>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/5040>
This commit is contained in:
Rhys Perry
2020-05-11 17:49:40 +01:00
committed by Marge Bot
parent 98060ba0f0
commit 56345b8c61
6 changed files with 424 additions and 69 deletions

View File

@@ -2294,7 +2294,6 @@ void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
assert(dst.size() == 1);
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 8) {
//TODO: we should use v_cvt_f32_ubyte1/v_cvt_f32_ubyte2/etc depending on the register assignment
bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
} else {
if (instr->src[0].src.ssa->bit_size == 16)

View File

@@ -1255,6 +1255,7 @@ setup_isel_context(Program* program,
ctx.block->kind = block_kind_top_level;
setup_xnack(program);
program->sram_ecc_enabled = args->options->family == CHIP_ARCTURUS;
return ctx;
}

View File

@@ -25,6 +25,127 @@
namespace aco {
bool can_use_SDWA(chip_class chip, const aco_ptr<Instruction>& instr)
{
if (!instr->isVALU())
return false;
if (chip < GFX8 || instr->isDPP())
return false;
if (instr->isSDWA())
return true;
if (instr->isVOP3()) {
VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(instr.get());
if (instr->format == Format::VOP3)
return false;
if (vop3->clamp && instr->format == asVOP3(Format::VOPC) && chip != GFX8)
return false;
if (vop3->omod && chip < GFX9)
return false;
//TODO: return true if we know we will use vcc
if (instr->definitions.size() >= 2)
return false;
for (unsigned i = 1; i < instr->operands.size(); i++) {
if (instr->operands[i].isLiteral())
return false;
if (chip < GFX9 && !instr->operands[i].isOfType(RegType::vgpr))
return false;
}
}
if (!instr->operands.empty()) {
if (instr->operands[0].isLiteral())
return false;
if (chip < GFX9 && !instr->operands[0].isOfType(RegType::vgpr))
return false;
}
bool is_mac = instr->opcode == aco_opcode::v_mac_f32 ||
instr->opcode == aco_opcode::v_mac_f16 ||
instr->opcode == aco_opcode::v_fmac_f32 ||
instr->opcode == aco_opcode::v_fmac_f16;
if (chip != GFX8 && is_mac)
return false;
//TODO: return true if we know we will use vcc
if ((unsigned)instr->format & (unsigned)Format::VOPC)
return false;
if (instr->operands.size() >= 3 && !is_mac)
return false;
return instr->opcode != aco_opcode::v_madmk_f32 &&
instr->opcode != aco_opcode::v_madak_f32 &&
instr->opcode != aco_opcode::v_madmk_f16 &&
instr->opcode != aco_opcode::v_madak_f16 &&
instr->opcode != aco_opcode::v_readfirstlane_b32 &&
instr->opcode != aco_opcode::v_clrexcp &&
instr->opcode != aco_opcode::v_swap_b32;
}
/* updates "instr" and returns the old instruction (or NULL if no update was needed) */
aco_ptr<Instruction> convert_to_SDWA(chip_class chip, aco_ptr<Instruction>& instr)
{
if (instr->isSDWA())
return NULL;
aco_ptr<Instruction> tmp = std::move(instr);
Format format = (Format)(((uint16_t)tmp->format & ~(uint16_t)Format::VOP3) | (uint16_t)Format::SDWA);
instr.reset(create_instruction<SDWA_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
std::copy(tmp->definitions.cbegin(), tmp->definitions.cend(), instr->definitions.begin());
SDWA_instruction *sdwa = static_cast<SDWA_instruction*>(instr.get());
if (tmp->isVOP3()) {
VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(tmp.get());
memcpy(sdwa->neg, vop3->neg, sizeof(sdwa->neg));
memcpy(sdwa->abs, vop3->abs, sizeof(sdwa->abs));
sdwa->omod = vop3->omod;
sdwa->clamp = vop3->clamp;
}
for (unsigned i = 0; i < instr->operands.size(); i++) {
switch (instr->operands[i].bytes()) {
case 1:
sdwa->sel[i] = sdwa_ubyte;
break;
case 2:
sdwa->sel[i] = sdwa_uword;
break;
case 4:
sdwa->sel[i] = sdwa_udword;
break;
}
}
switch (instr->definitions[0].bytes()) {
case 1:
sdwa->dst_sel = sdwa_ubyte;
sdwa->dst_preserve = true;
break;
case 2:
sdwa->dst_sel = sdwa_uword;
sdwa->dst_preserve = true;
break;
case 4:
sdwa->dst_sel = sdwa_udword;
break;
}
if (instr->definitions[0].getTemp().type() == RegType::sgpr && chip == GFX8)
instr->definitions[0].setFixed(vcc);
if (instr->definitions.size() >= 2)
instr->definitions[1].setFixed(vcc);
if (instr->operands.size() >= 3)
instr->operands[2].setFixed(vcc);
return tmp;
}
bool can_use_opsel(chip_class chip, aco_opcode op, int idx, bool high)
{
/* opsel is only GFX9+ */

View File

@@ -549,6 +549,11 @@ public:
return (signext && (data_.i & 0x80000000u) ? 0xffffffff00000000ull : 0ull) | data_.i;
}
constexpr bool isOfType(RegType type) const noexcept
{
return hasRegClass() && regClass().type() == type;
}
/* Indicates that the killed operand's live range intersects with the
* instruction's definitions. Unlike isKill() and isFirstKill(), this is
* not set by liveness analysis. */
@@ -1220,10 +1225,12 @@ static inline bool is_phi(aco_ptr<Instruction>& instr)
}
barrier_interaction get_barrier_interaction(const Instruction* instr);
bool is_dead(const std::vector<uint16_t>& uses, Instruction *instr);
bool can_use_opsel(chip_class chip, aco_opcode op, int idx, bool high);
bool can_use_SDWA(chip_class chip, const aco_ptr<Instruction>& instr);
/* updates "instr" and returns the old instruction (or NULL if no update was needed) */
aco_ptr<Instruction> convert_to_SDWA(chip_class chip, aco_ptr<Instruction>& instr);
enum block_kind {
/* uniform indicates that leaving this block,

View File

@@ -490,7 +490,7 @@ bool can_swap_operands(aco_ptr<Instruction>& instr)
}
}
bool can_use_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
bool can_use_VOP3(opt_ctx& ctx, const aco_ptr<Instruction>& instr)
{
if (instr->isVOP3())
return true;

View File

@@ -38,6 +38,11 @@
namespace aco {
namespace {
unsigned get_subdword_operand_stride(chip_class chip, const aco_ptr<Instruction>& instr, unsigned idx, RegClass rc);
void add_subdword_operand(chip_class chip, aco_ptr<Instruction>& instr, unsigned idx, unsigned byte, RegClass rc);
std::pair<unsigned, unsigned> get_subdword_definition_info(Program *program, const aco_ptr<Instruction>& instr, RegClass rc);
void add_subdword_definition(Program *program, aco_ptr<Instruction>& instr, unsigned idx, PhysReg reg, bool is_partial);
struct assignment {
PhysReg reg;
RegClass rc;
@@ -81,13 +86,6 @@ struct ra_ctx {
}
};
bool instr_can_access_subdword(ra_ctx& ctx, aco_ptr<Instruction>& instr)
{
if (ctx.program->chip_class < GFX8)
return false;
return instr->isSDWA() || instr->format == Format::PSEUDO;
}
struct DefInfo {
uint16_t lb;
uint16_t ub;
@@ -95,7 +93,7 @@ struct DefInfo {
uint8_t stride;
RegClass rc;
DefInfo(ra_ctx& ctx, aco_ptr<Instruction>& instr, RegClass rc) : rc(rc) {
DefInfo(ra_ctx& ctx, aco_ptr<Instruction>& instr, RegClass rc_, int operand) : rc(rc_) {
size = rc.size();
stride = 1;
@@ -111,14 +109,23 @@ struct DefInfo {
stride = 4;
}
if (rc.is_subdword()) {
if (rc.is_subdword() && operand >= 0) {
/* stride in bytes */
if(!instr_can_access_subdword(ctx, instr))
stride = 4;
else if (rc.bytes() % 4 == 0)
stride = 4;
else if (rc.bytes() % 2 == 0)
stride = 2;
stride = get_subdword_operand_stride(ctx.program->chip_class, instr, operand, rc);
} else if (rc.is_subdword()) {
std::pair<unsigned, unsigned> info = get_subdword_definition_info(ctx.program, instr, rc);
stride = info.first;
if (info.second > rc.bytes()) {
rc = RegClass::get(rc.type(), info.second);
size = rc.size();
/* we might still be able to put the definition in the high half,
* but that's only useful for affinities and this information isn't
* used for them */
stride = align(stride, info.second);
if (!rc.is_subdword())
stride = DIV_ROUND_UP(stride, 4);
}
assert(stride > 0);
}
}
};
@@ -298,6 +305,200 @@ void print_regs(ra_ctx& ctx, bool vgprs, RegisterFile& reg_file)
#endif
unsigned get_subdword_operand_stride(chip_class chip, const aco_ptr<Instruction>& instr, unsigned idx, RegClass rc)
{
if (instr->format == Format::PSEUDO && chip >= GFX8)
return rc.bytes() % 2 == 0 ? 2 : 1;
if (instr->opcode == aco_opcode::v_cvt_f32_ubyte0) {
return 1;
} else if (can_use_SDWA(chip, instr)) {
return rc.bytes() % 2 == 0 ? 2 : 1;
} else if (rc.bytes() == 2 && can_use_opsel(chip, instr->opcode, idx, 1)) {
return 2;
}
switch (instr->opcode) {
case aco_opcode::ds_write_b8:
case aco_opcode::ds_write_b16:
return chip >= GFX8 ? 2 : 4;
case aco_opcode::buffer_store_byte:
case aco_opcode::buffer_store_short:
case aco_opcode::flat_store_byte:
case aco_opcode::flat_store_short:
case aco_opcode::scratch_store_byte:
case aco_opcode::scratch_store_short:
case aco_opcode::global_store_byte:
case aco_opcode::global_store_short:
return chip >= GFX9 ? 2 : 4;
default:
break;
}
return 4;
}
void add_subdword_operand(chip_class chip, aco_ptr<Instruction>& instr, unsigned idx, unsigned byte, RegClass rc)
{
if (instr->format == Format::PSEUDO || byte == 0)
return;
assert(rc.bytes() <= 2);
if (!instr->usesModifiers() && instr->opcode == aco_opcode::v_cvt_f32_ubyte0) {
switch (byte) {
case 0:
instr->opcode = aco_opcode::v_cvt_f32_ubyte0;
break;
case 1:
instr->opcode = aco_opcode::v_cvt_f32_ubyte1;
break;
case 2:
instr->opcode = aco_opcode::v_cvt_f32_ubyte2;
break;
case 3:
instr->opcode = aco_opcode::v_cvt_f32_ubyte3;
break;
}
return;
} else if (can_use_SDWA(chip, instr)) {
convert_to_SDWA(chip, instr);
return;
} else if (rc.bytes() == 2 && can_use_opsel(chip, instr->opcode, idx, byte / 2)) {
VOP3A_instruction *vop3 = static_cast<VOP3A_instruction *>(instr.get());
vop3->opsel |= (byte / 2) << idx;
return;
}
if (chip >= GFX8 && instr->opcode == aco_opcode::ds_write_b8 && byte == 2) {
instr->opcode = aco_opcode::ds_write_b8_d16_hi;
return;
}
if (chip >= GFX8 && instr->opcode == aco_opcode::ds_write_b16 && byte == 2) {
instr->opcode = aco_opcode::ds_write_b16_d16_hi;
return;
}
if (chip >= GFX9 && byte == 2) {
if (instr->opcode == aco_opcode::buffer_store_byte)
instr->opcode = aco_opcode::buffer_store_byte_d16_hi;
else if (instr->opcode == aco_opcode::buffer_store_short)
instr->opcode = aco_opcode::buffer_store_short_d16_hi;
else if (instr->opcode == aco_opcode::flat_store_byte)
instr->opcode = aco_opcode::flat_store_byte_d16_hi;
else if (instr->opcode == aco_opcode::flat_store_short)
instr->opcode = aco_opcode::flat_store_short_d16_hi;
else if (instr->opcode == aco_opcode::scratch_store_byte)
instr->opcode = aco_opcode::scratch_store_byte_d16_hi;
else if (instr->opcode == aco_opcode::scratch_store_short)
instr->opcode = aco_opcode::scratch_store_short_d16_hi;
else if (instr->opcode == aco_opcode::global_store_byte)
instr->opcode = aco_opcode::global_store_byte_d16_hi;
else if (instr->opcode == aco_opcode::global_store_short)
instr->opcode = aco_opcode::global_store_short_d16_hi;
else
unreachable("Something went wrong: Impossible register assignment.");
}
}
/* minimum_stride, bytes_written */
std::pair<unsigned, unsigned> get_subdword_definition_info(Program *program, const aco_ptr<Instruction>& instr, RegClass rc)
{
chip_class chip = program->chip_class;
if (instr->format == Format::PSEUDO && chip >= GFX8)
return std::make_pair(rc.bytes() % 2 == 0 ? 2 : 1, rc.bytes());
else if (instr->format == Format::PSEUDO)
return std::make_pair(4, rc.size() * 4u);
bool can_do_partial = chip >= GFX10;
switch (instr->opcode) {
case aco_opcode::v_mad_f16:
case aco_opcode::v_mad_u16:
case aco_opcode::v_mad_i16:
case aco_opcode::v_fma_f16:
case aco_opcode::v_div_fixup_f16:
case aco_opcode::v_interp_p2_f16:
can_do_partial = chip >= GFX9;
break;
default:
break;
}
if (can_use_SDWA(chip, instr)) {
return std::make_pair(rc.bytes(), rc.bytes());
} else if (rc.bytes() == 2 && can_use_opsel(chip, instr->opcode, -1, 1)) {
return std::make_pair(2u, chip >= GFX10 ? 2u : 4u);
}
switch (instr->opcode) {
case aco_opcode::buffer_load_ubyte_d16:
case aco_opcode::buffer_load_short_d16:
case aco_opcode::flat_load_ubyte_d16:
case aco_opcode::flat_load_short_d16:
case aco_opcode::scratch_load_ubyte_d16:
case aco_opcode::scratch_load_short_d16:
case aco_opcode::global_load_ubyte_d16:
case aco_opcode::global_load_short_d16:
case aco_opcode::ds_read_u8_d16:
case aco_opcode::ds_read_u16_d16:
if (chip >= GFX9 && !program->sram_ecc_enabled)
return std::make_pair(2u, 2u);
else
return std::make_pair(2u, 4u);
default:
break;
}
return std::make_pair(4u, can_do_partial ? rc.bytes() : 4u);
}
void add_subdword_definition(Program *program, aco_ptr<Instruction>& instr, unsigned idx, PhysReg reg, bool is_partial)
{
RegClass rc = instr->definitions[idx].regClass();
chip_class chip = program->chip_class;
instr->definitions[idx].setFixed(reg);
if (instr->format == Format::PSEUDO) {
return;
} else if (can_use_SDWA(chip, instr)) {
if (reg.byte() || (is_partial && chip < GFX10))
convert_to_SDWA(chip, instr);
return;
} else if (reg.byte() && rc.bytes() == 2 && can_use_opsel(chip, instr->opcode, -1, reg.byte() / 2)) {
VOP3A_instruction *vop3 = static_cast<VOP3A_instruction *>(instr.get());
if (reg.byte() == 2)
vop3->opsel |= (1 << 3); /* dst in high half */
return;
}
if (reg.byte() == 2) {
if (instr->opcode == aco_opcode::buffer_load_ubyte_d16)
instr->opcode = aco_opcode::buffer_load_ubyte_d16_hi;
else if (instr->opcode == aco_opcode::buffer_load_short_d16)
instr->opcode = aco_opcode::buffer_load_short_d16_hi;
else if (instr->opcode == aco_opcode::flat_load_ubyte_d16)
instr->opcode = aco_opcode::flat_load_ubyte_d16_hi;
else if (instr->opcode == aco_opcode::flat_load_short_d16)
instr->opcode = aco_opcode::flat_load_short_d16_hi;
else if (instr->opcode == aco_opcode::scratch_load_ubyte_d16)
instr->opcode = aco_opcode::scratch_load_ubyte_d16_hi;
else if (instr->opcode == aco_opcode::scratch_load_short_d16)
instr->opcode = aco_opcode::scratch_load_short_d16_hi;
else if (instr->opcode == aco_opcode::global_load_ubyte_d16)
instr->opcode = aco_opcode::global_load_ubyte_d16_hi;
else if (instr->opcode == aco_opcode::global_load_short_d16)
instr->opcode = aco_opcode::global_load_short_d16_hi;
else if (instr->opcode == aco_opcode::ds_read_u8_d16)
instr->opcode = aco_opcode::ds_read_u8_d16_hi;
else if (instr->opcode == aco_opcode::ds_read_u16_d16)
instr->opcode = aco_opcode::ds_read_u16_d16_hi;
else
unreachable("Something went wrong: Impossible register assignment.");
}
}
void adjust_max_used_regs(ra_ctx& ctx, RegClass rc, unsigned reg)
{
unsigned max_addressible_sgpr = ctx.program->sgpr_limit;
@@ -535,14 +736,19 @@ bool get_regs_for_copies(ra_ctx& ctx,
for (std::set<std::pair<unsigned, unsigned>>::const_reverse_iterator it = vars.rbegin(); it != vars.rend(); ++it) {
unsigned id = it->second;
assignment& var = ctx.assignments[id];
DefInfo info = DefInfo(ctx, ctx.pseudo_dummy, var.rc);
DefInfo info = DefInfo(ctx, ctx.pseudo_dummy, var.rc, -1);
uint32_t size = info.size;
/* check if this is a dead operand, then we can re-use the space from the definition */
/* check if this is a dead operand, then we can re-use the space from the definition
* also use the correct stride for sub-dword operands */
bool is_dead_operand = false;
for (unsigned i = 0; !is_phi(instr) && !is_dead_operand && (i < instr->operands.size()); i++) {
if (instr->operands[i].isTemp() && instr->operands[i].isKillBeforeDef() && instr->operands[i].tempId() == id)
is_dead_operand = true;
for (unsigned i = 0; !is_phi(instr) && i < instr->operands.size(); i++) {
if (instr->operands[i].isTemp() && instr->operands[i].tempId() == id) {
if (instr->operands[i].isKillBeforeDef())
is_dead_operand = true;
info = DefInfo(ctx, instr, var.rc, i);
break;
}
}
std::pair<PhysReg, bool> res;
@@ -552,7 +758,7 @@ bool get_regs_for_copies(ra_ctx& ctx,
for (unsigned i = 0; i < instr->operands.size(); i++) {
if (instr->operands[i].isTemp() && instr->operands[i].tempId() == id) {
assert(!reg_file.test(reg, var.rc.bytes()));
res = {reg, reg.byte() == 0 || instr_can_access_subdword(ctx, instr)};
res = {reg, !var.rc.is_subdword() || (reg.byte() % info.stride == 0)};
break;
}
reg.reg_b += instr->operands[i].bytes();
@@ -885,7 +1091,11 @@ bool get_reg_specified(ra_ctx& ctx,
aco_ptr<Instruction>& instr,
PhysReg reg)
{
if (rc.is_subdword() && reg.byte() && !instr_can_access_subdword(ctx, instr))
std::pair<unsigned, unsigned> sdw_def_info;
if (rc.is_subdword())
sdw_def_info = get_subdword_definition_info(ctx.program, instr, rc);
if (rc.is_subdword() && reg.byte() % sdw_def_info.first)
return false;
if (!rc.is_subdword() && reg.byte())
return false;
@@ -914,8 +1124,15 @@ bool get_reg_specified(ra_ctx& ctx,
if (reg_lo < lb || reg_hi >= ub || reg_lo > reg_hi)
return false;
if (reg_file.test(reg, rc.bytes()))
return false;
if (rc.is_subdword()) {
PhysReg test_reg;
test_reg.reg_b = reg.reg_b & ~(sdw_def_info.second - 1);
if (reg_file.test(test_reg, sdw_def_info.second))
return false;
} else {
if (reg_file.test(reg, rc.bytes()))
return false;
}
adjust_max_used_regs(ctx, rc, reg_lo);
return true;
@@ -925,7 +1142,8 @@ PhysReg get_reg(ra_ctx& ctx,
RegisterFile& reg_file,
Temp temp,
std::vector<std::pair<Operand, Definition>>& parallelcopies,
aco_ptr<Instruction>& instr)
aco_ptr<Instruction>& instr,
int operand_index=-1)
{
auto split_vec = ctx.split_vectors.find(temp.id());
if (split_vec != ctx.split_vectors.end()) {
@@ -972,7 +1190,7 @@ PhysReg get_reg(ra_ctx& ctx,
k += op.bytes();
}
DefInfo info(ctx, ctx.pseudo_dummy, vec->definitions[0].regClass());
DefInfo info(ctx, ctx.pseudo_dummy, vec->definitions[0].regClass(), -1);
std::pair<PhysReg, bool> res = get_reg_simple(ctx, reg_file, info);
PhysReg reg = res.first;
if (res.second) {
@@ -983,7 +1201,7 @@ PhysReg get_reg(ra_ctx& ctx,
}
}
DefInfo info(ctx, instr, temp.regClass());
DefInfo info(ctx, instr, temp.regClass(), operand_index);
/* try to find space without live-range splits */
std::pair<PhysReg, bool> res = get_reg_simple(ctx, reg_file, info);
@@ -1007,10 +1225,10 @@ PhysReg get_reg(ra_ctx& ctx,
uint16_t max_addressible_vgpr = ctx.program->vgpr_limit;
if (info.rc.type() == RegType::vgpr && ctx.program->max_reg_demand.vgpr < max_addressible_vgpr) {
update_vgpr_sgpr_demand(ctx.program, RegisterDemand(ctx.program->max_reg_demand.vgpr + 1, ctx.program->max_reg_demand.sgpr));
return get_reg(ctx, reg_file, temp, parallelcopies, instr);
return get_reg(ctx, reg_file, temp, parallelcopies, instr, operand_index);
} else if (info.rc.type() == RegType::sgpr && ctx.program->max_reg_demand.sgpr < max_addressible_sgpr) {
update_vgpr_sgpr_demand(ctx.program, RegisterDemand(ctx.program->max_reg_demand.vgpr, ctx.program->max_reg_demand.sgpr + 1));
return get_reg(ctx, reg_file, temp, parallelcopies, instr);
return get_reg(ctx, reg_file, temp, parallelcopies, instr, operand_index);
}
//FIXME: if nothing helps, shift-rotate the registers to make space
@@ -1234,13 +1452,16 @@ void handle_pseudo(ra_ctx& ctx,
}
}
bool operand_can_use_reg(ra_ctx& ctx, aco_ptr<Instruction>& instr, unsigned idx, PhysReg reg)
bool operand_can_use_reg(chip_class chip, aco_ptr<Instruction>& instr, unsigned idx, PhysReg reg, RegClass rc)
{
if (instr->operands[idx].isFixed())
return instr->operands[idx].physReg() == reg;
if (reg.byte() && !instr_can_access_subdword(ctx, instr))
return false;
if (reg.byte()) {
unsigned stride = get_subdword_operand_stride(chip, instr, idx, rc);
if (reg.byte() % stride)
return false;
}
switch (instr->format) {
case Format::SMEM:
@@ -1256,7 +1477,7 @@ bool operand_can_use_reg(ra_ctx& ctx, aco_ptr<Instruction>& instr, unsigned idx,
void get_reg_for_operand(ra_ctx& ctx, RegisterFile& register_file,
std::vector<std::pair<Operand, Definition>>& parallelcopy,
aco_ptr<Instruction>& instr, Operand& operand)
aco_ptr<Instruction>& instr, Operand& operand, unsigned operand_index)
{
/* check if the operand is fixed */
PhysReg dst;
@@ -1280,7 +1501,7 @@ void get_reg_for_operand(ra_ctx& ctx, RegisterFile& register_file,
dst = operand.physReg();
} else {
dst = get_reg(ctx, register_file, operand.getTemp(), parallelcopy, instr);
dst = get_reg(ctx, register_file, operand.getTemp(), parallelcopy, instr, operand_index);
}
Operand pc_op = operand;
@@ -1755,10 +1976,10 @@ void register_allocation(Program *program, std::vector<TempSet>& live_out_per_bl
assert(ctx.assignments[operand.tempId()].assigned);
PhysReg reg = ctx.assignments[operand.tempId()].reg;
if (operand_can_use_reg(ctx, instr, i, reg))
if (operand_can_use_reg(program->chip_class, instr, i, reg, operand.regClass()))
operand.setFixed(reg);
else
get_reg_for_operand(ctx, register_file, parallelcopy, instr, operand);
get_reg_for_operand(ctx, register_file, parallelcopy, instr, operand, i);
if (instr->format == Format::EXP ||
(instr->isVMEM() && i == 3 && ctx.program->chip_class == GFX6) ||
@@ -1877,73 +2098,78 @@ void register_allocation(Program *program, std::vector<TempSet>& live_out_per_bl
/* handle all other definitions */
for (unsigned i = 0; i < instr->definitions.size(); ++i) {
auto& definition = instr->definitions[i];
Definition *definition = &instr->definitions[i];
if (definition.isFixed() || !definition.isTemp())
if (definition->isFixed() || !definition->isTemp())
continue;
/* find free reg */
if (definition.hasHint() && register_file[definition.physReg().reg()] == 0)
definition.setFixed(definition.physReg());
if (definition->hasHint() && register_file[definition->physReg().reg()] == 0)
definition->setFixed(definition->physReg());
else if (instr->opcode == aco_opcode::p_split_vector) {
PhysReg reg = instr->operands[0].physReg();
for (unsigned j = 0; j < i; j++)
reg.reg_b += instr->definitions[j].bytes();
if (get_reg_specified(ctx, register_file, definition.regClass(), parallelcopy, instr, reg))
definition.setFixed(reg);
if (get_reg_specified(ctx, register_file, definition->regClass(), parallelcopy, instr, reg))
definition->setFixed(reg);
} else if (instr->opcode == aco_opcode::p_wqm || instr->opcode == aco_opcode::p_parallelcopy) {
PhysReg reg = instr->operands[i].physReg();
if (instr->operands[i].isTemp() &&
instr->operands[i].getTemp().type() == definition.getTemp().type() &&
!register_file.test(reg, definition.bytes()))
definition.setFixed(reg);
instr->operands[i].getTemp().type() == definition->getTemp().type() &&
!register_file.test(reg, definition->bytes()))
definition->setFixed(reg);
} else if (instr->opcode == aco_opcode::p_extract_vector) {
PhysReg reg;
if (instr->operands[0].isKillBeforeDef() &&
instr->operands[0].getTemp().type() == definition.getTemp().type()) {
instr->operands[0].getTemp().type() == definition->getTemp().type()) {
reg = instr->operands[0].physReg();
reg.reg_b += definition.bytes() * instr->operands[1].constantValue();
assert(!register_file.test(reg, definition.bytes()));
definition.setFixed(reg);
reg.reg_b += definition->bytes() * instr->operands[1].constantValue();
assert(!register_file.test(reg, definition->bytes()));
definition->setFixed(reg);
}
} else if (instr->opcode == aco_opcode::p_create_vector) {
PhysReg reg = get_reg_create_vector(ctx, register_file, definition.getTemp(),
PhysReg reg = get_reg_create_vector(ctx, register_file, definition->getTemp(),
parallelcopy, instr);
definition.setFixed(reg);
definition->setFixed(reg);
}
if (!definition.isFixed()) {
Temp tmp = definition.getTemp();
if (tmp.regClass().is_subdword() &&
!instr_can_access_subdword(ctx, instr)) {
assert(tmp.bytes() <= 4);
tmp = Temp(definition.tempId(), v1);
if (!definition->isFixed()) {
Temp tmp = definition->getTemp();
if (definition->regClass().is_subdword() && definition->bytes() < 4) {
PhysReg reg = get_reg(ctx, register_file, tmp, parallelcopy, instr);
bool partial = !(tmp.bytes() <= 4 && reg.byte() == 0 && !register_file.test(reg, 4));
add_subdword_definition(program, instr, i, reg, partial);
definition = &instr->definitions[i]; /* add_subdword_definition can invalidate the reference */
} else {
definition->setFixed(get_reg(ctx, register_file, tmp, parallelcopy, instr));
}
definition.setFixed(get_reg(ctx, register_file, tmp, parallelcopy, instr));
}
assert(definition.isFixed() && ((definition.getTemp().type() == RegType::vgpr && definition.physReg() >= 256) ||
(definition.getTemp().type() != RegType::vgpr && definition.physReg() < 256)));
assert(definition->isFixed() && ((definition->getTemp().type() == RegType::vgpr && definition->physReg() >= 256) ||
(definition->getTemp().type() != RegType::vgpr && definition->physReg() < 256)));
ctx.defs_done.set(i);
/* set live if it has a kill point */
if (!definition.isKill())
live.emplace(definition.getTemp());
if (!definition->isKill())
live.emplace(definition->getTemp());
ctx.assignments[definition.tempId()] = {definition.physReg(), definition.regClass()};
register_file.fill(definition);
ctx.assignments[definition->tempId()] = {definition->physReg(), definition->regClass()};
register_file.fill(*definition);
}
handle_pseudo(ctx, register_file, instr.get());
/* kill definitions and late-kill operands */
/* kill definitions and late-kill operands and ensure that sub-dword operands can actually be read */
for (const Definition& def : instr->definitions) {
if (def.isTemp() && def.isKill())
register_file.clear(def);
}
for (const Operand& op : instr->operands) {
for (unsigned i = 0; i < instr->operands.size(); i++) {
const Operand& op = instr->operands[i];
if (op.isTemp() && op.isFirstKill() && op.isLateKill())
register_file.clear(op);
if (op.isTemp() && op.physReg().byte() != 0)
add_subdword_operand(program->chip_class, instr, i, op.physReg().byte(), op.regClass());
}
/* emit parallelcopy */
@@ -2090,6 +2316,7 @@ void register_allocation(Program *program, std::vector<TempSet>& live_out_per_bl
}
std::copy(tmp->definitions.begin(), tmp->definitions.end(), instr->definitions.begin());
}
instructions.emplace_back(std::move(*it));
} /* end for Instr */